Around infinitary categorical logic

dc.contributor.advisorZambrano Ramírez, Pedro Hernán
dc.contributor.authorRoldan Moros, Samuel Felipe
dc.contributor.researchgroupInteracciones Entre Teoría de Modelos, Teoría de Conjuntos, Categorías, Análisis y Geometríaspa
dc.date.accessioned2024-01-29T13:21:33Z
dc.date.available2024-01-29T13:21:33Z
dc.date.issued2024
dc.description.abstractSe estudia una generalización de la lógica categórica para lenguajes infinitarios. Principalmente se trabaja con una generalización de los topos de Grothendieck, que también generalizan los topos usados por Espíndola, y se estudia como esta definición para topos se relaciona con una versión del axioma de elección. Se prueban generalizaciones de los resultados de la lógica categórica, como la caracterización de morfismos geométricos y la relación entre topos y locales. Se enfatiza la generalización del Teorema de Deligne, el cual usa cardinales fuertemente compactos y, recíprocamente, se muestra como ciertas versiones del Teorema de Deligne pueden implicar la existencia de grandes cardinales. Para el teorema de Deligne también se introduce la propiedad de omisión de tipos débil para topos y se mira como esta relacionado con generalizaciones de los espacios de Baire. (Texto tomado de la fuente)spa
dc.description.abstractA generalization of categorical logic for infinitary languages is studied. The main focus is on a generalization of Grothendieck topoi, extending those used by Espíndola. We explore the relationship between this definition of topoi and a version of the axiom of choice. We prove generalizations of some of the usual results in categorical logic, including the characterization of geometric morphisms and the connection between topoi and locales. Emphasis is placed on the generalization of the Deligne Theorem, utilizing strongly compact cardinals. Conversely, we show that certain versions of the Deligne Theorem imply the existence of large cardinals. We introduce the weak omitting types property for topoi is introduced which is used for Deligne Theorem and we examine its connection to generalizations of Baire spaces.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias-Matemáticasspa
dc.format.extentviii, 130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85476
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesMichael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Theorie de Topos et Cohomologie Etale des Schemas II, volume 270 of Lecture Notes in Mathematics. Springer, 1971.spa
dc.relation.referencesWill Boney. Tameness and extending frames. J. Math. Log., 14(02), 2014.spa
dc.relation.referencesWill Boney and Spencer Unger. Large cardinal axioms from tameness in AECs. Proc. Amer. Math. Soc., 145(10):4517–4532, 2017.spa
dc.relation.referencesChristian Espíndola. Infinitary first-order categorical logic. Ann. Pure Appl. Logic, 170(2):137–162, 2019.spa
dc.relation.referencesChristian Espíndola. A short proof of shelah’s eventual categoricity conjecture for AEC’s with interpolation, under GCH. arXiv preprint arXiv:1909.13713, 2019.spa
dc.relation.referencesChristian Espíndola. Infinitary generalizations of deligne’s completeness theo- rem. J. Symb. Log., 85(3):1147–1162, 2020.spa
dc.relation.referencesRami Grossberg and Monica VanDieren. Shelah’s categoricity conjecture from a successor for tame abstract elementary classes. J. Symb. Log., 71(2):553–568, 2006.spa
dc.relation.referencesHorst Herrlich and Kyriakos Keremedis. The baire category theorem and choice. Topology Appl., 108(2):157–167, 2000.spa
dc.relation.referencesThomas J Jech. Set theory, volume 14. Springer, 2003.spa
dc.relation.referencesThomas J Jech. The axiom of choice. Courier Corporation, 2008.spa
dc.relation.referencesPeter T Johnstone. Stone spaces, volume 3. Cambridge university press, 1982.spa
dc.relation.referencesPeter T Johnstone. Sketches of an Elephant: A Topos Theory Compendium: Volume 2, volume 2. Oxford University Press, 2002.spa
dc.relation.referencesAkihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings. Springer Science & Business Media, 2008.spa
dc.relation.referencesH. Jerome Keisler. Logic with the quantifier there exist uncountably many. Ann. Math. Log., 1(1):1–93, 1970.spa
dc.relation.referencesH. Jerome Keisler. Model Theory for Infinitary Logic. Amsterdam,: North- Holland Pub. Co., 1971.spa
dc.relation.referencesH Jerome Keisler and Steven C Leth. Meager sets on the hyperfinite time line. J. Symb. Log, 56(1):71–102, 1991.spa
dc.relation.referencesMichael Makkai. A theorem on barr-exact categories, with an infinitary gener- alization. Ann. Pure Appl. Logic, 47(3):225–268, 1990.spa
dc.relation.referencesSaunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science & Business Media, 1971.spa
dc.relation.referencesSaunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first in- troduction to topos theory. Springer Science & Business Media, second printing, 1992.spa
dc.relation.referencesMichael Morley. Categoricity in power. Trans. Amer. Math. Soc., 114(2):514– 538, 1965.spa
dc.relation.referencesMichael Makkai and Gonzalo E Reyes. First order categorical logic: model- theoretical methods in the theory of topoi and related categories, volume 611. Springer, 1977.spa
dc.relation.referencesMichael Makkai and Saharon Shelah. Categoricity of theories in Lκω, with κ a compact cardinal. Ann. Pure Appl. Logic, 47(1):41–97, 1990.spa
dc.relation.referencesSaharon Shelah. Categoricity of uncountable theories. In Proceedings of the Tarski Symposium, volume XXV of Proc. Sympos. Pure Math., pages 187–203. Amer. Math. Soc., Providence, R.I., 1974.spa
dc.relation.referencesSaharon Shelah. Classification theory for nonelementary classes. I. The number of uncountable models of ψ ∈ Lω1,ω. Part A. Israel J. Math., 46(3):212–240, 1983.spa
dc.relation.referencesSaharon Shelah. Classification theory for nonelementary classes. I. The number of uncountable models of ψ ∈ Lω1,ω. Part B. Israel J. Math., 46(4):241–273, 1983.spa
dc.relation.referencesSaharon Shelah. Classification of non elementary classes ii abstract elementary classes. In Classification theory, pages 419–497. Springer, 1987.spa
dc.relation.referencesMichael Makkai and Robert Paré. Accessible Categories: The Foundations of Categorical Model Theory: The Foundations of Categorical Model Theory, vol- ume 104. American Mathematical Soc., 1989.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.lccTopos (Matemáticas)spa
dc.subject.lccToposes (Mathematics)eng
dc.subject.lccConjuntos, Teoría axiomática despa
dc.subject.lccAxiomatic set theoryeng
dc.subject.lembCategorías (Matemáticas)spa
dc.subject.lembCategories (Mathematics)eng
dc.subject.proposalLogiceng
dc.subject.proposalLógicaspa
dc.subject.proposalLógica categoricaspa
dc.subject.proposalCategorical logiceng
dc.subject.proposalToposspa
dc.subject.proposalToposeng
dc.subject.proposalLógica infinitaraspa
dc.subject.proposalInfinitary logiceng
dc.subject.proposalGrandes cardinalesspa
dc.subject.proposalLarge cardinalseng
dc.subject.proposalTeoría de categoriasspa
dc.subject.proposalCategory theoryeng
dc.subject.wikidataLógica infinitariaspa
dc.subject.wikidataInfinitary logiceng
dc.titleAround infinitary categorical logiceng
dc.title.translatedAlrededor de la lógica categórica infinitariaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019131189.2024.pdf
Tamaño:
801.48 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: