Efectos del aislamiento social temprano sobre la actividad del circuito de recompensa cerebral y la interacción social en ratas adolescentes

dc.contributor.advisorLamprea Rodríguez, Marisol
dc.contributor.advisorCortes Patiño, Diana Milena
dc.contributor.authorMartin Neira, Valentyna
dc.contributor.orcidMartin Neira, Valentyna [0000000217116929]spa
dc.contributor.researchgroupNeuropsicología básica y cognoscitivaspa
dc.coverage.countryColombia
dc.date.accessioned2024-01-29T19:16:24Z
dc.date.available2024-01-29T19:16:24Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractSe ha demostrado que el circuito de recompensa cerebral continúa en desarrollo durante la adolescencia y es sensible al estrés y las condiciones ambientales a las que son expuestos los animales. El aislamiento social temprano ha mostrado afectar el adecuado desarrollo cerebral de los individuos y aumentar la sensibilidad a las propiedades de incentivo de la interacción social. El presente estudio tuvo como objetivo determinar los efectos del aislamiento social posterior al destete en la actividad de la dopamina y la oxitocina cerebral y en el establecimiento de la preferencia de lugar condicionada por interacción social en ratas macho adolescentes. Se criaron 63 ratas Wistar en la condición de grupo o aislamiento social, y se entrenaron en el paradigma de preferencia de lugar condicionado, utilizando el acceso a interacción social como incentivo. Para las medidas fisiológicas, se obtuvo el tejido cerebral de un grupo de animales el último día de entrenamiento y se evalúo mediante inmunofluorescencia la actividad de la dopamina cerebral con el indicador de Tirosina Hidroxilasa en el Área Tegmental ventral y la actividad de la oxitocina cerebral en el Núcleo Paraventricular del Hipotálamo. Se encontró que los animales alojados en aislamiento mostraron mayor preferencia por lugares asociados a la interacción social y aumentaron el tiempo dedicado a las conductas de juego social. Por otro lado, el aislamiento social disminuyó la cantidad de células positivas para oxitocina en el núcleo paraventricular del hipotálamo y aumentó la cantidad de tirosina hidroxilasa disponible en el área tegmental ventral. Nuestros resultados sugieren que la crianza en aislamiento social aumentó la sensibilidad de los animales a las propiedades de incentivó de la interacción social y alteró los patrones de interacción social, aumentando el juego y disminuyendo la investigación social. Sugerimos que el aumento en las conductas de juego y en sensibilidad a las propiedades de incentivo de la interacción social podría deberse al aumento en la cantidad de tirosina hidroxilasa en el VTA y la disminución en las conductas de investigación podría deberse a la reducción de la actividad de la oxitocina cerebral. (Texto tomado de la fuente)spa
dc.description.abstractIt has been demonstrated that the brain's reward circuitry continues to develop during adolescence and is sensitive to stress and environmental conditions to which animals are exposed. Early social isolation has been shown to affect the proper brain development of individuals and increase sensitivity to the rewarding properties of social interaction. The present study aimed to determine the effects of post-weaning social isolation on dopamine and brain oxytocin activity, as well as on the establishment of socially conditioned place preference in adolescent male rats. Sixty-three Wistar rats were raised either in group conditions or subjected to social isolation. They were trained in a conditioned place preference paradigm using access to social interaction as the incentive stimulus. For physiological measurements, brain tissue was obtained from a group of animals on the last day of training, and the activity of brain dopamine was assessed using Tyrosine Hydroxylase immunofluorescence in the Ventral Tegmental Area, and the activity of brain oxytocin was evaluated in the Paraventricular Nucleus of the Hypothalamus. It was found that animals housed in isolation exhibited a stronger preference for locations associated with social interaction and increased the time dedicated to social play behaviors. Conversely, social isolation reduced the number of oxytocin-positive cells in the paraventricular nucleus of the hypothalamus and increased the amount of available tyrosine hydroxylase in the ventral tegmental area. Our findings suggest that upbringing in social isolation heightened animals' sensitivity to the rewarding properties of social interaction and altered patterns of social engagement, promoting more play, and decreasing social investigation behaviors. We propose that the increase in play behaviors and sensitivity to the rewarding properties of social interaction could be attributed to the elevated levels of tyrosine hydroxylase in the ventral tegmental area, while the decrease in investigative behaviors might be linked to reduced brain oxytocin activity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Psicologíaspa
dc.description.methodsExperimentalspa
dc.description.researchareaPsicología Básicaspa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación (Minciencias #835/2019)spa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentx, 102 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85489
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Humanasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Humanas - Maestría en Psicologíaspa
dc.relation.referencesAdvani, T., Hensler, J. G., & Koek, W. (2007). Effect of early rearing conditions on alcohol drinking and 5-HT1A receptor function in C57BL/6J mice. Neuropsychopharmacology, 10(5), 595–607. doi:10.1017/S146114570600740.spa
dc.relation.referencesAlbertin, S. V., Mulder, A. B., Tabuchi, E., Zugaro, M. B., & Wiener, S. I. (2000). Lesions of the medial shell of the nucleus accumbens impair rats in finding larger rewards, but spare reward-seeking behavior. Behavioral Brain Research, 117(1-2), 173-183. doi:10.1016/s0166-4328(00)00308-2.spa
dc.relation.referencesAnderson, R. I., & Spear, L. P. (2011). AutoShaping in adolescence enhances sign-tracking behavior in adulthood: Impact on ethanol consumption. Pharmacology, Biochemistry, and Behavior, 98(2), 250-260. doi:10.1016/j.pbb.2011.01.004.spa
dc.relation.referencesAngermeier, W. F., Schaul, L. T., & James, W. T. (1959). Social conditioning in rats. Journal of Comparative and Physiological Psychology, 52(3), 370–372. doi:10.1037/h0046677.spa
dc.relation.referencesArakawa, H. (2018). Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioral Brain Research, 341, 98–108. doi:10.1016/j.bbr.2017.12.022.spa
dc.relation.referencesArruda-Carvalho, M., Wu, W. C., Cummings, K. A., & Clem, R. L. (2017). Optogenetic examination of prefrontal-amygdala synaptic development. The Journal of Neuroscience, 37(11), 2976-2985. doi:10.1523/JNEUROSCI.1910-16.2017.spa
dc.relation.referencesBadanich, K. A., Adler, K. J., & Kirstein, C. L. (2006). Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. The European Journal of Pharmacology, 550, 95–106. doi: 10.1016/j.ejphar.2006.08.034.spa
dc.relation.referencesBaldessarini, R. J., & Tarazi, F. I. (2000). Comparative postnatal development of dopamine D(1), D(2), and D(4) receptors in rat forebrain. International Journal of Developmental Neuroscience, 18, 29-37. doi:10.1016/s0736-5748(99)00108-2.spa
dc.relation.referencesBallesteros Acosta, H. N. (2023). Efectos del aislamiento social sobre la inducción de procesos de plasticidad y el aprendizaje de estímulos contextuales asociados a la nicotina. Tesis de maestría. Universidad Nacional de Colombia, Facultad de Ciencias Humanas, Departamento de Psicología. Bogotá D.C., Colombia.spa
dc.relation.referencesBariselli, S., Contestabile, A., Tzanoulinou, S., Musardo, S., & Bellone, C. (2018). SHANK3 downregulation in the ventral tegmental area accelerates the extinction of contextual associations induced by juvenile non-familiar conspecific interaction. Frontiers in Molecular Neuroscience, 11, 360. doi:10.3389/fnmol.2018.00360.spa
dc.relation.referencesBannon, M. J., O'Leary, O. F., O'Brien-Simpson, N. M., & O'Connor, J. J. (2019). Emerging roles of the brain's dopamine system in resilience to stress and addiction. Neuroscience, 408, 189-206. doi:10.1016/j.neuroscience.2019.03.03.spa
dc.relation.referencesBastle, R. M., Peartree, N. A., Goenaga, J., Hatch, K. N., Henricks, A., Scott, S., Hood, L. E., & Neisewander, J. L. (2016). Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behavioral Brain Research, 313, 244-254. doi:10.1016/j.bbr.2016.07.024.spa
dc.relation.referencesBeitner-Johnson, D., & Nestler, E. J. (1991). Morphine and Cocaine Exert Common Chronic Actions on Tyrosine Hydroxylase in Dopaminergic Brain Reward Regions. Journal of Neurochemistry, 57(3), 344-347. doi:10.1111/j.1471-4159.1991.tb02133.xspa
dc.relation.referencesBell, H. C., McCaffrey, D. R., Forgie, M. L., Kolb, B., & Pellis, S. M. (2009). The role of the medial prefrontal cortex in the play fighting of rats. Behavioral Neuroscience, 123(6), 1158-1168. doi:10.1037/a0017617.spa
dc.relation.referencesBell, H. C., Pellis, S. M., & Kolb, B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behavioral Brain Research, 207(1), 7-13. doi:10.1016/j.bbr.2009.09.029spa
dc.relation.referencesBelluzzi, J. D., Lee, A. G., Oliff, H. S., & Leslie, F. M. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174(3), 389–395. doi:10.1007/s00213-003-1768-3spa
dc.relation.referencesBen-Ami Bartal, I., Rodgers, D. A., Bernardez Sarria, M. S., Decety, J. & Mason, P. (2014). Pro-social behavior in rats is modulated by social experience. eLife, 3, 1-16. doi: 01385.10.7554/eLife.01385.spa
dc.relation.referencesBenítez, L., Cortés, E., & Hernández, C. (2016). El aislamiento social como consecuencia del uso excesivo de internet y móviles en adolescentes. PsicoEducativa: Reflexiones y Propuestas, 2(4), 24-30. Recuperado de https://psicoeducativa.iztacala.unam.mx/revista/index.php/psicoedu/article/view/26.spa
dc.relation.referencesBielsky, I. F. & Young, L. J. (2004). Oxytocin, vasopressin, and social recognition in mammals. Peptides, 25 (9), 1565-1574.spa
dc.relation.referencesBlakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267-277. doi:10.1038/nrn2353spa
dc.relation.referencesBlumstein, D. T., Chung, L. K., & Smith, J. E. (2013). Early play may predict later dominance relationships in yellow-bellied marmots (Marmota flaviventris). Proceedings of the Royal Society B, 280: 20130485. doi:10.1098/rspb.2013.0485.spa
dc.relation.referencesBorrás, T. (2014). Adolescencia: definición, vulnerabilidad y oportunidad. Correo Científico Médico, 18(1), 5-7. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S156043812014000100002&lng=es&tlng=es.spa
dc.relation.referencesBredewold, R., Smith, C. J., Dumais, K. M., & Veenema, A. H. (2014). Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Frontiers in Behavioral Neuroscience, 8, 216. doi:10.3389/fnbeh.2014.00216spa
dc.relation.referencesBrenes, J. C., & Fornaguera, J. (2008). Effects of environmental enrichment and social isolation on sucrose consumption and preference: Associations with depressive-like behavior and ventral striatum dopamine. Neuroscience Letters, 436(2), 278-282. doi: 10.1016/j.neulet.2008.03.045spa
dc.relation.referencesBrenhouse, H. C., Sonntag, K. C., & Andersen, S. L. (2008). Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: Relationship to enhanced motivational salience of drug cues in adolescence. Journal of Neuroscience, 28, 2375–2382. doi:10.1523/JNEUROSCI.4042-03.2004spa
dc.relation.referencesBuffington, S. A., Di Prisco, G. V., Auchtung, T. A., Ajami, N. J., Petrosino, J. F., & Costa-Mattioli, M. (2016). Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell, 165(7), 1762-1775. doi:10.1016/j.cell.2016.06.001spa
dc.relation.referencesCasey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 62-77. doi:10.1016/j.dr.2007.08.003spa
dc.relation.referencesCalcagnetti, D. J., & Schechter, M. D. (1992). Place conditioning reveals the rewarding aspect of social interaction in juvenile rats. Physiology & Behavior, 51(4), 667-672. doi:10.1016/0031-9384(92)90101-7spa
dc.relation.referencesChuhma, N., Zhang, H., Masson, J., Zhuang, X., Sulzer, D., Hen, R., & Rayport, S. (2004). Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. Journal of Neuroscience, 24, 972–981. doi:10.1523/JNEUROSCI.4042-03.2004spa
dc.relation.referencesCohen, I. S., Caballero, S. V., Mejail, S., & Hormigo, K. (2012). Habilidades sociales, aislamiento y comportamiento antisocial en adolescentes en contextos de pobreza. Acta Colombiana de Psicología, 15(1), 11-20. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012391552012000100002&lng=en&tlng=es.spa
dc.relation.referencesComisión Económica para América Latina y el Caribe [CEPAL] (2022). Los impactos sociodemográficos de la pandemia de COVID-19 en América Latina y el Caribe. https://repositorio.cepal.org/bitstream/handle/11362/47922/S2200159_es.spa
dc.relation.referencesCortés-Patiño, D. M., Ballesteros-Acosta, H., Martin-Neira, V., Contreras, D. R., & Lamprea, M. R. (2023a). Post-weaning social isolation increases the incentive value of nicotine-related contexts and decreases the accumulation of ΔFosB in nucleus accumbens in adolescent rats. Pharmacology, Biochemistry, and Behavior, 223, 173529. doi:10.1016/j.pbb.2023.173529.spa
dc.relation.referencesCortés-Patiño, D.M., Martin, V.N., Ballesteros-Acosta, H., Bustos-Rangel, A., & Lamprea, M.R. (2023b). Interaction of nicotine and social reward in group-reared male adolescent rats. Behavioural Brain Research, 447, 114432. doi:10.1016/j.bbr.2023.114432spa
dc.relation.referencesCrone, E. A. (2009). Executive functions in adolescence: Inferences from brain and behavior. Developmental Science, 12(6), 825-830. doi:10.1111/j.1467-7687.2009.00918.x.spa
dc.relation.referencesCrowder, W. F., & Hutto, C. W. (1992). Operant place conditioning measures examined using two nondrug reinforcers. Pharmacology, Biochemistry, and Behavior, 41, 817–824. doi:10.1016/0091-3057(92)90233-6.spa
dc.relation.referencesDahl, R. E. (2004). Adolescent brain development: A period of vulnerabilities and opportunities. Annals of the New York Academy of Sciences, 1021(1), 1-22. doi:10.1196/annals.1308.001.spa
dc.relation.referencesDel Pino, M. A., Bustamante, H. A., Ojeda, S. H., Fernandez, D. A., Romano, C. C., & Romano, C. S. (2014). Vulnerabilidad Adolescente: Factores que favorecen la resiliencia en los jóvenes de la localidad. Informes científicos técnicos-UNPA, 3(3), 62-80. doi:10.22305/ict-unpa.v3i3.38.spa
dc.relation.referencesDölen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501(7466), 179-184. doi: 10.1038/nature12518.spa
dc.relation.referencesDouglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45(3), 153–162. doi:10.1002/dev.20025.spa
dc.relation.referencesDrzewiecki, C. M., Willing, J., & Juraska, J. M. (2016). Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: a role for pubertal onset. Synapse, 70(9), 361-368. doi:10.1002/syn.21919.spa
dc.relation.referencesDunkley, P. R., & Dickson, P. W. (2019). Tyrosine hydroxylase phosphorylation in vivo. Journal of Neurochemistry, 149, 706-728. doi:10.1111/jnc.14675.spa
dc.relation.referencesEl Rawas, R., Klement, S., Kummer, K. K., Fritz, M., Dechant, G., Saria, A., Zernig, G. (2012). Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Frontiers in Behavioral Neuroscience, 6, 63. doi:10.3389/fnbeh.2012.00063.spa
dc.relation.referencesEvans, M. J., Duvel, A., Funk, M. L., Lehman, B., Sparrow, J., Watson, N. T., Neuringer, A. (1994). Social reinforcement of operant behavior in rats: A methodological note. Journal of Experimental Analysis of Behavior, 62(1), 149–156. doi:10.1901/jeab.1994.62-149.spa
dc.relation.referencesFrantz, K. J., O'Dell, L. E., & Parsons, L. H. (2006). Behavioral and neurochemical responses to cocaine in periadolescent and adult rats. Neuropsychopharmacology, 32, 625–637. doi: 10.1038/sj.npp.1301130.spa
dc.relation.referencesFelix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A., & Tye, K. M. (2016). Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 321, 197–209. doi:10.1016/j.neuroscience.2015.08.055.spa
dc.relation.referencesFerguson, J. N., Young, L. J., & Insel, T. R. (2002). The neuroendocrine basis of social recognition. Frontiers in Neuroendocrinology, 23(2), 200-224. doi: 10.1006/frne.2002.0229.spa
dc.relation.referencesFerrari, R., Le Novère, N., Picciotto, M. R., Changeux, J. P., & Zoli, M. (2002). Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections. European Journal of Neuroscience, 15(11), 1810–1818. https://doi.org/10.1046/J.1460-9568.2001.02009.X.spa
dc.relation.referencesFritz, M., El Rawas, R., Salti, A., Klement, S., Bardo, M. T., Kemmler, G., Dechant, G., Saria, A., & Zernig, G. (2011). Reversal of cocaine-conditioned place preference and mesocorticolimbic Zif268 expression by social interaction in rats. Addiction Biology, 16(2), 273–284. doi: 10.1111/j.1369-1600.2010.00285.xspa
dc.relation.referencesFuxjager, M. J., Forbes-Lorman, R. M., Coss, D. J., Auger, C. J., Auger, A. P., & Marler, C. A. (2010). Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proceedings of the National Academy of Sciences of the United States of America, 107, 12393-12398. doi: 10.1073/pnas.1001394107spa
dc.relation.referencesGeisler, S., & Zahm, D. S. (2005). Afferents of the ventral tegmental area in the rat: Anatomical substratum for integrative functions. Journal of Comparative Neurology, 490, 270–294. doi:10.1002/cne.20668spa
dc.relation.referencesGerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma Jr, F. J., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429-1432. doi: 10.1126/science.2147780.spa
dc.relation.referencesGowrishankar, R., & Clark, J. J. (2020). Selective manipulation of dopaminergic neurotransmission: A novel approach to understanding dopamine's role in the brain. Pharmacological Reviews, 72(4), 991-1028. doi:10.1124/pharmrev.119.000898.spa
dc.relation.referencesGrinevich, V., Desarménien, M. G., Chini, B., Tauber, M., & Muscatelli, F. (2015). Ontogenesis of oxytocin pathways in the mammalian brain: Late maturation and psychosocial disorders. Frontiers in Neuroanatomy, 8, 164. doi:10.3389/fnana.2014.00164.spa
dc.relation.referencesGrinevich, V., Knobloch-Bollmann, H. S., Eliava, M., Busnelli, M., & Chini, B. (2016). Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biological Psychiatry, 79, 155–164. doi:10.1016/j.biopsych.2015.04.013.spa
dc.relation.referencesGrotewold, S. K., Wall, V. L., Goodell, D. J., Hayter, C., & Bland, S. T. (2014). Effects of cocaine combined with a social cue on conditioned place preference and nucleus accumbens monoamines after isolation rearing in rats. Psychopharmacology (Berl), 231(15), 3041-3053. doi:10.1007/s00213-014-3470-0.spa
dc.relation.referencesGourley, S. L., Olevska, A., Warren, M. S., Taylor, J. R., & Koleske, A. J. (2012). Arg kinase regulates prefrontal dendritic spine refinement and cocaine-induced plasticity. Journal of Neuroscience, 32, 2314–2323. doi:10.1523/JNEUROSCI.2730-11.2012.spa
dc.relation.referencesGunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., Lammel, S., Mirzabekov, J. J., Airan, R. D., Zalocusky, K. A., Tye, K. M., Anikeeva, P., Malenka, R. C., & Deisseroth, K. (2014). Natural neural projection dynamics underlying social behavior. Cell, 157(7), 1535-1551. doi:10.1016/j.cell.2014.05.017.spa
dc.relation.referencesHaj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144spa
dc.relation.referencesHamburg, D. A., & Takanishi, R. (1989). Preparing for life: The critical transition of adolescence. American Psychologist, 44 (5), 825–827. doi:10.1037/0003066X.4 4.5.825.spa
dc.relation.referencesHarvey, B. H., Regenass, W., Dreyer, W., & Möller, M. (2019). Social isolation rearing-induced anxiety and response to agomelatine in male and female rats: Role of corticosterone, oxytocin, and vasopressin. Journal of Psychopharmacology, 33(5), 640-646. doi:10.1177/0269881119826783.spa
dc.relation.referencesHeidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27(6), 555-579. https://doi.org/10.1016/j.neubiorev.2003.09.003spa
dc.relation.referencesHernandez-Lallement, J., van Wingerden, M., Marx, C., Srejic, M., & Kalenscher, T. (2015). Rats prefer mutual rewards in a prosocial choice task. Frontiers in Neuroscience, 8, 1-9. doi: 10.3389/fnins.2014.00443.spa
dc.relation.referencesHol, T., Van den Berg, C. L., Van Ree, J. M., & Spruijt, B. M. (1999). Isolation during the play period in infancy decreases adult social interactions in rats. Behavioural Brain Research, 100, 91-97. doi: 10.1016/s0166-4328(98)00116-8spa
dc.relation.referencesHole, G. (1991). The effects of social deprivation on levels of social play in the laboratory rat Rattus norvegicus. Behavioural Processes, 25, 41-53. doi:10.1016/0376 6357(91)90044-Zspa
dc.relation.referencesHung, L. W., Neuner, S., Polepalli, J. S., Beier, K. T., Wright, M., Walsh, J. J., Lewis, E.M., Luo, L., Deisseroth, K., Dölen, G., Malenka, R.C. (2017). Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411. doi: 10.1126/science.aan4994.spa
dc.relation.referencesIBM Corp. (2021). IBM SPSS Statistics (Version del software) [Software]. Recuperado de [https://www.ibm.com/products/spss-statistics]spa
dc.relation.referencesIkemoto, S., & Wise, R. A. (2004). Mapping of chemical trigger zones for reward. Neuropharmacology, 47, 190-201. doi: 10.1016/j.neuropharm.2004.07.012spa
dc.relation.referencesIkemoto, S. (2007). Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56 (1), 27-78. DOI: 10.1016/j.brainresrev.2007.05.004.spa
dc.relation.referencesJASP. (2023). Descarga JASP. JASP. https://jasp-stats.org/download/spa
dc.relation.referencesJones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., and Robbins, T. W. (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol., Biochem. Behav. 43 (1), 17−35.spa
dc.relation.referencesJones, G. H., Marsden, C., & Robbins, T. W. (2001). Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: neurochemical correlates. Behavioural Brain Research, 123(2), 35-50. https://doi.org/10.1016/S0166-4328(01)00197-1spa
dc.relation.referencesJurek, B., & Neumann, I. D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, 98, 1805-1908. doi:10.1152/physrev.00031.2017.spa
dc.relation.referencesKarkhanis, A. N., Leach, A. C., Yorgason, J. T., Uneri, A., Barth, S., Niere, F., Alexander, N. J., Weiner, J. L., McCool, B. A., Raab-Graham, K. F., Ferris, M. J., & Jones, S. R. (2019). Chronic social isolation stress during peri-adolescence alters presynaptic dopamine terminal dynamics via augmentation in accumbal dopamine availability. ACS Chemical Neuroscience, 10(4), 2033-2044. doi:10.1021/acschemneuro.8b00360.spa
dc.relation.referencesKarkhanis, A. N., Rose, J. H., Weiner, J. L., & Jones, S. R. (2016). Early-life social isolation stress increases kappa opioid receptor responsiveness and downregulates the dopamine system. Neuropsychopharmacology, 41, 2263-2274. doi: 10.1038/npp.2016.21spa
dc.relation.referencesKawano, M., Kawasaki, A., Sakata-Haga, H., Fukui, Y., Kawano, H., Nogami, H., & Hisano, S. (2006). Subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. Journal of Comparative Neurology, 498, 581–592. doi: 10.1002/cne.21054spa
dc.relation.referencesKeebaugh, A. C., Barrett, C. E., Laprairie, J. L., Jenkins, J. J., & Young, L. J. (2015). RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Social Neuroscience, 10, 561-570. doi:10.1080/17470919.2015.1040893.spa
dc.relation.referencesKelley, A. E., & Berridge, K. C. (2002). The neuroscience of natural rewards: Relevance to addictive drugs. Journal of Neuroscience, 22(9), 3306-3311. doi:10.1523/JNEUROSCI.22-09-03306.2002.spa
dc.relation.referencesKessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593–602. doi:10.1001/archpsyc.62.6.593.spa
dc.relation.referencesKoss, W. A., Belden, C. E., Hristov, A. D., & Juraska, J. M. (2014). Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse, 68(2), 61-72. doi:10.1002/syn.21726.spa
dc.relation.referencesKoss, W. A., Lloyd, M. M., Sadowski, R. N., Wise, L. M., & Juraska, J. M. (2015). Gonadectomy before puberty increases the number of neurons and glia in the medial prefrontal cortex of female, but not male, rats. Developmental Psychobiology, 57(3), 305-312. doi:10.1002/dev.21267.spa
dc.relation.referencesKrimberg, J. S., Lumertz, F. S., Orso, R., Viola, T. W., & de Almeida, R. M. M. (2022). Impact of social isolation on the oxytocinergic system: A systematic review and meta-analysis of rodent data. Neuroscience & Biobehavioral Reviews, 134, 104549. doi: 10.1016/j.neubiorev.2022.104549.spa
dc.relation.referencesKummer, K., Klement, S., Eggart, V., Mayr, M. J., Saria, A., & Zernig, G. (2011). Conditioned place preference for social interaction in rats: Contribution of sensory components. Frontiers in Behavioral Neuroscience, 5, 80. doi:10.3389/fnbeh.2011.00080.spa
dc.relation.referencesLadd, G. W., Ettekal, I., Kochenderfer-Ladd, B., Rudolph, K. D., & Andrews, R. K. (2014). Relations among chronic peer group rejection, maladaptive behavioral dispositions, and early adolescents' peer perceptions. Child Development, 85, 971-988. doi:10.1111/cdev.12165.spa
dc.relation.referencesLahvis, G. P., Panksepp, J. B., Kennedy, B. C., Wilson, C. R., & Merriman, D. K. (2015). Social conditioned place preference in the captive ground squirrel (Ictidomys tridecemlineatus): Social reward as a natural phenotype. Journal of Comparative Psychology, 129, 291-303. doi:10.1037/a0039435.spa
dc.relation.referencesLammel, S., Ion, D. I., Roeper, J., & Malenka, R. C. (2011). Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70, 855-862. doi:10.1016/j.neuron.2011.03.025.spa
dc.relation.referencesLammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., Deisseroth, K., & Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491, 212-217. doi:10.1038/nature11527.spa
dc.relation.referencesLambe, E. K., Krimer, L. S., & Goldman-Rakic, P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. Journal of Neuroscience, 20, 8780-8787. doi:10.1523/JNEUROSCI.20-23-08780.2000.spa
dc.relation.referencesLarson, R. W., Richards, M. H., Moneta, G., Holmbeck, G., & Duckett, E. (1996). Changes in adolescents’ daily interactions with their families from ages 10 to 18: Disengagement and transformation. Developmental Psychology, 32, 744-754. doi:10.1037/00121649.32.4.744.spa
dc.relation.referencesLey 1090 de 2006. Ley por la cual se reglamenta el ejercicio de la profesión de psicología. Diario Oficial No. 46.213, 6 de septiembre de 2006.spa
dc.relation.referencesLey 84 de 1989. Ley por la cual se adopta el estatuto nacional de protección de los animales. Diario Oficial No. 38.933, 27 de enero de 1989.spa
dc.relation.referencesLiang, S. S., Ma, Y. J., Li, X. J., Ping, L., Hu, L., & Cui, C. L. (2012). Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochemical Research, 37(7), 1482–1489. https://doi.org/10.1007/S11064-012-0739-8/TABLES/2.spa
dc.relation.referencesLim, M. M., & Young, L. J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 50(4), 506-517. doi:10.1016/j.yhbeh.2006.06.028spa
dc.relation.referencesLiu Y & Wang ZX (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121(3):537-544. doi:10.1016/s0306-4522(03)00555-4spa
dc.relation.referencesLitvin, Y., Murakami, G., & Pfaff, D. W. (2011). Effects of chronic social defeat on behavioral and neural correlates of sociality: Vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiology & Behavior, 103 (3GÇô4), 393-403.spa
dc.relation.referencesLópez-Ramírez CE, Arámbula-Almanza J, Camarena-Pulido EE. (2014). Oxitocina, la hormona que todos utilizan y que pocos conocen. Ginecol Obstet Mex, 2 (82), 472-482. https://www.medigraphic.com/pdfs/ginobsmex/gom-2014/gom147f.pdfspa
dc.relation.referencesLukas, M., Toth, I., Reber, S. O., Slattery, D. A., Veenema, A. H., & Neumann, I. D. (2011). The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology, 36(11), 2159-2168. doi:10.1038/npp.2011.95.spa
dc.relation.referencesMaaswinkel, H., Gispen, W. H., & Spruijt, B. M. (1997). Executive function of the hippocampus in social behavior in the rat. Behavioral Neuroscience, 111, 777–784. doi:10.1037/0735-7044.111.4.777.spa
dc.relation.referencesMacAskill, A. F., Cassel, J. M., & Carter, A. G. (2014). Cocaine exposure reorganizes cell type and input-specific connectivity in the nucleus accumbens. Nature Neuroscience, 17, 1198-1207. doi:10.1038/nn.3783.spa
dc.relation.referencesMartin, P. & Caro, T.M. (1985). On the functions of play and its role in behavioral development. Adv Study Behav 1985;15:59–103.spa
dc.relation.referencesMárquez, C., Rennie, S. M., Costa, D. F., & Moita, M. A. (2015). Prosocial choice in rats depends on food-seeking behavior displayed by recipients. Current Biology, 25, 1736-1745. doi: 10.1016/j.cub.2015.05.018.spa
dc.relation.referencesMathews, I. Z., Waters, P., & McCormick, C. M. (2009). Changes in hyporesponsiveness to acute amphetamine and age differences in tyrosine hydroxylase immunoreactivity in the brain over adolescence in male and female rats. Developmental Psychobiology, 51(5), 417-428. doi: 10.1002/dev.20381.spa
dc.relation.referencesMcCormick, C. M., Green, M. R., & Simone, J. J. (2016). Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neuroscience & Biobehavioral Reviews, 70, 231-242. doi:10.1016/j.ynstr.2016.08.003.spa
dc.relation.referencesMcCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997-1014. doi:10.1111/j.1460-9568.2009.06648.x.spa
dc.relation.referencesMeaney, M. J., & Stewart, J. (1981). A descriptive study of social development in the rat (Rattus norvegicus). Animal Behaviour, 29, 34–45. doi:10.1016/S0003 3472(81)80149-2spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2022). Salud mental, asunto de todos [Página web]. Recuperado de https://www.minsalud.gov.co/Paginas/Salud-mental-asunto-de-todos.aspx.spa
dc.relation.referencesMinisterio de Salud. (1993). Resolución No. 008430 de 1993. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Diario Oficial No. 40.892, 4 de octubre de 1993.spa
dc.relation.referencesMiura, H., Qiao, H., & Ohta, T. (2002). Attenuating effects of the isolated rearing condition on increased brain serotonin and dopamine turnover elicited by novelty stress. Brain Research, 926(1–2), 10–17. doi: 10.1016/S0006-8993(01)03201-2.spa
dc.relation.referencesMumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model. A comprehensive review. Biomedicine & Pharmacotherapy, 105(1), 1205–1222. doi:10.1016/j.biopha.2018.05.086.spa
dc.relation.referencesNair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., & Ungless, M. A. (2008). Stereological estimates of dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area, substantia nigra, and retrorubral field in the rat. Neuroscience, 152, 1024-1031. doi: 10.1016/j.neuroscience.2008.01.046spa
dc.relation.referencesNaneix, F., Marchand, A. R., Di Scala, G., Pape, J. R., & Coutureau, E. (2012). Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. Journal of Neuroscience, 32, 16223-16232. doi:10.1523/JNEUROSCI.3080-12.2012.spa
dc.relation.referencesNational Research Council. (2011). Guide for the Care and Use of Laboratory Animals (8th ed.). National Academies Press.spa
dc.relation.referencesNuman, M. (2007). Motivational systems and the neural circuitry of maternal behavior in the rat. Developmental Psychobiology, 49, 12-21. doi: 10.1002/dev.20198.spa
dc.relation.referencesO’Connell, L. A., & Hofmann, H. A. (2011). The Vertebrate Mesolimbic Reward System and Social Behavior Network: A Comparative Synthesis. Journal of Comparative Neurology, 519, 3599-3639. doi: 10.1002/cne.22735.spa
dc.relation.referencesOdell, W. D. (1990). Sexual maturation in the rat. In M. M. Grumbach, P. C. Sizonenko, & M. L. Aubert (Eds.), Control of the onset of puberty (pp. 183-210). Baltimore.spa
dc.relation.referencesOjeda, S. R., & Urbanski, H. F. (1994). Puberty in the rat. In E. Knobil & J. D. Neill (Eds.), The physiology of reproduction (2nd ed., pp. 363-409). New York.spa
dc.relation.referencesPagani, J. H., Zhao, M., Cui, Z., Avram, S. W., Caruana, D. A., Dudek, S. M., Young, W. S. (2015). Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Molecular Psychiatry, 20(4), 490–499. doi:10.1038/mp.2014.47.spa
dc.relation.referencesPaine, T. A., Swedlow, N., & Swetschinski, L. (2017). Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability. Behavioral Brain Research, 317, 542-552. doi:10.1016/j.bbr.2016.09.042.spa
dc.relation.referencesPanksepp, J., & Beatty, W. W. (1980). Social deprivation and play in rats. Behavioral and Neural Biology, 30, 197–206. doi: 10.1016/S0163-1047(80)91077-8.spa
dc.relation.referencesPanksepp, J. B., and Lahvis, G. P. (2007). Social reward among juvenile mice. Genes Brain Behav. 6, 661–671. doi:10.1111/j.1601-183X.2006.00295.x.spa
dc.relation.referencesParedes, R. G. (2009). Evaluating the neurobiology of sexual reward. ILAR Journal, 50(1), 15-27. doi:10.1093/ilar.50.1.15.spa
dc.relation.referencesParra-Cruz, J. C., Martin-Neira, V., Martínez-Muñoz, N. D. , Jacobo-Suarez, S.C., Nieto Capador, D., Cortés Patiño, D.M., Soares Filho, P. S. D.,(2023). Environmental Enrichment and Prosocial Behavior in Wistar Rats: an Exploratory Study. Revista Brasileira de Terapia Comportamental e Cognitiva, 24, 1–17. https://doi.org/10.31505/rbtcc. v24i1.1752spa
dc.relation.referencesPattwell, S. S., Liston, C., Jing, D., Ninan, I., Yang, R. R., Witztum, J., ... Lee, F. S. (2016). Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nature Communications, 7, 11475. doi:10.1038/ncomms11475.spa
dc.relation.referencesPaxinos, G., & Watson, C. (2018). The rat brain in stereotaxic coordinates. Elsevier Academic Press.spa
dc.relation.referencesPeartree, N.A., Hood, L.E., Thiel, K.J., Sanabria, F., Pentkowski, N.S., Chandler, K.N., Neisewander, J.L. (2012). Limited physical contact through a mesh barrier is sufficient for social reward-conditioned place preference in adolescent male rats. Physiol Behav. 105(3):749-56. doi: 10.1016/j.physbeh.2011.10.001.spa
dc.relation.referencesPellis, S. M., Hastings, E., Shimizu, T., Kamitakahara, H., Komorowska, J., Forgie, M. L., ... & Kolb, B. (2006). The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts. Behavioral Neuroscience, 120, 72-84. doi:10.1037/0735-7044.120.1.72.spa
dc.relation.referencesPellis, S. M., & McKenna, M. M. (1995). What do rats find rewarding in play fighting? Behavioral and Neural Biology, 57(1), 101-108. doi:10.1016/0166-4328(94)001618.spa
dc.relation.referencesPellis, S. M., & Pellis, V. C. (2017). What is play fighting and what is it good for?. Learning & Behavior, 45(3), 255-263. doi:10.3758/s13420-017-0264-3.spa
dc.relation.referencesPellis, S. M., Pellis, V. C., & Himmler, B. T. (2014). How play makes for a more adaptable brain: A comparative and neural perspective. American Journal of Play, 7, 73–98.spa
dc.relation.referencesPistillo, F., Clementi, F., Zoli, M., & Gotti, C. (2014). Nicotinic, glutamatergic, and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 124, 1-27. doi: 10.1016/j.pneurobio.2014.10.002.spa
dc.relation.referencesPistillo, F., Fasoli, F., Moretti, M., McClure-Begley, T., Zoli, M., Marks, M. J., & Gotti, C. (2016). Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 103, 167-176.spa
dc.relation.referencesPokorny, J., & Yamamoto, T. (1981). Postnatal ontogenesis of hippocampal CA1 area in rats. Development of dendritic arborization in pyramidal neurons. Brain Research Bulletin, 7, 113-120. doi:10.1016/0361-9230(81)90075-7.spa
dc.relation.referencesRoss, H. E., Freeman, S. M., Spiegel, L. L., Ren, X., Terwilliger, E. F., & Young, L. J. (2009). Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. Journal of Neuroscience, 29, 1312-1318. doi:10.1523/JNEUROSCI.5039-08.2009.spa
dc.relation.referencesRStudio Team. (2021). RStudio: Integrated Development Environment for R [Software]. Retrieved from https://www.rstudio.com/spa
dc.relation.referencesSajdyk, T. J., & Shekhar, A. (1997). Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test. Brain Research, 764, 262-264. doi: 10.1016/s0006-8993(97)00594-5.spa
dc.relation.referencesSanders, S. K., & Shekhar, A. (1995). Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacology, Biochemistry, and Behavior, 52, 701-706. doi: 10.1016/0091-3057(95)00153-n.spa
dc.relation.referencesSavage, L. M., Buzzetti, R. A., & Ramirez, D. R. (2004). The effects of hippocampal lesions on learning, memory, and reward expectancies. Neurobiology of Learning and Memory, 82(2), 109-119. https://doi.org/10.1016/j.nlm.2004.05.002.spa
dc.relation.referencesSesack, S. R., & Pickel, V. M. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. Journal of Comparative Neurology, 320(2), 145-160. doi: 10.1002/cne.903200202.spa
dc.relation.referencesSesack, S. R., Carr, D. B., Omelchenko, N., & Pinto, A. (2003). Anatomical substrates for glutamate-dopamine interactions: Evidence for specificity of connections and extrasynaptic actions. Annals of the New York Academy of Sciences, 1003, 36-52. doi: 10.1196/annals.1300.003.spa
dc.relation.referencesShahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151(5), 2276-2286. doi:10.1210/en.2009-1271.spa
dc.relation.referencesShamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79, 194-202. doi:10.1016/j.biopsych.2015.07.020.spa
dc.relation.referencesSharpe, L. L. (2005). Play fighting does not affect subsequent fighting success in wild meerkats. Animal Behaviour, 69, 1023–1029. doi:10.1016/j.anbehav.2004.07.013spa
dc.relation.referencesSmith, C. J., Poehlmann, M. L., Li, S., Ratnaseelan, A. M., Bredewold, R., Veenema, A. H. (2017). Age and sex differences in oxytocin and vasopressin V1a receptor binding densities in the rat brain: focus on the social decision-making network. Brain Structure and Function, 222, 981–1006. doi: 10.1007/s00429-016-1260-7.spa
dc.relation.referencesSong, Z., Borland, J. M., Larkin, T. E., O'Malley, M., Albers, H. E. (2016). Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology, 74, 164-172.spa
dc.relation.referencesSpear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24 (4), 417-463. doi:10.1016/S0149.spa
dc.relation.referencesSwanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31(6), 410-417. doi:10.1159/000123111.spa
dc.relation.referencesTakahashi, L. R., & Lore, R. K. (1983). Play fighting and the development of agonistic behavior in male and female rats. Aggressive Behavior, 9, 217–227. doi:10.1002/1098-2337(1983)9:3<217::AID-AB2480090303>3.0.CO;2-4.spa
dc.relation.referencesTanaka, K., Osako, Y., Takahashi, K., Hidaka, C., Tomita, K., & Yuri, K. (2019). Effects of post-weaning social isolation on social behaviors and oxytocinergic activity in male and female rats. Heliyon, 5(5), doi: 10.1016/j.heliyon.2019.e01646.spa
dc.relation.referencesTanaka, K., Osako, Y., & Yuri, K. (2010). Juvenile social experience regulates central neuropeptides relevant to emotional and social behaviors. Behavioural Neuroscience, 166(4), 1036-1042. https://doi.org/10.1016/j.neuroscience.2010.01.029spa
dc.relation.referencesTarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D1, D2, and D4 receptors in rat forebrain. International Journal of Developmental Neuroscience, 18 (1), 29–37. https://doi.org/10.1016/s0736-5748(99)00108-2.spa
dc.relation.referencesTeicher, M. H., Andersen, S. L., & Hostetter Jr., J. C. (1995). Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Developmental Brain Research, 89, 167-172. doi: 10.1016/0165-3806(95)00109-q.spa
dc.relation.referencesTepper, J. M., & Bolam, J. P. (2004). Functional diversity and specificity of neostriatal interneurons. Current Opinion in Neurobiology, 14, 685-692. doi:10.1016/j.conb.2004.10.003.spa
dc.relation.referencesThorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. doi:10.1016/j.pharmthera.2019.107431spa
dc.relation.referencesThiel, K. J., Okun, A. C., and Neisewander, J. L. (2008). Social reward-conditioned place preference: a model revealing an interaction between cocaine and social context rewards in rats. Drug and Alcohol Dependence, 96, 202–212. doi:10.1016/j.drugalcdep.2008.02.013.spa
dc.relation.referencesThiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology, 204(3), 391-402. https://doi.org/10.1007/s00213-009-1470-2.spa
dc.relation.referencesTrezza, V., Damsteegt, R., and Vanderschuren, L. J. M. J. (2009). Conditioned place preference induced by social play behavior: parametrics, extinction, reinstatement, and disruption by methylphenidate. Eur. Neuropsychopharmacol. 19, 659–669. doi: 10.1016/j.euroneuro.2009. 03.006spa
dc.relation.referencesTribollet, E., Charpak, S., Schmidt, A., Dubois-Dauphin, M., Dreifuss, J.J. (1989). Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci 9: 1764 –1773.spa
dc.relation.referencesTribollet, E., Dubois-Dauphin, M., Dreifuss, J.J., Barberis, C., Jard, S.(1992) Oxytocinreceptorsin the central nervous system. Distribution, development, and species differences. Ann N Y Acad Sci 652: 29 –38. doi:10.1111/j.1749-6632.1992.tb34343.x.spa
dc.relation.referencesTritsch, N.X., Ding, J.B., & Sabatini, B.L. (2012). Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature, 490, 262-266. doi:10.1038/nature11466spa
dc.relation.referencesVan den Berg, C.L., Hol, T., Everts, H., Koolhaas, J.M., Van Ree, J.M., Spruijt, B.M. (1999a). Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol, 34 :129–38 doi:10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-Lspa
dc.relation.referencesVan den Berg, C. L., Pijlman, F. T., Koning, H. A., Diergaarde, L., Van Ree, J. M., and Spruijt, B. M. (1999b). Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behav. Brain Res. 106, 133–142. doi: 10.1016/s0166-4328(99)00099-6spa
dc.relation.referencesVanderschuren, L.J., Achterberg, E.J., Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70, 86-105. doi: 10.1016/j.neubiorev.2016.07.025.spa
dc.relation.referencesVanderschuren, L. J. M. J., Niesink, R. J. M., & Van Ree, J. M. (1997). The neurobiology of social play behavior in rats. Neuroscience and Biobehavioral Reviews, 21, 309–326. doi: 10.1016/s0149-7634(96)00020-6.spa
dc.relation.referencesVanderschuren, L. J. M. J., & Trezza, V. (2014). What the laboratory rat has taught us about social play behavior: Role in behavioral development and neural mechanisms. Current Topics Behavioural Neuroscience, 16, 189–212. doi:10.1007/7854_2013_268spa
dc.relation.referencesvan Kerkhof, L. W., Damsteegt, R., Trezza, V., Voorn, P., & Vanderschuren, L. J. (2013). Social play behavior in adolescent rats is mediated by functional activity in medial prefrontal cortex and striatum. Neuropsychopharmacology, 38(10), 1899-909. doi: 10.1038/npp.2013.83.spa
dc.relation.referencesVarlinskaya, E. I., Spear, L. P., & Spear, N. E. (1999). Social behavior and social motivation in adolescent rats: Role of housing conditions and partner’s activity. Physiology & Behavior, 67, 475–482. doi: 10.1016/s0031-9384(98)00285-6spa
dc.relation.referencesVarlinskaya, E. I., & Spear, L. P. (2002). Social interactions in adolescent and adult Sprague-Dawley rats: impact of social deprivation and test context familiarity. Behavioural Brain Research, 133(1), 31-41. doi: 10.1016/j.bbr.2007.11.024.spa
dc.relation.referencesVerheij, M. M. M., & Cools, A. R. (2008). Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. European Journal of Pharmacology, 585, 228– 244.spa
dc.relation.referencesVermeersch, H., T'Sjoen, G., Kaufman, J.-M., & Van Houtte, M. (2013). Social science theories on adolescent risk-taking: The relevance of behavioral inhibition and activation. Youth & Society, 45(1), 27-53. doi:10.1177/0044118X11409014spa
dc.relation.referencesVialou, V., Bagot, R.C., Cahill, M.E., Ferguson, D., Robison, A.J., Dietz, D.M., Fallon, B., Mazei-Robison, M., Ku, S.M., Harrigan, E., Winstanley, C.A., Joshi, T., Feng, J., Berton, O., & Nestler, E.J. (2014). Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of DeltaFosB. Journal of Neuroscience, 34, 3878-3887. doi:10.1523/JNEUROSCI.1787-13.2014spa
dc.relation.referencesVialou, V., Robison, A. J., Laplant, Q. C., Covington, H. E. 3rd, Dietz, D. M., Ohnishi, Y. N., Mouzon, E., Rush, A. J. 3rd, Watts, E. L., Wallace, D. L., Iñiguez, S. D., Ohnishi, Y. H., Steiner, M. A., Warren, B. L., Krishnan, V., Bolaños, C. A., Neve, R. L., Ghose, S., Berton, O., ... Nestler, E. J. (2010). ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 13(6), 745-752. doi: 10.1038/nn.2551.spa
dc.relation.referencesWalker, D.M., Bell, M.R., Flores, C., Gulley, J.M., Willing, J., & Paul, M.J. (2017). Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. The Journal of Neuroscience, 37(45), 10855-10866. doi:10.1523/jneurosci.1834-17.2017.spa
dc.relation.referencesWang, L. P., Li, F., Wang, D., Xie, K., Wang, D., Shen, X., y Tsien, J. Z. (2011). NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron, 72, 1055-1066spa
dc.relation.referencesWassum, K.M., & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience & Biobehavioral Reviews, 57, 271-283. doi:10.1016/j.neubiorev.2015.08.017.spa
dc.relation.referencesWerner, C. M., & Anderson, D. F. (1976). Opportunity for interaction as reinforcement in a T-maze. Personality and Social Psychology Bulletin, 2(2), 166-169. https://doi.org/10.1177/0146167276002002.spa
dc.relation.referencesWhitaker, L.R., Degoulet,M. y Morikawa, H. (2013). Social Deprivation Enhances VTA Synaptic Plasticity and Drug-Induced Contextual Learning. Neuron, 77 (2), 335-345. doi: 10.1016/j.neuron.2012.11.022.spa
dc.relation.referencesWise, R.A. (2002). Brain reward circuitry: Insights from unsensed incentives. Neuron, 36, 229-240. doi:10.1016/S0896-6273(02)00965-0.spa
dc.relation.referencesXiao, L., Priest, M. F., Nasenbeny, J., Lu, T., & Kozorovitskiy, Y. (2017). Biased oxytocinergic modulation of midbrain dopamine systems. Neuron, 95, 368-384. doi: 10.1016/j.neuron.2017.06.003.spa
dc.relation.referencesYates, J. R., Beckmann, J. S., Meyer, A. C., & Bardo, M. T. (2013). Concurrent choice for social interaction and amphetamine using conditioned place preference in rats: Effects of age and housing condition. Drug and Alcohol Dependence, 129(3), 240-246. https://doi.org/10.1016/j.drugalcdep.2013.02.024.spa
dc.relation.referencesYin, H. H., Ostlund, S. B., & Balleine, B. W. (2008). Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. European Journal of Neuroscience, 28(8), 1437-1448. doi: 10.1111/j.1460-9568.2008.06422.x.spa
dc.relation.referencesYorgason, J. T., Espana, R. A., Konstantopoulos, J. K., Weiner, J., & Jones, S. R. (2013). Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. European Journal of Neuroscience, 37, 1022–1031. doi: 10.1111/ejn.12113.spa
dc.relation.referencesYoung, S.E., Corley, R.P., Stallings, M.C., Rhee, S.H., Crowley, T.J., & Hewitt, J.K. (2002). Substance use, abuse, and dependence in adolescence: Prevalence, symptom profiles, and correlates. Drug and Alcohol Dependence, 68, 309-322. doi:10.1016/S0376-8716(02)00225-9.spa
dc.relation.referencesYoung, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7(10), 1048-1054. DOI: 10.1038/nn1327.spa
dc.relation.referencesZahm, D.S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neuroscience & Biobehavioral Reviews, 24(1), 85-105. doi:10.1016/S0149-7634(99)00058-X.spa
dc.relation.referencesZanos, P., Georgiou, P., Weber, C., & Theodosis, D. T. (2015). Oxytocin receptor activation in the ventral tegmental area regulates social play and anxiety-like behavior in juvenile rats. Neuroscience, 284, 282-293.spa
dc.relation.referencesZhang, Y., Crofton, E. J., Li, D., Lobo, M. K., Fan, X., Nestler, E. J., & Green, T. A. (2014). Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00297spa
dc.relation.referencesZweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., Darvas, M., Kim, M. J., Mizumori, S. J., Paladini, C. A., y otros (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106, 7281-7288.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc150 - Psicología::152 - Percepción sensorial, movimiento, emociones, impulsos fisiológicosspa
dc.subject.ddc150 - Psicología::155 - Psicología diferencial y del desarrollospa
dc.subject.ddc300 - Ciencias sociales::302 - Interacción socialspa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.decsReceptores de Oxitocinaspa
dc.subject.decsReceptors, Oxytocineng
dc.subject.decsNeurociencia Cognitivaspa
dc.subject.decsCognitive Neuroscienceeng
dc.subject.lccInteracción socialspa
dc.subject.lccSocial interactioneng
dc.subject.lccAprendizaje -- Aspectos fisiológicosspa
dc.subject.lccLearning-Physiological aspectseng
dc.subject.lccNeuropsicologíaspa
dc.subject.lccNeuropsychologyeng
dc.subject.lembPsicología aplicadaspa
dc.subject.lembPsychology, appliedeng
dc.subject.lembPruebas psicológicas para animalesspa
dc.subject.lembAnimals - psychological testingeng
dc.subject.lembDiagnóstico conductualspa
dc.subject.lembNeuropsicología-Pruebasspa
dc.subject.lembNeuropsychology - testingeng
dc.subject.proposalAislamientospa
dc.subject.proposalOxitocinaspa
dc.subject.proposalTirosina Hidroxilasaspa
dc.subject.proposalInteracción socialspa
dc.subject.proposalIsolationeng
dc.subject.proposalOxytocineng
dc.subject.proposalTyrosine Hydroxylaseeng
dc.subject.proposalSocial Interactioneng
dc.titleEfectos del aislamiento social temprano sobre la actividad del circuito de recompensa cerebral y la interacción social en ratas adolescentesspa
dc.title.translatedEffects of early social isolation on brain reward circuit activity and social interaction in adolescent ratseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación conductual y neurobiológica del estrés social temprano como modulador de la interacción entre nicotina y refuerzo social en ratas adolescentesspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013679673.2023.pdf
Tamaño:
1.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Psicología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: