Pronósticos basados en un modelo multivariado autorregresivo de umbrales (MTAR) con distribución de error t-Student multivariada desde el enfoque Bayesiano

dc.contributor.advisorCalderón Villanueva, Sergio Alejandro
dc.contributor.advisorEspinosa Acuña, Oscar Andrés
dc.contributor.authorRivera Garzón, Nicolás
dc.contributor.googlescholarBRJcH4UAAAAJspa
dc.contributor.orcid0000-0002-0044-5435spa
dc.contributor.researchgroupGrupo de Investigación en Modelos Económicos y Métodos Cuantitativos (Imemc)spa
dc.date.accessioned2023-05-31T16:27:30Z
dc.date.available2023-05-31T16:27:30Z
dc.date.issued2023
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn este trabajo se presenta un método que permite obtener los pronósticos basados en un modelo MTAR con distribución de error t-Student multivariada desde el enfoque Bayesiano. Para ello, se encuentra la distribución predictiva Bayesiana que incluye la incertidumbre sobre los verdaderos valores de los parámetros del modelo MTAR. El procedimiento planteado se basa en la obtención de muestras de la distribución predictiva para obtener el pronóstico puntual e intervalos de predicción del proceso de interés. El desempeño del algoritmo planteado se verifica a través de un estudio de simulación basado en tres modelos en donde se calcula el porcentaje de veces en que los valores verdaderos del proceso de salida se encuentran dentro del intervalo de predicción del 95% de la distribución predictiva. Posteriormente se presenta una aplicación a un conjunto de series de tiempo financieras donde se obtienen los pronósticos de los retornos de los índices Bovespa y Colcap usando como variable umbral los retornos del índice Standard and Poor's 500 y se comparan los pronósticos con los obtenidos por un modelo MTAR con distribución de error normal multivariada. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presents a Bayesian method to obtain forecasts based on a MTAR model with a multivariate t-Student error distribution. For this, the Bayesian predictive distribution is found, which includes the uncertainty about the true values of the parameters of the MTAR model. The proposed procedure is based on drawing samples from the predictive distribution to obtain the point forecast and prediction intervals of the process of interest. The performance of the proposed algorithm is veri fied through a simulation study based on three models where the percentage of times in which the true values of the output process are within the prediction interval of 95% of the predictive distribution is calculated. Subsequently, an application to a set of financial time series is presented where the forecasts of the returns of the Bovespa and Colcap indexes are obtained using the returns of the Standard and Poor's 500 index as a threshold variable and the forecasts are compared with those obtained by a MTAR model with multivariate normal error distribution.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaSeries de Tiempospa
dc.format.extentxvi, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83929
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAnthony, M., y Harvey, M. (2012). Linear algebra: concepts and methods. Cambridge University Press.spa
dc.relation.referencesBarnard, J., McCulloch, R., y Meng, X. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10 (4), 1281-1311.spa
dc.relation.referencesBartkowiak, A. (2007). Should normal distribution be normal? The student's t alternative. En 6th international conference on computer information systems and industrial management applications (cisim'07) (p. 3-8).spa
dc.relation.referencesBickel, P., y Doksum, K. (2015). Basic ideas and selected topics, volumes i-ii (2nd ed.). Chapman and Hall/CRC.spa
dc.relation.referencesCalderón, S., y Nieto, F. (2017). Bayesian analysis of multivariate threshold autoregressive models with missing data. Communications in Statistics - Theory and Methods, 46 (1), 296-318.spa
dc.relation.referencesCalderón, S., y Nieto, F. (2021). Forecasting with multivariate threshold autoregressive models. Revista Colombiana de Estadística, 44 (2), 369-383.spa
dc.relation.referencesChen, C., y Lee, J. (1995). Bayesian inference of threshold autoregressive. Journal of Time Series Analysis, 16 (5), 483-492.spa
dc.relation.referencesChiu, C., Mumtaz, H., y Pint er, G. (2017). Forecasting with VAR models: Fat tails and stochastic volatility. International Journal of Forecasting, 33 (4), 1124-1143.spa
dc.relation.referencesDebski, W. (2010). Chapter 1: Probabilistic inverse theory. En R. Dmowska (Ed.), Advances in geophysics (Vol. 52, p. 1-102). Elsevier.spa
dc.relation.referencesDiebold, F., y Mariano, R. (1995). Comparing predictive accuracy. Journal of Business Economic Statistics, 13 (3), 253-63.spa
dc.relation.referencesEspinosa, O., y Nieto, F. (2016). Estudio del efecto de apalancamiento en series financieras usando un modelo TAR. Universidad Nacional de Colombia, Bogotá, D.C .spa
dc.relation.referencesGelman, A., Carlin, J., Stern, H., y Rubin, D. (2004). Bayesian data analysis (2nd ed.). Chapman and Hall/CRC.spa
dc.relation.referencesGelman, A., y Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7 (4), 457 - 472.spa
dc.relation.referencesGeweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In bayesian statistics (pp. 169-193).spa
dc.relation.referencesGonzález, J., y Nieto, F. (2020). Bayesian analysis of multiplicative seasonal threshold autoregressive processes. Revista Colombiana de Estadística, 43 (2), 251-284.spa
dc.relation.referencesHansen, B. (1997). Inference in TAR models. Studies in nonlinear dynamics and econometrics, 2 , 1-14.spa
dc.relation.referencesHansen, B. (1999). Testing for linearity. Journal of Economic Surveys, 13 (5), 551-576.spa
dc.relation.referencesHansen, B. (2011). Threshold autoregression in economics. Statistics and Its Interface Volume, 4 , 123-127.spa
dc.relation.referencesHarvey, D., Leybourne, S., y Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13 (2), 281-291.spa
dc.relation.referencesHyndman, R., y Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd ed.). Australia: OTexts.spa
dc.relation.referencesIbáñez, L., y Calderón, S. (2020). Estimación bayesiana de los parámetros estructurales de los modelos multivariados autoregresivos de umbrales con ruido t-student multivariado. Universidad Nacional de Colombia, Bogotá, D.C .spa
dc.relation.referencesKarlsson, S. (2013). Forecasting with bayesian vector autoregression. En G. Elliott y A. Timmermann (Eds.), Handbook of economic forecasting (Vol. 2, p. 791-897). Elsevier.spa
dc.relation.referencesKibria, G., y Joarder, A. (2006). A short review of multivariate t-distribution. Journal of Statistical Research ISSN , 40 , 256-422.spa
dc.relation.referencesLi, D., y Tong, H. (2016). Nested sub-sample search algorithm for estimation of threshold models. Statistica Sinica, 26 (4), 1543-1554.spa
dc.relation.referencesLo, M., y Zivot, E. (2001). Threshold cointegration and nonlinear adjustment to the law of one price. Macroeconomic Dynamics, 5 (4), 533-576.spa
dc.relation.referencesNieto, F. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics - Theory and Methods, 34 (4), 905-930.spa
dc.relation.referencesNieto, F. (2008). Forecasting with univariate TAR models. Statistical Methodology, 5 (3), 263-276.spa
dc.relation.referencesNieto, F., Zhang, H., y Li, W. (2013). Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models. Communications in Statistics - Simulation and Computation, 42 (4), 814-840.spa
dc.relation.referencesRomero, L., y Calderón, S. (2021). Bayesian estimation of a multivariate tar model when the noise process follows a student-t distribution. Communications in Statistics - Theory and Methods, 50 (11), 2508-2530.spa
dc.relation.referencesTong, H. (1978). On a threshold model. In: C. Chen (Ed.), Pattern recognition and signal processing. Amsterdam: Sijhoff Noordhoff., 42 , 575-586.spa
dc.relation.referencesTong, H. (1990). Non-linear time series: a dynamical system approach. Oxford: Oxford Statistical Science, Oxford University Press.spa
dc.relation.referencesTong, H. (2015). Threshold models in time series analysis - some reflections. Journal of Econometrics, 189 (2), 485-491.spa
dc.relation.referencesTong, H., y Lim, K. (1980). Threshold autoregression, limit cycles. Journal of the Royal Statistical Society: Series B (Methodological), 42 (3), 245-268.spa
dc.relation.referencesTsay, R. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93 (443), 1188-1202.spa
dc.relation.referencesTsay, R., y Chen, R. (2019). Nonlinear time series analysis. John Wiley Sons, Inc.spa
dc.relation.referencesVaca, P., y Nieto, F. (2018). Analysis of the forecasting performance of the threshold autoregressive model. Universidad Nacional de Colombia, Bogotá, D.C .spa
dc.relation.referencesWong, S., Chan, W., y Kam, P. (2009). A Student t-mixture autoregressive model with applications to heavy-tailed financial data. Biometrika, 96 (3), 751-760.spa
dc.relation.referencesZhang, H., y Nieto, F. (2015). TAR modeling with missing data when the white noise process follows a student's t-distribution. Revista Colombiana de Estadística, 38 (1), 239-265.spa
dc.relation.referencesZivot, E., y Wang, J. (2005). Modeling nancial time series with S-Plus.spa
dc.relation.referencesNieto, F., y Hoyos, M. (2011). Testing linearity against a univariate TAR speci fication in time series with missing data. Revista Colombiana de Estadística, 34 (1), 73-94.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembTEORIA BAYESIANA DE DECISIONES ESTADISTICASspa
dc.subject.lembBayesian statistical decision theoryeng
dc.subject.lembCONSTRUCCION DE MODELOSspa
dc.subject.lembModels and modelmakingeng
dc.subject.proposalModelos MTARspa
dc.subject.proposalEstadística Bayesianaspa
dc.subject.proposalPronósticosspa
dc.subject.proposalDistribución predictivaspa
dc.subject.proposalDistribución t-Studentspa
dc.subject.proposalModelos no linealesspa
dc.subject.proposalMTAR modelseng
dc.subject.proposalBayesian statisticseng
dc.subject.proposalForecastingeng
dc.subject.proposalPredictive distributioneng
dc.subject.proposalStudent's t-distributioneng
dc.subject.proposalNonlinear modelseng
dc.titlePronósticos basados en un modelo multivariado autorregresivo de umbrales (MTAR) con distribución de error t-Student multivariada desde el enfoque Bayesianospa
dc.title.translatedForecasts based on a multivariate autoregressive threshold model (MTAR) with a multivariate t-Student error distribution from a Bayesian approacheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014298439.2023.pdf
Tamaño:
1.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: