Estimación de las discontinuidades de la Zona de Transición del Manto en el noroccidente de Suramérica a partir del análisis de la Función Receptora de onda P
dc.contributor.advisor | Vargas Jimenez, Carlos Alberto | |
dc.contributor.author | Cubillos Gordillo, Jorge Enrique | |
dc.date.accessioned | 2024-12-09T20:45:44Z | |
dc.date.available | 2024-12-09T20:45:44Z | |
dc.date.issued | 2022-02 | |
dc.description | ilustraciones, graficas, mapas, tablas | spa |
dc.description.abstract | La zona de transición del manto está limitada por dos discontinuidades sísmicas a 410 y 660 kilómetros, _estas son visualizadas en la parte noroccidental de Suramérica mediante el uso de la técnica de función receptora e información sismológica, la cual ha sido registrada durante mas de 20 años por la red sismológica nacional de Colombia. Se observaron variaciones importantes y espacialmente sistemática en las profundidades de las discontinuidades. La profundidad promedio para los límites de la zona de transición del manto son 412±5.3 y 671±5.9 con un espesor promedio es de 258±6.5 km, el cual es cercano al valor promedio global. El bajo coeficiente de correlación de las profundidades indica que la variación de estas profundidades es significativa. El aumento en el espesor de la zona de transición del manto en algunas zonas es causado por la subducción de la placa Nazca y la placa Caribe bajo la placa Suramérica. Por otro lado, el adelgazamiento de la zona de transición del manto bajo la placa Nazca posiblemente se debe a la presencia del ridge de Malpelo. Estas observaciones combinadas con los resultados de investigaciones de tomografías sísmicas pudieron confirmar la interacción entre las placas Nazca y Caribe con el manto superior y la hidratación de la zona de transición del manto. | spa |
dc.description.abstract | Mantle transition zone is delimited by two seismic discontinuities at 410 and 660 kilometers, these are imaged beneath the northwestern corner of South America using the receiver function technique and a seismological record of 20 years compiled by the red sismol´ogica nacional de Colombia. Significant and spatially systematic depth variations in the discontinuities were observed. The mean depth for the mantle transition limits are 412±5.3 and 671±5.9, and mean thickness of 258±6.5, this value doesn’t differ from the global average. The low correlation between the discontinuities is caused by the significant depth variation. The thicker mantle transition zone in some areas is because the Nazca and Caribe plates subduction under South America plate. On the other hand, mantle transition zone thinning beneath the Nazca plate possible is due to the Malpelo ridge presence. These observations together with seismic tomography investigations could confirm the interaction of Nazca and Caribe plate within the upper mantle and mantle transition zone hydration. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Geofísica | spa |
dc.description.researcharea | Sismotectónica | spa |
dc.format.extent | x, 159 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87282 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Geofísica | spa |
dc.relation.references | Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., y Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B09301):1-24. | spa |
dc.relation.references | Ammon, C. (2006). Isolating the Receiver Response Langston's Source Equalization Procedure. Recuperado el 2020-10-12, http://eqseis.geosc.psu.edu/cammon/HTML/RftnDocs/seq01.html. | spa |
dc.relation.references | Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the seismological Society of America, 81(6):2504-2510. | spa |
dc.relation.references | Anderson, D. L. (1967). Phase changes in the upper mantle. Science, 157(3793):1165-1173. | spa |
dc.relation.references | Assumpçcao, M., Bianchi, M., Kock, C., y Beck, S. (2021). Effect of the cold Nazca Slab on the depth of the 660 km discontinuity in South America. Journal of South American Earth Sciences, 112:103607. | spa |
dc.relation.references | Baptiste, J. K. (2004). DEVELOPMENT OF AN ITERATIVE METHOD OF STATION AVERAGE RECEIVER FUNCTION PRODUCTION WITH APPLICATION TO RUSSIA AND THE CARIBBEAN REGION. Tesis de maestría, Texas tech University. | spa |
dc.relation.references | Bina, C. R. y Hel rich, G. (1994). Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8):15853{15860. | spa |
dc.relation.references | Bina, C. R. y Helffrich, G. (1994). Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8):15853{15860. | spa |
dc.relation.references | Bina, C. R. y Wood, B. J. (1987). Olivine-spinel transitions: Experimental and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity. Journal of Geophysical Research: Solid Earth, 92(B6):4853-4866. | spa |
dc.relation.references | Blanco, J. F., Vargas, C. A., y Monsalve, G. (2017). Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophysics, Geosystems, 18(4):1376-1387. | spa |
dc.relation.references | Bonatto, L., Schimmel, M., Gallart, J., y Morales, J. (2013). Studying the 410-km and 660-km discontinuities beneath spain and morocco through detection of p-to-s conversions. Geophysical Journal International, 194(2):920-935. | spa |
dc.relation.references | Braunmiller, J., Van Der Lee, S., y Doermann, L. (2013). Mantle transition zone thickness in the central South-American subduction zone. In Earth's Deep Water Cycle, volume 168, pages 215-224. Wiley Online Library. | spa |
dc.relation.references | Burdick, L. J. y Langston, C. A. (1977). Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of America, 67(3):677-691. | spa |
dc.relation.references | Cediel, F. y Shaw, R. P. (2019). Geology and Tectonics of Northwestern South America: The Paci c-Caribbean-Andean Junction. Springer. | spa |
dc.relation.references | Cediel, F., Shaw, R. P., y Caceres, C. (2003). Tectonic assembly of the northern Andean block. In Bartolini, C., Buffer, R. T., y Blickwede, J., editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79, chapter 37, page 815- 848. AAPG. | spa |
dc.relation.references | Celli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M., y Gaina, C. (2020). The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophysical Journal International, 221(1):178-204. | spa |
dc.relation.references | Chen, L. y Ai, Y. (2009). Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research: Solid Earth, 114(B06307):1-16. | spa |
dc.relation.references | Chudinovskikh, L. y Boehler, R. (2001). High-pressure polymorphs of olivine and the 660-km seismic discontinuity. Nature, 411(6837):574-577. | spa |
dc.relation.references | Ciardelli, C., Assumpçâo, M., Bozdag, E., y van der Lee, S. (2022). Adjoint Waveform Tomography of South America. Journal of Geophysical Research: Solid Earth, 127(2):e2021JB022575. | spa |
dc.relation.references | Cobbold, P. R., Rossello, E. A., Roperch, P., Arriagada, C., Gómez, L. A., y Lima, C. (2007). Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications, 272(1):321-343. | spa |
dc.relation.references | Crotwell, H. P., Owens, T. J., y Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2):154-160. | spa |
dc.relation.references | de Lis Mancilla, F. y Diaz, J. (2015). High resolution Moho topography map beneath Iberia and Northern Morocco from receiver function analysis. Tectonophysics, 663:203-211. | spa |
dc.relation.references | der Meer, D. G., Van Hinsbergen, D. J. J., y Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723:309-448. | spa |
dc.relation.references | Dueker, K. G. y Sheehan, A. F. (1997). Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. Journal of Geophysical Research: Solid Earth, 102(B4):8313-8327. | spa |
dc.relation.references | Efron, B. y Tibshirani, R. (1986). Bootstrap methods for standard errors, con dence intervals, and other measures of statistical accuracy. Statistical science, 1(1):54-75. | spa |
dc.relation.references | Eulenfeld, T. (2020). rf: Receiver function calculation in seismology. Journal of Open Source Software, 5(48):1808. | spa |
dc.relation.references | Farra, V. y Vinnik, L. (2000). Upper mantle stratification by P and S receiver functions. Geophysical Journal International, 141(3):699-712. | spa |
dc.relation.references | Fishwick, S. (2010). Surface wave tomography: imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? Lithos, 120(1-2):63-73. | spa |
dc.relation.references | Flanagan, M. P. y Shearer, P. M. (1998). Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research: Solid Earth, 103(B2):2673-2692. | spa |
dc.relation.references | Fukao, Y. y Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11):5920-5938. | spa |
dc.relation.references | Fullea, J., Lebedev, S., Martinec, Z., y Celli, N. L. (2021). WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical-petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophysical Journal International,226(1):146-191. | spa |
dc.relation.references | Gao, S. S. y Liu, K. H. (2014a). Imaging mantle discontinuities using multiply-re ected P-to-S conversions. Earth and Planetary Science Letters, 402:99-106. | spa |
dc.relation.references | Gao, S. S. y Liu, K. H. (2014b). Mantle transition zone discontinuities beneath the contiguous United States. Journal of Geophysical Research: Solid Earth, 119(8):6452-6468. | spa |
dc.relation.references | Garel, F., Goes, S., Davies, D., Davies, J. H., Kramer, S. C., y Wilson, C. R. (2014). Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochemistry, Geophysics, Geosystems, 15(5):1739-1765. | spa |
dc.relation.references | Garnero, E. J., McNamara, A. K., y Tyburczy, J. A. (2011). Earth's Structure, Lower Mantle, pages 154-159. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Ghosh, S., Ohtani, E., Litasov, K. D., Suzuki, A., Dobson, D., y Funakoshi, K. (2013). Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth and Planetary Science Letters, 371:103-111. | spa |
dc.relation.references | Guerrero, J. (1997). Stratigraphy, sedimentary environments, and the Miocene uplift of the Colombian Andes. In Vertebrate Paleontology in the Neotropics, pages 15-43. SMITHSONIAN INSTITUTION PRESS. | spa |
dc.relation.references | Gurenko, A. A. y Kamenetsky, V. S. (2011). Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin. Earth and Planetary Science Letters, 312(1-2):201-212. | spa |
dc.relation.references | Helffrich, G., Wookey, J., y Bastow, I. (2013). The seismic analysis code: A primer and user's guide. Cambridge University Press. | spa |
dc.relation.references | Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6):1081-1088. | spa |
dc.relation.references | Horton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., y Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. GSA Bulletin, 122(9-10):1423-1442. | spa |
dc.relation.references | Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., y Igel, H. (2019). Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophysical Journal International, 220(1):96-141. | spa |
dc.relation.references | Hu, J., Yang, H., Li, G., y Peng, H. (2015). Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications. Gondwana Research, 28(3):1032-1047. | spa |
dc.relation.references | Huang, Q., Schmerr, N., Waszek, L., y Beghein, C. (2019). Constraints on seismic anisotropy in the mantle transition zone from long-period SS precursors. Journal of Geophysical Research: Solid Earth, 124(7):6779-6800. | spa |
dc.relation.references | Ito, E. y Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4 - Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8):10637- 10646. | spa |
dc.relation.references | Jeanloz, R. (1980). Infrared spectra of olivine polymorphs: α, β phase and spinel. Physics and Chemistry of Minerals, 5(4):327-341. | spa |
dc.relation.references | Jenkins, J., Cottaar, S., White, R., y Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity? Earth and Planetary Science Letters, 433:159-168. | spa |
dc.relation.references | Kamenetsky, V. S., Gurenko, A. A., y Kerr, A. C. (2010). Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology, 38(11):1003-1006. | spa |
dc.relation.references | Karato, S.-i. (2008). Deformation of earth materials: An Introduction to the Rheology of Solid Earth, volume 1. Cambridge Press Cambridge. | spa |
dc.relation.references | Karato, S.-i., Riedel, M. R., y Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127(1-4):83-108. | spa |
dc.relation.references | Katsura, T. y Ito, E. (1989). The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modi_ed spinel, and spinel. Journal of Geophysical Research: Solid Earth, 94(B11):15663-15670. | spa |
dc.relation.references | Kennett, B. y Engdahl, E. (1991). Travel times for global earthquake location and phase association. Geophysical Journal International, 105:429-465. | spa |
dc.relation.references | Kennett, B. L. N., Engdahl, E. R., y Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1):108-124. | spa |
dc.relation.references | Kikuchi, M. y Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2):491-506. | spa |
dc.relation.references | Kind, R. y Yuan, X. (2011). Seismic, Receiver Function Technique, pages 1258-1269. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Kind, R., Yuan, X., y Kumar, P. (2012). Seismic receiver functions and the lithosphere- asthenosphere boundary. Tectonophysics, 536:25-43. | spa |
dc.relation.references | Kind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S., Mechie, J., Zhao, W., Kosarev, G., Ni, J., Achauer, U., y Jiang, M. (2002). Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596):1219-1221. | spa |
dc.relation.references | Kronbichler, M., Heister, T., y Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1):12-29. | spa |
dc.relation.references | Langston, C. A. (1977). Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bulletin of the Seismological Society of America, 67(3):713-724. | spa |
dc.relation.references | Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9):4749-4762. | spa |
dc.relation.references | Lawrence, J. F. y Shearer, P. M. (2006). A global study of transition zone thickness using receiver functions. Journal of Geophysical Research: Solid Earth, 111(B06307):1-10. | spa |
dc.relation.references | Lebedev, S., Chevrot, S., y van der Hilst, R. D. (2002). Seismic evidence for olivine phase changes at the 410-and 660-kilometer discontinuities. Science, 296(5571):1300-1302. | spa |
dc.relation.references | Lehmann, I. (1930). P' as read from the records of the earthquake of June 16th 1929. Gerlands Beitrage zur Geophysik, 26:402-412. | spa |
dc.relation.references | Lemnifi, A. A., Browning, J., Elshaa_, A., Aouad, N. S., y Yu, Y. (2019). Receiver function imaging of mantle transition zone discontinuities and the origin of volcanism beneath Libya. Journal of Geodynamics, 124:93-103. | spa |
dc.relation.references | León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., y Pardo-Trujillo, A. (2018). Transition from collisional to subduction-related regimes: An example from Neogene Panama-Nazca-South America interactions. Tectonics, 37(1):119-139. | spa |
dc.relation.references | Li, Z.-H., Gerya, T., y Connolly, J. A. (2019). Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196:102874. | spa |
dc.relation.references | Licciardi, A. y Piana Agostinetti, N. (2017). Sedimentary basin exploration with receiver functions: seismic structure and anisotropy of the Dublin Basin (Ireland). Geophysics, 82(4):KS41-KS55. | spa |
dc.relation.references | Ligorria, J. P. y Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the seismological Society of America, 89(5):1395-1400. | spa |
dc.relation.references | Liu, K. H. y Gao, S. S. (2010). Spatial variations of crustal characteristics beneath the Hoggar swell, Algeria, revealed by systematic analyses of receiver functions from a single seismic station. Geochemistry, Geophysics, Geosystems, 11(Q08011):1-14. | spa |
dc.relation.references | Liu, K. H., Gao, S. S., Silver, P. G., y Zhang, Y. (2003). Mantle layering across central South America. Journal of Geophysical Research: Solid Earth, 108(B11):1-10. | spa |
dc.relation.references | Marcaillou, B., Charvis, P., y Collot, J.-Y. (2006). Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Researches, 27(4):289-300. | spa |
dc.relation.references | McEvilly, T. y Johnson, L. (1974). Stability of p an s velocities from central california quarry blasts. Bulletin of the Seismological Society of America, 64(2):343-353. | spa |
dc.relation.references | McKenzie, D. P., Roberts, J. M., y Weiss, N. O. (1974). Convection in the Earth's mantle: towards a numerical simulation. Journal of Fluid Mechanics, 62(3):465-538. | spa |
dc.relation.references | Monsalve, G., Jaramillo, J. S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., y Poveda, E. (2019). Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mio-Pliocene Volcanism Constraints. Journal of Geophysical Research: Solid Earth, 124(9):9833-9851. | spa |
dc.relation.references | Monsalve, H., Pacheco, J. F., Vargas, C. A., y Morales, Y. A. (2013). Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. Journal of South American Earth Sciences, 48:106-122. | spa |
dc.relation.references | Montagner, J.-P. (2011). Earth's Structure, Global, pages 144-154. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J., Valencia, V., Ayala, C., P_erez-Angel, L., Rodriguez-Parra, L., Ramirez, V., y Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231):226-229. | spa |
dc.relation.references | Mora, A., Parra, M., Strecker, M. R., Kammer, A., Dimaté, C., y Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(TC2010):1-19. | spa |
dc.relation.references | Mottaghy, D., Schellschmidt, R., Popov, Y. A., Clauser, C., Kukkonen, I. T., Nover, G., Milanovsky, S., y Romushkevich, R. A. (2005). New heat ow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat ow con_rmed and attributed to advection. Tectonophysics, 401(1-2):119-142. | spa |
dc.relation.references | Niu, F., Bravo, T., Pavlis, G., Vernon, F., Rendon, H., Bezada, M., y Levander, A. (2007). Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela. Journal of Geophysical Research: Solid Earth, 112(B11). | spa |
dc.relation.references | Niu, F., Silver, P. G., Daley, T. M., Cheng, X., y Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Park_eld SAFOD drill site. Nature, 454(7201):204- 208. | spa |
dc.relation.references | Nolet, G. (2011). Earth's Structure, Upper Mantle, pages 159-165. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Ojeda, A. y Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of seismology, 5(4):575-593. | spa |
dc.relation.references | Oldham, R. D. (1906). The constitution of the interior of the Earth, as revealed by earthquakes. Quarterly Journal of the Geological Society, 62(1-4):456-475. | spa |
dc.relation.references | Oliver, M. A. y Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3):313-332. | spa |
dc.relation.references | Pearson, D., Brenker, F., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., y Vincze, L. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507(7491):221-224. | spa |
dc.relation.references | Phinney, R. A. (1964). Structure of the Earth's crust from spectral behavior of long-period body waves. Journal of Geophysical Research, 69(14):2997-3017. | spa |
dc.relation.references | Porritt, R. W. y Miller, M. S. (2018). Updates to FuncLab, a Matlab based GUI for handling receiver functions. Computers & Geosciences, 111:260-271. | spa |
dc.relation.references | Porritt, R. W. y Yoshioka, S. (2016). Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake. Geophysical Research Letters, 43(10):4905-4912. | spa |
dc.relation.references | Portner, D. E., Rodríguez, E. E., Beck, S., Zandt, G., Scire, A., Rocha, M. P., Bianchi, M. B., Ruiz, M., Fran_ca, G. S., Condori, C., y Alvarado, P. (2020). Detailed structure of the subducted Nazca slab into the lower mantle derived from continent-scale teleseismic P wave tomography. Journal of Geophysical Research: Solid Earth, 125(5):e2019JB017884. | spa |
dc.relation.references | Poveda, E., Monsalve, G., y Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4):2408-2425. | spa |
dc.relation.references | Priestley, K., McKenzie, D., Debayle, E., y Pilidou, S. (2008). The African upper mantle and its relationship to tectonics and surface geology. Geophysical Journal International, 175(3):1108- 1126. | spa |
dc.relation.references | Prieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., y Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570:42-56. | spa |
dc.relation.references | Pugh, S., Jenkins, J., Boyce, A., y Cottaar, S. (2021). Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots. Earth and Planetary Science Letters, 561:116813. | spa |
dc.relation.references | Pulido, N. (2003). Seismotectonics of the northern Andes (Colombia) and the development of seismic networks. Bulletin of the International Institute of Seismology and Earthquake Engineering, Special Edition, pages 69-76. | spa |
dc.relation.references | Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision, 204:31-65. | spa |
dc.relation.references | Restrepo, J. J. y Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3):189-193. | spa |
dc.relation.references | Restrepo, S. A., Foster, D. A., Bernet, M., Min, K., y Noriega, S. (2019). Morphotectonic and orogenic development of the Northern Andes of Colombia: A low-temperature thermochronology perspective. In Geology and Tectonics of Northwestern South America, pages 749-832. Springer. | spa |
dc.relation.references | Richter, T. (2014). Temporal variations of crustal analyzed with receiver functions and passive image interferometry. Tesis de maestría, Freie Universitat Berlin. | spa |
dc.relation.references | Ringwood, A. (1962). A model for the upper mantle. Journal of Geophysical Research, 67(2):857- 867. | spa |
dc.relation.references | Rodríguez, E. E., Portner, D. E., Beck, S. L., Rocha, M. P., Bianchi, M. B., Assumpção, M., Ruiz, M., Alvarado, P., Condori, C., y Lynner, C. (2021). Mantle dynamics of the Andean Subduction Zone from continent-scale teleseismic S-wave tomography. Geophysical Journal International, 224(3):1553-1571. | spa |
dc.relation.references | Ryaboy, V. (1990). Upper mantle structure along a profile from Oslo (NORESS) to Helsinki to Leningrad, based on explosion seismology. Bulletin of the Seismological Society of America, 80(6B):2194-2213. | spa |
dc.relation.references | Ryan, W., Carbotte, S., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., Weissel, R., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., y Zemsky, R. (2009). Global Multi-Resolution Topography (GMRT) synthesis data set. G-cubed 10 (3), Q03014. | spa |
dc.relation.references | Sain, K. (2011). Energy Partitioning of Seismic Waves, pages 291-294. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Sallares, V., Charvis, P., Flueh, E. R., y Bialas, J. (2003). Seismic structure of Cocos and Malpelo Volcanic Ridges and implications for hot spot-ridge interaction. Journal of Geophysical Research: Solid Earth, 108(B12). | spa |
dc.relation.references | Schimmel, M. (1999). Phase cross-correlations: Design, comparisons, and applications. Bulletin of the Seismological Society of America, 89(5):1366-1378. | spa |
dc.relation.references | Schmerr, N. (2015). Imaging mantle heterogeneity with upper mantle seismic discontinuities. In The Earth's Heterogeneous Mantle, pages 79-104. Springer. | spa |
dc.relation.references | Schubert, G., Turcotte, D. L., y Olson, P. (2001). Mantle convection in the Earth and planets. Cambridge University Press. | spa |
dc.relation.references | Shearer, P. M. (1990). Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature, 344(6262):121-126. | spa |
dc.relation.references | Shearer, P. M. (2019). Introduction to seismology. Cambridge university press. | spa |
dc.relation.references | Shen, Y., Sheehan, A. F., Dueker, K. G., de Groot-Hedlin, C., y Gilbert, H. (1998). Mantle discontinuity structure beneath the southern East Pacific Rise from P-to-S converted phases. Science, 280(5367):1232-1235. | spa |
dc.relation.references | Siravo, G., Faccenna, C., G_erault, M., Becker, T. W., Fellin, M. G., Herman, F., y Molin, P. (2019). Slab attening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512:100-110. | spa |
dc.relation.references | Smyth, J. R., Jacobsen, S. D., y Van Der Lee, S. (2006). Nominally anhydrous minerals and Earth's deep water cycle. Geophysical Monograph-American Geophysical Union, 168:1. | spa |
dc.relation.references | Stahler, S. C., Sigloch, K., y Nissen-Meyer, T. (2012). Triplicated P-wave measurements for waveform tomography of the mantle transition zone. Solid Earth, 3(2):339-354. | spa |
dc.relation.references | Suárez, G., Molnar, P., y Burch_el, B. C. (1983). Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia. Journal of Geophysical Research: Solid Earth, 88(B12):10403-10428. | spa |
dc.relation.references | Sun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., y Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577:117253. | spa |
dc.relation.references | Sun, M., Fu, X., Liu, K. H., y Gao, S. S. (2018). Absence of thermal inuence from the African Superswell and cratonic keels on the mantle transition zone beneath southern Africa: Evidence from receiver function imaging. Earth and Planetary Science Letters, 503:108-117. | spa |
dc.relation.references | Sun, M., Gao, S. S., Liu, K. H., y Fu, X. (2020). Upper mantle and mantle transition zone thermal and water content anomalies beneath NE Asia: Constraints from receiver function imaging of the 410 and 660 km discontinuities. Earth and Planetary Science Letters, 532:116040. | spa |
dc.relation.references | Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., y Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139-149. | spa |
dc.relation.references | Thompson, A. B. (1992). Water in the Earth's upper mantle. Nature, 358(6384):295-302. | spa |
dc.relation.references | Unsworth, M., Wenbo, W., Jones, A. G., Li, S., Bedrosian, P., Booker, J., Sheng, J., Ming, D., y Handong, T. (2004). Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research: Solid Earth, 109(Crustal and upper mantle structure of northern Tibet imaged):1-18. | spa |
dc.relation.references | Van Houten, F. B. y Travis, R. B. (1968). Cenozoic deposits, upper Magdalena valley, Colombia. AAPG bulletin, 52(4):675-702. | spa |
dc.relation.references | Vargas, C. A. y Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025-2046. | spa |
dc.relation.references | Vinnik, L. (1977). Detection of waves converted from P to SV in the mantle. Physics of the Earth and planetary interiors, 15(1):39-45. | spa |
dc.relation.references | Vinnik, L. P. (2011). Seismic Discontinuities in the Transition Zone, pages 1102-1107. Springer Netherlands, Dordrecht. | spa |
dc.relation.references | Wagner, L., Jaramillo, J., Ramírez-Hoyos, L., Monsalve, G., Cardona, A., y Becker, T. (2017). Transient slab attening beneath Colombia. Geophysical Research Letters, 44(13):6616-6623. Wyman, D. (2020). Komatiites from mantle transition zone plumes. Frontiers in Earth Science, 8:540744. | spa |
dc.relation.references | Yu, Y., Gao, S. S., y Liu, K. H. (2020). Topography of the 410 and 660 km discontinuities beneath the Cenozoic Okavango rift zone and adjacent Precambrian provinces. Journal of Geophysical Research: Solid Earth, 125(9):e2019JB019290. | spa |
dc.relation.references | Zari_, Z., Havskov, J., y Hanyga, A. (2007). An insight into the bucaramanga nest. Tectonophysics, 443(1-2):93-105. | spa |
dc.relation.references | Zhou, L., Chen, W.-P., y Ozalaybey, S. (2000). Seismic properties of the central Indian shield. Bulletin of the Seismological Society of America, 90(5):1295-1304. | spa |
dc.relation.references | Zhu, L. y Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2):2969-2980. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.lemb | DIBUJO TOPOGRAFICO | |
dc.subject.lemb | Topographical drawing | |
dc.subject.lemb | MEDICION DE SUPERFICIES | |
dc.subject.lemb | Area measurement | |
dc.subject.proposal | Función receptora | spa |
dc.subject.proposal | zona de transición del manto | spa |
dc.subject.proposal | subducción | spa |
dc.subject.proposal | telesísmo | spa |
dc.subject.proposal | discontinuidad sísmica | spa |
dc.subject.proposal | Suramérica | spa |
dc.subject.proposal | Receiver function | eng |
dc.subject.proposal | Teleseism | eng |
dc.subject.proposal | Seismic discontinuity | eng |
dc.subject.proposal | Mantle transition zone | eng |
dc.subject.proposal | Subduction | eng |
dc.subject.proposal | South America | eng |
dc.title | Estimación de las discontinuidades de la Zona de Transición del Manto en el noroccidente de Suramérica a partir del análisis de la Función Receptora de onda P | spa |
dc.title.translated | Estimation of Mantle Transition Zone discontinuities in northwestern Southamerica from P wave receiver function analysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TesisMSc_JorgeCubillos.pdf
- Tamaño:
- 20.41 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Geofísica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: