Road accident forecast by using predictive modeling techniques

dc.contributor.advisorPedraza Bonilla, César Augusto
dc.contributor.advisorGonzález Osorio, Fabio Augusto
dc.contributor.authorGutierrez Osorio, Camilo Albeiro
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=E4ICanMAAAAJ&hl=enspa
dc.contributor.orcidhttps://orcid.org/0000-0002-9113-1369spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Camilo-Gutierrez-Osoriospa
dc.contributor.researchgroupPlas Programming languages And Systemsspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57209267130spa
dc.date.accessioned2023-08-30T14:31:31Z
dc.date.available2023-08-30T14:31:31Z
dc.date.issued2023-08-29
dc.descriptionilustraciones, diagramas, planosspa
dc.description.abstractLos accidentes de tránsito son una gran preocupación a nivel mundial, ya que tienen un impacto significativo en la seguridad, la salud y el bienestar de las personas, por lo que constituyen un importante campo de investigación sobre el uso de técnicas y algoritmos de última generación para analizarlos y predecirlos. El estudio de los accidentes de tráfico se ha realizado a partir de la información publicada por las entidades de tráfico, pero gracias a la ubicuidad y disponibilidad de las redes sociales es posible disponer de información detallada y en tiempo real de los accidentes de tráfico, lo que permite realizar estudios detallados que incluyen eventos de accidentalidad vial no registrados. El objetivo de esta tesis es proponer un modelo predictivo para estimar la probabilidad de accidentes de tránsito en un área determinada mediante la integración de información proveniente de entidades oficiales y redes sociales relacionadas con accidentes viales y eventos de infraestructura vial. El modelo diseñado fue un modelo de aprendizaje profundo, compuesto por unidades recurrentes cerradas y redes neuronales convolucionales. Los resultados obtenidos se compararon con resultados publicados por otros investigadores y muestran resultados prometedores, lo que indica que, en el contexto del problema, el modelo de aprendizaje profundo propuesto supera a otros modelos de aprendizaje profundo disponibles en la literatura. La información proporcionada por el modelo puede ser valiosa para que las agencias de control de tráfico planifiquen actividades de prevención de accidentes de tráfico. (Texto tomado de la fuente)spa
dc.description.abstractTraffic accidents are a major global concern as they have a significant impact on safety, health, and well-being. Therefore, it is an important area of research to analyze and predict accidents using state-of-the-art techniques and algorithms. Traditionally, the study of traffic accidents has been conducted using information from traffic entities and road police forces. However, with the rise of social media platforms, it's now possible to access detailed and real-time information about road accidents in a specific region, which allows for more comprehensive studies, even including unrecorded road accident events. This thesis aims to develop a predictive model that estimates the probability of road accidents in a specific area by combining information from official entities and social media related to road accidents and road infrastructure events. The proposed model is an ensemble deep learning model made up of Gated Recurrent Units and Convolutional Neural Networks. The results were compared with other published research and the outcomes are promising, indicating that the proposed ensemble deep learning model is more effective than other deep learning models reported in literature. The information provided by the model could be valuable for traffic control agencies to plan road accident prevention activities.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenamePh.D. en Ingeniería – Sistemas y Computaciónspa
dc.description.researchareaSistemas Inteligentes de Transporte ITSspa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84616
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesAhmed, M. M., & Abdel-Aty, M. A. (2012). The viability of using automatic vehicle identification data for real-time crash prediction. IEEE Transactions on Intelligent Transportation Systems, 13(2), 459–468. https://doi.org/10.1109/TITS.2011.2171052spa
dc.relation.referencesAlkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1). https://doi.org/10.1002/for.2425spa
dc.relation.referencesAmin-Naseri, M., Chakraborty, P., Sharma, A., Gilbert, S. B., & Hong, M. (2018). Evaluating the Reliability, Coverage, and Added Value of Crowdsourced Traffic Incident Reports from Waze. Transportation Research Record. https://doi.org/10.1177/0361198118790619spa
dc.relation.referencesBailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J. Z., & Wang, R. (2016). TrafficWatch: Real-Time Traffic Incident Detection and Monitoring Using Social Media. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9651, 540–551. https://doi.org/10.1007/978-3-319-31753-3spa
dc.relation.referencesBao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(November 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015spa
dc.relation.referencesBao, J., Liu, P., Yu, H., & Xu, C. (2017). Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accident Analysis and Prevention, 106(July), 358–369. https://doi.org/10.1016/j.aap.2017.06.012spa
dc.relation.referencesBengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions On, 35(8), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50spa
dc.relation.referencesBocarejo, J. P., Velasquez, J. M., Díaz, C. A., & Tafur, L. E. (2012). Impact of bus rapid transit systems on road safety: Lessons from Bogotá, Colombia. In Transportation Research Record (Vol. 2317). https://doi.org/10.3141/2317-01spa
dc.relation.referencesBonilla, J. A. (2019). The More Stringent, the Better? Rationing Car Use in Bogotá with Moderate and Drastic Restrictions. World Bank Economic Review, 33(2), 516–534. https://doi.org/10.1093/wber/lhw053spa
dc.relation.referencesBranco, P., Ribeiro, R. P., Torgo, L., Krawczyk, B., & Moniz, N. (2017). SMOGN: a Pre-processing Approach for Imbalanced Regression. Proceedings of Machine Learning Research, 74, 36–50.spa
dc.relation.referencesCao, G., Michelini, J., Grigoriadis, K., Ebrahimi, B., & Franchek, M. A. (2015a). Cluster-based correlation of severe braking events with time and location. 2015 10th System of Systems Engineering Conference, SoSE 2015, 2450(June), 187–192. https://doi.org/10.1109/SYSOSE.2015.7151986spa
dc.relation.referencesCastro, Y., & Kim, Y. J. (2016). Data mining on road safety: factor assessment on vehicle accidents using classification models. International Journal of Crashworthiness, 21(2), 104–111. https://doi.org/10.1080/13588265.2015.1122278spa
dc.relation.referencesChen, C., Fan, X., Zheng, C., Xiao, L., Cheng, M., & Wang, C. (2018). SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data. Proceedings - 2018 6th International Conference on Advanced Cloud and Big Data, CBD 2018, 328–333. https://doi.org/10.1109/CBD.2018.00065spa
dc.relation.referencesChen, Q., Song, X., Yamada, H., & Shibasaki, R. (2016). Learning deep representation from big and heterogeneous data for traffic accident inference. 30th AAAI Conference on Artificial Intelligence, AAAI 2016.spa
dc.relation.referencesChen, Y., Lv, Y., Wang, X., & Wang, F. Y. (2018). A convolutional neural network for traffic information sensing from social media text. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317650spa
dc.relation.referencesChung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. Retrieved from http://arxiv.org/abs/1412.3555spa
dc.relation.referencesÇodur, M. Y., & Tortum, A. (2015). An Artificial Neural Network Model for Highway Accident Prediction: A Case Study of Erzurum, Turkey. PROMET - Traffic&Transportation, 27(3), 217–225. https://doi.org/10.7307/ptt.v27i3.1551spa
dc.relation.referencesD’Andrea, E., Ducange, P., Lazzerini, B., & Marcelloni, F. (2015). Real-Time Detection of Traffic from Twitter Stream Analysis. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2269–2283. https://doi.org/10.1109/TITS.2015.2404431spa
dc.relation.referencesDabiri, S., & Heaslip, K. (2019). Developing a Twitter-based traffic event detection model using deep learning architectures. Expert Systems with Applications, 118, 425–439. https://doi.org/10.1016/j.eswa.2018.10.017spa
dc.relation.referencesDelen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444. https://doi.org/10.1016/j.aap.2005.06.024spa
dc.relation.referencesFan, X., He, B., Wang, C., Li, J., Cheng, M., Huang, H., & Liu, X. (2015). Big data analytics and visualization with spatio-temporal correlations for traffic accidents. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9529). https://doi.org/10.1007/978-3-319-27122-4_18spa
dc.relation.referencesFawcett, L., Thorpe, N., Matthews, J., & Kremer, K. (2017). A novel Bayesian hierarchical model for road safety hotspot prediction. Accident Analysis and Prevention, 99, 262–271. https://doi.org/10.1016/j.aap.2016.11.021spa
dc.relation.referencesGanaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115. https://doi.org/10.1016/j.engappai.2022.105151spa
dc.relation.referencesGeurts, K., Wets, G., Brijs, T., & Vanhoof, K. (2003). Profiling of High-Frequency Accident Locations by Use of Association Rules. Transportation Research Record, 1840(03), 123–130. https://doi.org/10.3141/1840-14spa
dc.relation.referencesGhosh, B., Asif, M. T., & Dauwels, J. (2017). Bayesian prediction of the duration of non-recurring road incidents. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 87–90. https://doi.org/10.1109/TENCON.2016.7847964spa
dc.relation.referencesGovernmen, Australian. (2019). Australia’s Regional Open Data Census - Open data - Traffic Accidents. Retrieved July 15, 2019, from http://australia.census.okfn.org/dataset/traffic-accidentsspa
dc.relation.referencesGovernment", "Colombian. (2019). datos.gov.co - Colombia - Open data catalog- Road accidents. Retrieved July 15, 2019, from https://www.datos.gov.co/browse?q=Registro nacional de accidentes de transito&sortBy=relevancespa
dc.relation.references“Government US.” (2019). data.gov - United States - Open data catalog - Traffic accidents. Retrieved July 15, 2019, from https://catalog.data.gov/dataset?q=traffic+accidents&sort=views_recent+desc&tags=crash&as_sfid=AAAAAAXHjZkDY7gFA5iMx_28NUE0FLt7GCD6A_wjSzainkj_rspLB-fqUew5h3LiHfKwq25Q1jllDf64k8tuEJ03xVdCKo4_qW6HRpHe_XBlCPYQhLUOwC0CkWT-WHXEHYKSTII%3D&as_fid=be93db12e7584bspa
dc.relation.referencesGu, Y., Qian, Z. (Sean), & Chen, F. (2016). From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, 321–342. https://doi.org/10.1016/j.trc.2016.02.011spa
dc.relation.referencesGutierrez-Osorio, C., Gonzalez, F. A., & Pedraza, C. A. (2022). Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data. Computers, 11(9), 126.spa
dc.relation.referencesGutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 432–446. https://doi.org/10.1016/j.jtte.2020.05.002spa
dc.relation.referencesGutierrez-Osorio, C., & Pedraza, C. A. (2019a). Characterizing road accidents in urban areas of Bogota (Colombia): A data science approach. Proceedings of the 2nd Latin American Conference on Intelligent Transportation Systems, ITS LATAM 2019, 1–6. https://doi.org/10.1109/ITSLATAM.2019.8721334spa
dc.relation.referencesHalim, Z., Kalsoom, R., Bashir, S., & Abbas, G. (2016). Artificial intelligence techniques for driving safety and vehicle crash prediction. Artificial Intelligence Review, 46(3), 351–387. https://doi.org/10.1007/s10462-016-9467-9spa
dc.relation.referencesHashmienejad, S. H., & Hossein, S. M. (2017). Traffic accident severity prediction using a novel multi-objective genetic algorithm. International Journal of Crashworthiness, 0(0), 1–16. https://doi.org/10.1080/13588265.2016.1275431spa
dc.relation.referencesJanssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, Adoption Barriers and Myths of Open Data and Open Government. Information Systems Management, 29(4), 258–268. https://doi.org/10.1080/10580530.2012.716740spa
dc.relation.referencesKaplan, S., & Prato, C. G. (2013). Cyclist-motorist crash patterns in Denmark: a latent class clustering approach. Traffic Injury Prevention, 14(7), 725–733. https://doi.org/10.1080/15389588.2012.759654spa
dc.relation.referencesKononen, D. W., Flannagan, C. A. C., & Wang, S. C. (2011). Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes. Accident Analysis and Prevention, 43(1), 112–122. https://doi.org/10.1016/j.aap.2010.07.018spa
dc.relation.referencesKumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1). https://doi.org/10.1007/s40534-016-0095-5spa
dc.relation.referencesKumar, Sachin, & Toshniwal, D. (2015). A data mining framework to analyze road accident data. Journal of Big Data, 2(1), 26. https://doi.org/10.1186/s40537-015-0035-yspa
dc.relation.referencesKumar, Sachin, & Toshniwal, D. (2016). Analysis of hourly road accident counts using hierarchical clustering and cophenetic correlation coefficient (CPCC). Journal of Big Data, 3(1), 1–11. https://doi.org/10.1186/s40537-016-0046-3spa
dc.relation.referencesKunt, M. M., Aghayan, I., & Noii, N. (2011). Prediction for traffic accident severity: comparing the artificial neural network, genetic algorithm, combined genetic algorithm and pattern search methods. Transport, 26(4), 353–366. https://doi.org/10.3846/16484142.2011.635465spa
dc.relation.referencesLi, P., Abdel-Aty, M., & Yuan, J. (2020). Real-time crash risk prediction on arterials based on LSTM-CNN. Accident Analysis and Prevention, 135(July 2019), 105371. https://doi.org/10.1016/j.aap.2019.105371spa
dc.relation.referencesLin, L., Wang, Q., & Sadek, A. W. (2015). A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transportation Research Part C: Emerging Technologies, 55(June), 444–459. https://doi.org/10.1016/j.trc.2015.03.015spa
dc.relation.referencesMoghaddam, F. R., Afandizadeh, S., & Ziyadi, M. (2011). Prediction of accident severity using artificial neural networks. International Journal of Civil Engineering, 9(1), 41–49.spa
dc.relation.referencesMohamed, M. G., Saunier, N., Miranda-Moreno, L. F., & Ukkusuri, S. V. (2013). A clustering regression approach: A comprehensive injury severity analysis of pedestrian-vehicle crashes in New York, US and Montreal, Canada. Safety Science, 54, 27–37. https://doi.org/10.1016/j.ssci.2012.11.001spa
dc.relation.referencesMoriya, K., Matsushima, S., & Yamanishi, K. (2018). Traffic Risk Mining From Heterogeneous Road Statistics. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3662–3675. https://doi.org/10.1109/TITS.2018.2856533spa
dc.relation.referencesPandhare, K. R., & Shah, M. A. (2017). Real time road traffic event detection using Twitter and spark. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2017, (Icicct), 445–449. https://doi.org/10.1109/ICICCT.2017.7975237spa
dc.relation.referencesPark, S., Kim, S., & Ha, Y. (2016). Highway traffic accident prediction using VDS big data analysis. The Journal of Supercomputing, 72(7), 2815–2831. https://doi.org/10.1007/s11227-016-1624-zspa
dc.relation.referencesParnami, A., Bavi, P., Papanikolaou, D., Akella, S., Lee, M., & Krishnan, S. (2018). Deep Learning Based Urban Analytics Platform: Applications to Traffic Flow Modeling and Prediction. ACM SIGKDD Workshop on Mining Urban Data (MUD3).spa
dc.relation.referencesPérez-Espinosa, A., Reyes-Cabello, A. L., Quiroz-Fabián, J., & Bravo-Grajales, E. (2018). Trafico CDMX system: Using big data to improve the mobility in Mexico City. ACM International Conference Proceeding Series, (January), 13–17. https://doi.org/10.1145/3277104.3277114spa
dc.relation.referencesRen, H., Song, Y., Wang, J., Hu, Y., & Lei, J. (2017). A Deep Learning Approach to the Citywide Traffic Accident Risk Prediction. Retrieved from http://arxiv.org/abs/1710.09543spa
dc.relation.referencesRoshandel, S., Zheng, Z., & Washington, S. (2015). Impact of real-time traffic characteristics on freeway crash occurrence: Systematic review and meta-analysis. Accident Analysis and Prevention, 79, 198–211. https://doi.org/10.1016/j.aap.2015.03.013spa
dc.relation.referencesSalas, A., Georgakis, P., & Petalas, Y. (2018). Incident detection using data from social media. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-March, 751–755. https://doi.org/10.1109/ITSC.2017.8317967spa
dc.relation.referencesScott-Parker, B., & Oviedo-Trespalacios, O. (2017). Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different? Accident Analysis and Prevention, 99, 30–38. https://doi.org/10.1016/j.aap.2016.11.001spa
dc.relation.referencesShi, Q., & Abdel-Aty, M. (2015). Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C, 58, 380–394. https://doi.org/10.1016/j.trc.2015.02.022spa
dc.relation.referencesSinnott, R. O., & Yin, S. (2015). Accident Black Spot Identification and Verification through Social Media. Proceedings - 2015 IEEE International Conference on Data Science and Data Intensive Systems; 8th IEEE International Conference Cyber, Physical and Social Computing; 11th IEEE International Conference on Green Computing and Communications and 8th IEEE Inte, 17–24. https://doi.org/10.1109/DSDIS.2015.34spa
dc.relation.referencesSuat-Rojas, N., Gutierrez-Osorio, C., & Pedraza, C. (2022). Extraction and Analysis of Social Networks Data to Detect Traffic Accidents. Information (Switzerland), 13(1). https://doi.org/10.3390/info13010026spa
dc.relation.referencesTaamneh, M., Alkheder, S., & Taamneh, S. (2017). Data-mining techniques for traffic accident modeling and prediction in the United Arab Emirates. Journal of Transportation Safety & Security, 9(2), 146–166. https://doi.org/10.1080/19439962.2016.1152338spa
dc.relation.referencesTiwari, P., Dao, H., & Nguyen, G. N. (2017). Performance evaluation of lazy, decision tree classifier and multilayer perceptron on traffic accident analysis. Informatica (Slovenia), 41(1), 39–46.spa
dc.relation.references“United Kingdom Government.” (2019). data.gov.uk - United Kingdom - Open data catalog - traffic accidents. Retrieved July 15, 2019, from https://data.gov.uk/search?q=traffic+accidentsspa
dc.relation.referencesVeljković, N., Bogdanović-Dinić, S., & Stoimenov, L. (2014). Benchmarking open government: An open data perspective. Government Information Quarterly, 31(2), 278–290. https://doi.org/10.1016/j.giq.2013.10.011spa
dc.relation.referencesWenqi, L., Dongyu, L., & Menghua, Y. (2017). A model of traffic accident prediction based on convolutional neural network. 2017 2nd IEEE International Conference on Intelligent Transportation Engineering, ICITE 2017, 198–202. https://doi.org/10.1109/ICITE.2017.8056908spa
dc.relation.referencesWen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., & Xu, H. (2020). Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478.spa
dc.relation.referencesWirth, R., & Hipp, J. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining, (24959), 29–39. https://doi.org/10.1.1.198.5133spa
dc.relation.referencesWorld Health Organization. (2015). Global Status Report on Road. In Foreign Affairs. Retrieved from https://www.who.int/publications/i/item/global-status-report-on-road-safety-2018spa
dc.relation.referencesXiong, X., Chen, L., & Liang, J. (2017). A new framework of vehicle collision prediction by combining SVM and HMM. IEEE Transactions on Intelligent Transportation Systems, 19(3), 699-710.spa
dc.relation.referencesYou, J., Wang, J., & Guo, J. (2017). Real-time crash prediction on freeways using data mining and emerging techniques. Journal of Modern Transportation, 25(2), 116–123. https://doi.org/10.1007/s40534-017-0129-7spa
dc.relation.referencesYu, L., Du, B., Hu, X., Sun, L., Han, L., & Lv, W. (2020). Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing, 423, 135–147. https://doi.org/10.1016/j.neucom.2020.09.043spa
dc.relation.referencesYuan, J., & Abdel-Aty, M. (2018). Approach-level real-time crash risk analysis for signalized intersections. Accident Analysis and Prevention, 119, 274–289. https://doi.org/10.1016/j.aap.2018.07.031spa
dc.relation.referencesZhang, Z., He, Q., Gao, J., & Ni, M. (2018). A deep learning approach for detecting traffic accidents from social media data. Transportation Research Part C: Emerging Technologies, 86(November 2017), 580–596. https://doi.org/10.1016/j.trc.2017.11.027spa
dc.relation.referencesZheng, M., Li, T., Zhu, R., Chen, J., Ma, Z., Tang, M., … Wang, Z. (2019). Traffic accident’s severity prediction: A deep-learning approach-based CNN network. IEEE Access, 7, 39897–39910. https://doi.org/10.1109/ACCESS.2019.2903319spa
dc.relation.referencesZhou, Z., Wang, Y., Xie, X., Chen, L., & Liu, H. (2020). RiskOracle: A minute-level citywide traffic accident forecasting framework. ArXiv, (December 2019). https://doi.org/10.1609/aaai.v34i01.5480spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembAccidentes de tránsitospa
dc.subject.lembTraffic accidents - researcheng
dc.subject.lembTráfico de carreterasspa
dc.subject.lembRoad trafficeng
dc.subject.proposalMachine learningeng
dc.subject.proposalDeep learningeng
dc.subject.proposaltraffic accident risk predictioneng
dc.subject.proposaltraffic accidentseng
dc.titleRoad accident forecast by using predictive modeling techniqueseng
dc.title.translatedPronóstico de accidentes de tráfico mediante el uso de técnicas de modelado predictivospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71775136.2023.pdf
Tamaño:
1.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: