Estimación de las discontinuidades de la Zona de Transición del Manto en el noroccidente de Suramérica a partir del análisis de la Función Receptora de onda P

dc.contributor.advisorVargas Jimenez, Carlos Alberto
dc.contributor.authorCubillos Gordillo, Jorge Enrique
dc.date.accessioned2024-12-09T20:45:44Z
dc.date.available2024-12-09T20:45:44Z
dc.date.issued2022-02
dc.descriptionilustraciones, graficas, mapas, tablasspa
dc.description.abstractLa zona de transición del manto está limitada por dos discontinuidades sísmicas a 410 y 660 kilómetros, _estas son visualizadas en la parte noroccidental de Suramérica mediante el uso de la técnica de función receptora e información sismológica, la cual ha sido registrada durante mas de 20 años por la red sismológica nacional de Colombia. Se observaron variaciones importantes y espacialmente sistemática en las profundidades de las discontinuidades. La profundidad promedio para los límites de la zona de transición del manto son 412±5.3 y 671±5.9 con un espesor promedio es de 258±6.5 km, el cual es cercano al valor promedio global. El bajo coeficiente de correlación de las profundidades indica que la variación de estas profundidades es significativa. El aumento en el espesor de la zona de transición del manto en algunas zonas es causado por la subducción de la placa Nazca y la placa Caribe bajo la placa Suramérica. Por otro lado, el adelgazamiento de la zona de transición del manto bajo la placa Nazca posiblemente se debe a la presencia del ridge de Malpelo. Estas observaciones combinadas con los resultados de investigaciones de tomografías sísmicas pudieron confirmar la interacción entre las placas Nazca y Caribe con el manto superior y la hidratación de la zona de transición del manto.spa
dc.description.abstractMantle transition zone is delimited by two seismic discontinuities at 410 and 660 kilometers, these are imaged beneath the northwestern corner of South America using the receiver function technique and a seismological record of 20 years compiled by the red sismol´ogica nacional de Colombia. Significant and spatially systematic depth variations in the discontinuities were observed. The mean depth for the mantle transition limits are 412±5.3 and 671±5.9, and mean thickness of 258±6.5, this value doesn’t differ from the global average. The low correlation between the discontinuities is caused by the significant depth variation. The thicker mantle transition zone in some areas is because the Nazca and Caribe plates subduction under South America plate. On the other hand, mantle transition zone thinning beneath the Nazca plate possible is due to the Malpelo ridge presence. These observations together with seismic tomography investigations could confirm the interaction of Nazca and Caribe plate within the upper mantle and mantle transition zone hydration.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geofísicaspa
dc.description.researchareaSismotectónicaspa
dc.format.extentx, 159 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87282
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísicaspa
dc.relation.referencesAbt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., y Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B09301):1-24.spa
dc.relation.referencesAmmon, C. (2006). Isolating the Receiver Response Langston's Source Equalization Procedure. Recuperado el 2020-10-12, http://eqseis.geosc.psu.edu/cammon/HTML/RftnDocs/seq01.html.spa
dc.relation.referencesAmmon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the seismological Society of America, 81(6):2504-2510.spa
dc.relation.referencesAnderson, D. L. (1967). Phase changes in the upper mantle. Science, 157(3793):1165-1173.spa
dc.relation.referencesAssumpçcao, M., Bianchi, M., Kock, C., y Beck, S. (2021). Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America. Journal of South American Earth Sciences, 112:103607.spa
dc.relation.referencesBaptiste, J. K. (2004). DEVELOPMENT OF AN ITERATIVE METHOD OF STATION AVERAGE RECEIVER FUNCTION PRODUCTION WITH APPLICATION TO RUSSIA AND THE CARIBBEAN REGION. Tesis de maestría, Texas tech University.spa
dc.relation.referencesBina, C. R. y Hel rich, G. (1994). Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8):15853{15860.spa
dc.relation.referencesBina, C. R. y Helffrich, G. (1994). Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8):15853{15860.spa
dc.relation.referencesBina, C. R. y Wood, B. J. (1987). Olivine-spinel transitions: Experimental and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity. Journal of Geophysical Research: Solid Earth, 92(B6):4853-4866.spa
dc.relation.referencesBlanco, J. F., Vargas, C. A., y Monsalve, G. (2017). Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18(4):1376-1387.spa
dc.relation.referencesBonatto, L., Schimmel, M., Gallart, J., y Morales, J. (2013). Studying the 410-km and 660-km discontinuities beneath spain and morocco through detection of p-to-s conversions. Geophysical Journal International, 194(2):920-935.spa
dc.relation.referencesBraunmiller, J., Van Der Lee, S., y Doermann, L. (2013). Mantle transition zone thickness in the central South-American subduction zone. In Earth's Deep Water Cycle, volume 168, pages 215-224. Wiley Online Library.spa
dc.relation.referencesBurdick, L. J. y Langston, C. A. (1977). Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of America, 67(3):677-691.spa
dc.relation.referencesCediel, F. y Shaw, R. P. (2019). Geology and Tectonics of Northwestern South America: The Paci c-Caribbean-Andean Junction. Springer.spa
dc.relation.referencesCediel, F., Shaw, R. P., y Caceres, C. (2003). Tectonic assembly of the northern Andean block. In Bartolini, C., Buffer, R. T., y Blickwede, J., editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79, chapter 37, page 815- 848. AAPG.spa
dc.relation.referencesCelli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M., y Gaina, C. (2020). The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophysical Journal International, 221(1):178-204.spa
dc.relation.referencesChen, L. y Ai, Y. (2009). Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research: Solid Earth, 114(B06307):1-16.spa
dc.relation.referencesChudinovskikh, L. y Boehler, R. (2001). High-pressure polymorphs of olivine and the 660-km seismic discontinuity. Nature, 411(6837):574-577.spa
dc.relation.referencesCiardelli, C., Assumpçâo, M., Bozdag, E., y van der Lee, S. (2022). Adjoint Waveform Tomography of South America. Journal of Geophysical Research: Solid Earth, 127(2):e2021JB022575.spa
dc.relation.referencesCobbold, P. R., Rossello, E. A., Roperch, P., Arriagada, C., Gómez, L. A., y Lima, C. (2007). Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications, 272(1):321-343.spa
dc.relation.referencesCrotwell, H. P., Owens, T. J., y Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2):154-160.spa
dc.relation.referencesde Lis Mancilla, F. y Diaz, J. (2015). High resolution Moho topography map beneath Iberia and Northern Morocco from receiver function analysis. Tectonophysics, 663:203-211.spa
dc.relation.referencesder Meer, D. G., Van Hinsbergen, D. J. J., y Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723:309-448.spa
dc.relation.referencesDueker, K. G. y Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. Journal of Geophysical Research: Solid Earth, 102(B4):8313-8327.spa
dc.relation.referencesEfron, B. y Tibshirani, R. (1986). Bootstrap methods for standard errors, con dence intervals, and other measures of statistical accuracy. Statistical science, 1(1):54-75.spa
dc.relation.referencesEulenfeld, T. (2020). rf: Receiver function calculation in seismology. Journal of Open Source Software, 5(48):1808.spa
dc.relation.referencesFarra, V. y Vinnik, L. (2000). Upper mantle stratification by P and S receiver functions. Geophysical Journal International, 141(3):699-712.spa
dc.relation.referencesFishwick, S. (2010). Surface wave tomography: imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? Lithos, 120(1-2):63-73.spa
dc.relation.referencesFlanagan, M. P. y Shearer, P. M. (1998). Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research: Solid Earth, 103(B2):2673-2692.spa
dc.relation.referencesFukao, Y. y Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11):5920-5938.spa
dc.relation.referencesFullea, J., Lebedev, S., Martinec, Z., y Celli, N. L. (2021). WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical-petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophysical Journal International,226(1):146-191.spa
dc.relation.referencesGao, S. S. y Liu, K. H. (2014a). Imaging mantle discontinuities using multiply-re ected P-to-S conversions. Earth and Planetary Science Letters, 402:99-106.spa
dc.relation.referencesGao, S. S. y Liu, K. H. (2014b). Mantle transition zone discontinuities beneath the contiguous United States. Journal of Geophysical Research: Solid Earth, 119(8):6452-6468.spa
dc.relation.referencesGarel, F., Goes, S., Davies, D., Davies, J. H., Kramer, S. C., y Wilson, C. R. (2014). Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochemistry, Geophysics, Geosystems, 15(5):1739-1765.spa
dc.relation.referencesGarnero, E. J., McNamara, A. K., y Tyburczy, J. A. (2011). Earth's Structure, Lower Mantle, pages 154-159. Springer Netherlands, Dordrecht.spa
dc.relation.referencesGhosh, S., Ohtani, E., Litasov, K. D., Suzuki, A., Dobson, D., y Funakoshi, K. (2013). Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth and Planetary Science Letters, 371:103-111.spa
dc.relation.referencesGuerrero, J. (1997). Stratigraphy, sedimentary environments, and the Miocene uplift of the Colombian Andes. In Vertebrate Paleontology in the Neotropics, pages 15-43. SMITHSONIAN INSTITUTION PRESS.spa
dc.relation.referencesGurenko, A. A. y Kamenetsky, V. S. (2011). Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin. Earth and Planetary Science Letters, 312(1-2):201-212.spa
dc.relation.referencesHelffrich, G., Wookey, J., y Bastow, I. (2013). The seismic analysis code: A primer and user's guide. Cambridge University Press.spa
dc.relation.referencesHerrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6):1081-1088.spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., y Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. GSA Bulletin, 122(9-10):1423-1442.spa
dc.relation.referencesHosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., y Igel, H. (2019). Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophysical Journal International, 220(1):96-141.spa
dc.relation.referencesHu, J., Yang, H., Li, G., y Peng, H. (2015). Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications. Gondwana Research, 28(3):1032-1047.spa
dc.relation.referencesHuang, Q., Schmerr, N., Waszek, L., y Beghein, C. (2019). Constraints on seismic anisotropy in the mantle transition zone from long-period SS precursors. Journal of Geophysical Research: Solid Earth, 124(7):6779-6800.spa
dc.relation.referencesIto, E. y Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4 - Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8):10637- 10646.spa
dc.relation.referencesJeanloz, R. (1980). Infrared spectra of olivine polymorphs: α, β phase and spinel. Physics and Chemistry of Minerals, 5(4):327-341.spa
dc.relation.referencesJenkins, J., Cottaar, S., White, R., y Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity? Earth and Planetary Science Letters, 433:159-168.spa
dc.relation.referencesKamenetsky, V. S., Gurenko, A. A., y Kerr, A. C. (2010). Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 38(11):1003-1006.spa
dc.relation.referencesKarato, S.-i. (2008). Deformation of earth materials: An Introduction to the Rheology of Solid Earth, volume 1. Cambridge Press Cambridge.spa
dc.relation.referencesKarato, S.-i., Riedel, M. R., y Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127(1-4):83-108.spa
dc.relation.referencesKatsura, T. y Ito, E. (1989). The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modi_ed spinel, and spinel. Journal of Geophysical Research: Solid Earth, 94(B11):15663-15670.spa
dc.relation.referencesKennett, B. y Engdahl, E. (1991). Travel times for global earthquake location and phase association. Geophysical Journal International, 105:429-465.spa
dc.relation.referencesKennett, B. L. N., Engdahl, E. R., y Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1):108-124.spa
dc.relation.referencesKikuchi, M. y Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2):491-506.spa
dc.relation.referencesKind, R. y Yuan, X. (2011). Seismic, Receiver Function Technique, pages 1258-1269. Springer Netherlands, Dordrecht.spa
dc.relation.referencesKind, R., Yuan, X., y Kumar, P. (2012). Seismic receiver functions and the lithosphere- asthenosphere boundary. Tectonophysics, 536:25-43.spa
dc.relation.referencesKind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S., Mechie, J., Zhao, W., Kosarev, G., Ni, J., Achauer, U., y Jiang, M. (2002). Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596):1219-1221.spa
dc.relation.referencesKronbichler, M., Heister, T., y Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1):12-29.spa
dc.relation.referencesLangston, C. A. (1977). Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bulletin of the Seismological Society of America, 67(3):713-724.spa
dc.relation.referencesLangston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9):4749-4762.spa
dc.relation.referencesLawrence, J. F. y Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. Journal of Geophysical Research: Solid Earth, 111(B06307):1-10.spa
dc.relation.referencesLebedev, S., Chevrot, S., y van der Hilst, R. D. (2002). Seismic evidence for olivine phase changes at the 410-and 660-kilometer discontinuities. Science, 296(5571):1300-1302.spa
dc.relation.referencesLehmann, I. (1930). P' as read from the records of the earthquake of June 16th 1929. Gerlands Beitrage zur Geophysik, 26:402-412.spa
dc.relation.referencesLemnifi, A. A., Browning, J., Elshaa_, A., Aouad, N. S., y Yu, Y. (2019). Receiver function imaging of mantle transition zone discontinuities and the origin of volcanism beneath Libya. Journal of Geodynamics, 124:93-103.spa
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., y Pardo-Trujillo, A. (2018). Transition from collisional to subduction-related regimes: An example from Neogene Panama-Nazca-South America interactions. Tectonics, 37(1):119-139.spa
dc.relation.referencesLi, Z.-H., Gerya, T., y Connolly, J. A. (2019). Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196:102874.spa
dc.relation.referencesLicciardi, A. y Piana Agostinetti, N. (2017). Sedimentary basin exploration with receiver functions: seismic structure and anisotropy of the Dublin Basin (Ireland). Geophysics, 82(4):KS41-KS55.spa
dc.relation.referencesLigorria, J. P. y Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the seismological Society of America, 89(5):1395-1400.spa
dc.relation.referencesLiu, K. H. y Gao, S. S. (2010). Spatial variations of crustal characteristics beneath the Hoggar swell, Algeria, revealed by systematic analyses of receiver functions from a single seismic station. Geochemistry, Geophysics, Geosystems, 11(Q08011):1-14.spa
dc.relation.referencesLiu, K. H., Gao, S. S., Silver, P. G., y Zhang, Y. (2003). Mantle layering across central South America. Journal of Geophysical Research: Solid Earth, 108(B11):1-10.spa
dc.relation.referencesMarcaillou, B., Charvis, P., y Collot, J.-Y. (2006). Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Researches, 27(4):289-300.spa
dc.relation.referencesMcEvilly, T. y Johnson, L. (1974). Stability of p an s velocities from central california quarry blasts. Bulletin of the Seismological Society of America, 64(2):343-353.spa
dc.relation.referencesMcKenzie, D. P., Roberts, J. M., y Weiss, N. O. (1974). Convection in the Earth's mantle: towards a numerical simulation. Journal of Fluid Mechanics, 62(3):465-538.spa
dc.relation.referencesMonsalve, G., Jaramillo, J. S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., y Poveda, E. (2019). Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mio-Pliocene Volcanism Constraints. Journal of Geophysical Research: Solid Earth, 124(9):9833-9851.spa
dc.relation.referencesMonsalve, H., Pacheco, J. F., Vargas, C. A., y Morales, Y. A. (2013). Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. Journal of South American Earth Sciences, 48:106-122.spa
dc.relation.referencesMontagner, J.-P. (2011). Earth's Structure, Global, pages 144-154. Springer Netherlands, Dordrecht.spa
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J., Valencia, V., Ayala, C., P_erez-Angel, L., Rodriguez-Parra, L., Ramirez, V., y Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231):226-229.spa
dc.relation.referencesMora, A., Parra, M., Strecker, M. R., Kammer, A., Dimaté, C., y Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(TC2010):1-19.spa
dc.relation.referencesMottaghy, D., Schellschmidt, R., Popov, Y. A., Clauser, C., Kukkonen, I. T., Nover, G., Milanovsky, S., y Romushkevich, R. A. (2005). New heat ow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat ow con_rmed and attributed to advection. Tectonophysics, 401(1-2):119-142.spa
dc.relation.referencesNiu, F., Bravo, T., Pavlis, G., Vernon, F., Rendon, H., Bezada, M., y Levander, A. (2007). Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela. Journal of Geophysical Research: Solid Earth, 112(B11).spa
dc.relation.referencesNiu, F., Silver, P. G., Daley, T. M., Cheng, X., y Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Park_eld SAFOD drill site. Nature, 454(7201):204- 208.spa
dc.relation.referencesNolet, G. (2011). Earth's Structure, Upper Mantle, pages 159-165. Springer Netherlands, Dordrecht.spa
dc.relation.referencesOjeda, A. y Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of seismology, 5(4):575-593.spa
dc.relation.referencesOldham, R. D. (1906). The constitution of the interior of the Earth, as revealed by earthquakes. Quarterly Journal of the Geological Society, 62(1-4):456-475.spa
dc.relation.referencesOliver, M. A. y Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3):313-332.spa
dc.relation.referencesPearson, D., Brenker, F., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., y Vincze, L. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507(7491):221-224.spa
dc.relation.referencesPhinney, R. A. (1964). Structure of the Earth's crust from spectral behavior of long-period body waves. Journal of Geophysical Research, 69(14):2997-3017.spa
dc.relation.referencesPorritt, R. W. y Miller, M. S. (2018). Updates to FuncLab, a Matlab based GUI for handling receiver functions. Computers & Geosciences, 111:260-271.spa
dc.relation.referencesPorritt, R. W. y Yoshioka, S. (2016). Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake. Geophysical Research Letters, 43(10):4905-4912.spa
dc.relation.referencesPortner, D. E., Rodríguez, E. E., Beck, S., Zandt, G., Scire, A., Rocha, M. P., Bianchi, M. B., Ruiz, M., Fran_ca, G. S., Condori, C., y Alvarado, P. (2020). Detailed structure of the subducted Nazca slab into the lower mantle derived from continent-scale teleseismic P wave tomography. Journal of Geophysical Research: Solid Earth, 125(5):e2019JB017884.spa
dc.relation.referencesPoveda, E., Monsalve, G., y Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4):2408-2425.spa
dc.relation.referencesPriestley, K., McKenzie, D., Debayle, E., y Pilidou, S. (2008). The African upper mantle and its relationship to tectonics and surface geology. Geophysical Journal International, 175(3):1108- 1126.spa
dc.relation.referencesPrieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., y Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570:42-56.spa
dc.relation.referencesPugh, S., Jenkins, J., Boyce, A., y Cottaar, S. (2021). Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots. Earth and Planetary Science Letters, 561:116813.spa
dc.relation.referencesPulido, N. (2003). Seismotectonics of the northern Andes (Colombia) and the development of seismic networks. Bulletin of the International Institute of Seismology and Earthquake Engineering, Special Edition, pages 69-76.spa
dc.relation.referencesRamos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision, 204:31-65.spa
dc.relation.referencesRestrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3):189-193.spa
dc.relation.referencesRestrepo, S. A., Foster, D. A., Bernet, M., Min, K., y Noriega, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. In Geology and Tectonics of Northwestern South America, pages 749-832. Springer.spa
dc.relation.referencesRichter, T. (2014). Temporal variations of crustal analyzed with receiver functions and passive image interferometry. Tesis de maestría, Freie Universitat Berlin.spa
dc.relation.referencesRingwood, A. (1962). A model for the upper mantle. Journal of Geophysical Research, 67(2):857- 867.spa
dc.relation.referencesRodríguez, E. E., Portner, D. E., Beck, S. L., Rocha, M. P., Bianchi, M. B., Assumpção, M., Ruiz, M., Alvarado, P., Condori, C., y Lynner, C. (2021). Mantle dynamics of the Andean Subduction Zone from continent-scale teleseismic S-wave tomography. Geophysical Journal International, 224(3):1553-1571.spa
dc.relation.referencesRyaboy, V. (1990). Upper mantle structure along a profile from Oslo (NORESS) to Helsinki to Leningrad, based on explosion seismology. Bulletin of the Seismological Society of America, 80(6B):2194-2213.spa
dc.relation.referencesRyan, W., Carbotte, S., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., Weissel, R., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., y Zemsky, R. (2009). Global Multi-Resolution Topography (GMRT) synthesis data set. G-cubed 10 (3), Q03014.spa
dc.relation.referencesSain, K. (2011). Energy Partitioning of Seismic Waves, pages 291-294. Springer Netherlands, Dordrecht.spa
dc.relation.referencesSallares, V., Charvis, P., Flueh, E. R., y Bialas, J. (2003). Seismic structure of Cocos and Malpelo Volcanic Ridges and implications for hot spot-ridge interaction. Journal of Geophysical Research: Solid Earth, 108(B12).spa
dc.relation.referencesSchimmel, M. (1999). Phase cross-correlations: Design, comparisons, and applications. Bulletin of the Seismological Society of America, 89(5):1366-1378.spa
dc.relation.referencesSchmerr, N. (2015). Imaging mantle heterogeneity with upper mantle seismic discontinuities. In The Earth's Heterogeneous Mantle, pages 79-104. Springer.spa
dc.relation.referencesSchubert, G., Turcotte, D. L., y Olson, P. (2001). Mantle convection in the Earth and planets. Cambridge University Press.spa
dc.relation.referencesShearer, P. M. (1990). Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature, 344(6262):121-126.spa
dc.relation.referencesShearer, P. M. (2019). Introduction to seismology. Cambridge university press.spa
dc.relation.referencesShen, Y., Sheehan, A. F., Dueker, K. G., de Groot-Hedlin, C., y Gilbert, H. (1998). Mantle discontinuity structure beneath the southern East Pacific Rise from P-to-S converted phases. Science, 280(5367):1232-1235.spa
dc.relation.referencesSiravo, G., Faccenna, C., G_erault, M., Becker, T. W., Fellin, M. G., Herman, F., y Molin, P. (2019). Slab attening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512:100-110.spa
dc.relation.referencesSmyth, J. R., Jacobsen, S. D., y Van Der Lee, S. (2006). Nominally anhydrous minerals and Earth's deep water cycle. Geophysical Monograph-American Geophysical Union, 168:1.spa
dc.relation.referencesStahler, S. C., Sigloch, K., y Nissen-Meyer, T. (2012). Triplicated P-wave measurements for waveform tomography of the mantle transition zone. Solid Earth, 3(2):339-354.spa
dc.relation.referencesSuárez, G., Molnar, P., y Burch_el, B. C. (1983). Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia. Journal of Geophysical Research: Solid Earth, 88(B12):10403-10428.spa
dc.relation.referencesSun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., y Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577:117253.spa
dc.relation.referencesSun, M., Fu, X., Liu, K. H., y Gao, S. S. (2018). Absence of thermal inuence from the African Superswell and cratonic keels on the mantle transition zone beneath southern Africa: Evidence from receiver function imaging. Earth and Planetary Science Letters, 503:108-117.spa
dc.relation.referencesSun, M., Gao, S. S., Liu, K. H., y Fu, X. (2020). Upper mantle and mantle transition zone thermal and water content anomalies beneath NE Asia: Constraints from receiver function imaging of the 410 and 660 km discontinuities. Earth and Planetary Science Letters, 532:116040.spa
dc.relation.referencesSyracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., y Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139-149.spa
dc.relation.referencesThompson, A. B. (1992). Water in the Earth's upper mantle. Nature, 358(6384):295-302.spa
dc.relation.referencesUnsworth, M., Wenbo, W., Jones, A. G., Li, S., Bedrosian, P., Booker, J., Sheng, J., Ming, D., y Handong, T. (2004). Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research: Solid Earth, 109(Crustal and upper mantle structure of northern Tibet imaged):1-18.spa
dc.relation.referencesVan Houten, F. B. y Travis, R. B. (1968). Cenozoic deposits, upper Magdalena valley, Colombia. AAPG bulletin, 52(4):675-702.spa
dc.relation.referencesVargas, C. A. y Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025-2046.spa
dc.relation.referencesVinnik, L. (1977). Detection of waves converted from P to SV in the mantle. Physics of the Earth and planetary interiors, 15(1):39-45.spa
dc.relation.referencesVinnik, L. P. (2011). Seismic Discontinuities in the Transition Zone, pages 1102-1107. Springer Netherlands, Dordrecht.spa
dc.relation.referencesWagner, L., Jaramillo, J., Ramírez-Hoyos, L., Monsalve, G., Cardona, A., y Becker, T. (2017). Transient slab attening beneath Colombia. Geophysical Research Letters, 44(13):6616-6623. Wyman, D. (2020). Komatiites from mantle transition zone plumes. Frontiers in Earth Science, 8:540744.spa
dc.relation.referencesYu, Y., Gao, S. S., y Liu, K. H. (2020). Topography of the 410 and 660 km discontinuities beneath the Cenozoic Okavango rift zone and adjacent Precambrian provinces. Journal of Geophysical Research: Solid Earth, 125(9):e2019JB019290.spa
dc.relation.referencesZari_, Z., Havskov, J., y Hanyga, A. (2007). An insight into the bucaramanga nest. Tectonophysics, 443(1-2):93-105.spa
dc.relation.referencesZhou, L., Chen, W.-P., y Ozalaybey, S. (2000). Seismic properties of the central Indian shield. Bulletin of the Seismological Society of America, 90(5):1295-1304.spa
dc.relation.referencesZhu, L. y Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2):2969-2980.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembDIBUJO TOPOGRAFICO
dc.subject.lembTopographical drawing
dc.subject.lembMEDICION DE SUPERFICIES
dc.subject.lembArea measurement
dc.subject.proposalFunción receptoraspa
dc.subject.proposalzona de transición del mantospa
dc.subject.proposalsubducciónspa
dc.subject.proposaltelesísmospa
dc.subject.proposaldiscontinuidad sísmicaspa
dc.subject.proposalSuraméricaspa
dc.subject.proposalReceiver functioneng
dc.subject.proposalTeleseismeng
dc.subject.proposalSeismic discontinuityeng
dc.subject.proposalMantle transition zoneeng
dc.subject.proposalSubductioneng
dc.subject.proposalSouth Americaeng
dc.titleEstimación de las discontinuidades de la Zona de Transición del Manto en el noroccidente de Suramérica a partir del análisis de la Función Receptora de onda Pspa
dc.title.translatedEstimation of Mantle Transition Zone discontinuities in northwestern Southamerica from P wave receiver function analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMSc_JorgeCubillos.pdf
Tamaño:
20.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geofísica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: