Sobre la controlabilidad de un problema de frontera libre para la ecuación del calor
dc.contributor.advisor | Gallego Restrepo, Fernando Andres | |
dc.contributor.author | Martinez Gonzalez, Geraldin | |
dc.date.accessioned | 2025-02-24T20:53:10Z | |
dc.date.available | 2025-02-24T20:53:10Z | |
dc.date.issued | 2024 | |
dc.description | graficas | spa |
dc.description.abstract | La tesis de maestría aborda la problemática de la controlabilidad en problemas de frontera libre, introduciendo un enfoque que incluye la presencia de un control interno y explora una variante adicional que implica un retardo en el tiempo dentro del modelo. Dividida en cinco capítulos, comienza estableciendo los principios fundamentales de la teoría de control, especialmente aplicados a ecuaciones parabólicas. Luego, revisa el estado actual de la investigación en cuanto a la controlabilidad interna en problemas de frontera libre para la ecuación del calor en una dimensión. Posteriormente, presenta nuevos hallazgos y resultados relacionados con este problema, pero considerando la influencia de un retardo interno en el tiempo. En el último capítulo, se derivan conclusiones significativas de la investigación realizada y se proponen posibles direcciones para futuros trabajos. Además, se incluye un apéndice que proporciona información complementaria relevante. La tesis ofrece una contribución valiosa al campo, al abordar de manera integral la controlabilidad en problemas con características específicas como la presencia de un control interno y el efecto del retardo en el tiempo (Texto tomado de la fuente). | spa |
dc.description.abstract | The master thesis deals with the controllability problem in free boundary problems, introducing an approach that includes the presence of an internal control and explores an additional variant involving a time delay within the model. Divided into five chapters, it begins by establishing the fundamental principles of control theory, especially as applied to parabolic equations. It then reviews the current state of research on internal controllability in free boundary problems for the heat equation in one dimension. Subsequently, it presents new findings and results related to this problem, but considering the influence of an internal time delay. In the last chapter, significant conclusions are derived from the research carried out and possible directions for future work are proposed. In addition, an appendix is included that provides relevant supplementary information. The thesis offers a valuable contribution to the field by comprehensively addressing controllability in problems with specific characteristics such as the presence of an internal control and the effect of time delay. | eng |
dc.description.curriculararea | Matemáticas Y Estadística.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemática Aplicada | spa |
dc.format.extent | iv, 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87544 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada | spa |
dc.relation.references | Araújo, R. K., Fernández-Cara, E., Límaco, J., Souza, D. A. Remarks on the control of two-phase stefan free-boundary problems. SIAM Journal on Control and Optimization, 60(5): 3078-3099, 2022 | spa |
dc.relation.references | Artola, M. Sur les perturbations des équations d’évolution: Application à des problèmes avec retard, Ann. Sci. Ecole Norm. Sup. (4) 2 : 137-253,1969. | spa |
dc.relation.references | Bachman, G.; Narici, L. Functional Analysis. 2nd Ed. Dover Publications, 1998. | spa |
dc.relation.references | Brezis, H. Functional Analysis, Sobolev Spaces And Partial Differential Equations. Springer-verlag New York, 2010. | spa |
dc.relation.references | Cannarsa, P. Control of Partial Differential Equations: Cetraro, Italy 2010. Springer, 2012. | spa |
dc.relation.references | Coddington, E. A.; Levinson, N. Theory of Ordinary Differential Equations. mcgraw-hill, 1987. | spa |
dc.relation.references | Coron, J. M. Control and nonlinearity (No. 136). American Mathematical Soc, 2007. | spa |
dc.relation.references | Costa, V., Límaco, J., Lopes, A. R., Prouvée, L. On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities. Applied Mathematics and Optimization, 87(1), 11, 2023. | spa |
dc.relation.references | Dressel, F. G. The fundamental solution of the parabolic equation, Duke Math. J. 7 , 186-203. MR 2, 204, 1940 | spa |
dc.relation.references | Fasano, A., Primicerio, General free-boundary problems for the heat equation, I, J. Math. Anal. Appl. 57, 694-723,1977. | spa |
dc.relation.references | Fernández-Cara, E., Hernández, F., Límaco, J. Local null controllability of a 1D Stefan problem. Bulletin of the Brazilian Mathematical Society, New Series, 50, 745-769, 2019. | spa |
dc.relation.references | Fernández-Cara, E., Ivaldo Tributino de Sousa. Local null controllability of a freeboundary problem for the semilinear 1D heat equation. Bulletin of the Brazilian Mathematical Society, New Series 48.2 : 303-315,2017 | spa |
dc.relation.references | Fernández-Cara, E., Limaco, J., de Menezes, S. B. On the controllability of a freeboundary problem for the 1D heat equation. Systems and Control Letters 87 (2016): 29-35. | spa |
dc.relation.references | Folland, G. B, Real Analysis: Modern Techniques And Their Applications. 2nd Ed. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, 1999. | spa |
dc.relation.references | Friedman, A. Analyticity of the free boundary for the Stefan problem. Arch. Rat. Mech. Anal., 61, pp. 97-125, 1976. | spa |
dc.relation.references | Fourier, J. Théorie analytique de la chaleur. Vol. 1. Paris: Chez l’auteur, 1822. | spa |
dc.relation.references | Fursikov, A., Imanuvilov, O. Yu. Controllability of Evolution Equations, Lecture Notes Ser., vol.34, Seoul National University, Korea, 1996 | spa |
dc.relation.references | Gomes, A. M. Semigrupos De Operadores lineares e aplicações às equações de evolução. 2 Ed. Ufrj - Im, 2005. (rio De Janeiro). | spa |
dc.relation.references | Gupta, S.C., The classical Stefan problem. Basic concepts, modelling and analysis, Elsevier Science B.V., Amster-dam, 2003 | spa |
dc.relation.references | Hoffmann, K. H., Kenmochi, N. Two-phase Stefan problems with feedback controls. Birkhäuser Basel,(pp. 239-260) 1989. | spa |
dc.relation.references | Hörmander, L. Linear Partial Differential Equations, Springer Verlag, 1969. | spa |
dc.relation.references | Kesavan, S. Topics in Functional Analysis And Applications. Wiley Easterm Limited, 1989. | spa |
dc.relation.references | Khodja, F.A., Bouzidi, C., Dupaix, C., Maniar, L. Null controllability of retarded parabolic equations. Math. Control Relat. Fields, 4(1), 1-15, 2014. | spa |
dc.relation.references | Komornik, V. Exact controllability and stabilization: the multiplier method (Vol. 36). Elsevier Masson, 1994. | spa |
dc.relation.references | Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N., Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1968 | spa |
dc.relation.references | Lebeau, G., Robbiano, L. Controle exact de lequation de la chaleur. Comm. Part. Differ. Equat.20, 335–356, 1995. | spa |
dc.relation.references | Le Rousseau, J., Lebeau, G. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var, 2011. | spa |
dc.relation.references | Lions, J. L. Quelques Méthodes De R´esolutions Des Problèmes Aux Limites Non Linéaires. Dunod Gauthier-villars, Paris, 1969. | spa |
dc.relation.references | Lions, J. L. Controlabilite exacte, perturbations et stabilisation de systemes distribues, Tomes 1 and 2. Masson, RMA 8 and 9, Paris, 1988. | spa |
dc.relation.references | Matiicuk, M. I., Eidel man, S. D. On parabolic systems with coefficients satisfying a Dint condition, Dokl. Akad. Nauk SSSR 165(1965), 482-485 Soviet Math. Dokl- 6(1965), 1461-1464. MR 32 - 7962. | spa |
dc.relation.references | Medeiros, L. A., Miranda, M. M., Lourêdo, A. T. Introduction exact control theory: Method Hum. EDUEPB, Campina Grande, 2013. | spa |
dc.relation.references | Medeiros, L. A., Miranda, M. M. Espaços de Sobolev (Iniciação aos Problemas Elíticos não Homogêneos). Im - Ufrj, 2000. | spa |
dc.relation.references | Micu, S., Zuazua, E. An introduction to the controllability of partial differential equations. Quelques questions de théorie du contrôle. Sari, T., ed., Collection Travaux en Cours Hermann, to appear. 2004. | spa |
dc.relation.references | Miller,L. A direct lebeau–robbiano strategy for the observability of heat-like semigroups. Discrete Continuous Dyn. Syst. Series B 14, 1465–1485 (2010) | spa |
dc.relation.references | Pogorzelski, W. Etude de la solution fondamentale de Vequation parabolique, Ricerche Mat. 5, 25-57. MR 18, 47. 1956 | spa |
dc.relation.references | Pogorzelski, W. An investigation of the integrals of a parabolic equation and of boundary value problems in an unbounded domain, Mat. Sb. 47(89) , 397-430. (Russian) MR 22 - 2791.1959. | spa |
dc.relation.references | Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1999. | spa |
dc.relation.references | Rudin, W. Principles Of Mathematical Analysis. 3d Ed. Mcgraw-hill, 1976. (international Series In Pure And Applied Mathematics). | spa |
dc.relation.references | Russell,D.L. Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739, 1978 | spa |
dc.relation.references | Sontag, E. D. Mathematical control theory: deterministic finite dimensional systems (Vol. 6). Springer Science & Business Media, 2013. | spa |
dc.relation.references | Temam, R. Navier-stokes Equations. 3. Ed. North- Holland Pu- Blishing Co,Amsterdam, 1984. V. 2. (Studies in Mathematics and its Applications, V. 2). | spa |
dc.relation.references | Tenenbaum,G., Tucsnak, M. On the null-controllability of diffusion equations. ESAIM Control Optim. Calc. Var., 17(4), 2010 | spa |
dc.relation.references | Wang, L., Lan, Y., Lei, P. Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation. Journal of Mathematical Analysis and Applications 506.2: 125676. 2022. | spa |
dc.relation.references | Wang, L., Lei, P., Wu, Q. Null controllability of a 1D Stefan problem for the heat equation governed by a multiplicative control. Systems and Control Letters 171 : 105417. 2023. | spa |
dc.relation.references | Zabczyk,J. Mathematical Control Theory: An Introduction, Systems and Control: Foundations and Applications, Birkhauser Boston, Inc., Boston, MA, 1992. | spa |
dc.relation.references | Zuazua, E. Exact controllability for the semilinear wave equation. J. Math. Pures Appl. (9) 69(1), 1–31, 1990. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.proposal | Ecuación de calor | spa |
dc.subject.proposal | Controlabilidad | spa |
dc.subject.proposal | Frontera libre | spa |
dc.subject.proposal | Estimación de Carleman | spa |
dc.subject.proposal | Heat equation | eng |
dc.subject.proposal | Controllability | eng |
dc.subject.proposal | Free boundary | eng |
dc.subject.proposal | Carleman estimation | eng |
dc.subject.unesco | Ecuaciones diferenciales | spa |
dc.subject.unesco | Matemáticas aplicadas | spa |
dc.subject.unesco | Modelos matemáticos | spa |
dc.title | Sobre la controlabilidad de un problema de frontera libre para la ecuación del calor | spa |
dc.title.translated | On the Controllability of a free boundary problem for the heat equation | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053863268.2025.pdf
- Tamaño:
- 1.9 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemática Aplicada
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: