Evaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yuca

dc.contributor.advisorOspina Sánchez, Sonia Amparospa
dc.contributor.advisorZuluaga Domínguez, Carlos Mariospa
dc.contributor.authorNavarrete Osorio, Luisa Fernandaspa
dc.contributor.researchgroupBiopolímeros y Biofuncionalesspa
dc.date.accessioned2024-01-17T19:02:18Z
dc.date.available2024-01-17T19:02:18Z
dc.date.issued2023
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLas arepas son productos que se obtienen a partir de la masa de maíz blanca, amarilla o mezcla de ambas previamente cocida, mezclada con otros ingredientes como sal, queso entre otros, posteriormente asadas o horneadas; una de las principales limitantes en su producción y comercialización es la contaminación con mohos, antes del final de su vida útil; por lo que se han evaluado soluciones como el uso de nuevos conservantes. En este contexto, estudios encaminados al aprovechamiento del lactosuero, que es un subproducto proveniente de la elaboración de quesos, demuestran que puede funcionar como conservante natural si es hidrolizado con proteasas, puesto que, algunos péptidos provenientes de esta hidrólisis se asocian con un efecto antimicrobiano y antifúngico. Por tal motivo, la presente investigación tuvo como objetivo evaluar el potencial antifúngico del lactosuero WPC 80 pretratado mediante hidrólisis con proteasas, sobre Penicillium sp. en arepas de maíz y de yuca; para tal propósito, el lactosuero WPC 80 fue hidrolizado con cinco tipos de proteasas comerciales (Formea®, Alcalase®, Protamex®, Papaína y Tripsina de páncreas bovino) determinando su efecto antifúngico en medio de cultivo y en arepas de maíz y yuca, analizando a su vez el impacto de su uso en las características sensoriales (sabor y acidez) y fisicoquímicas (Porcentaje de humedad y pH) de estos productos; obteniendo finalmente como resultado que, de todos los hidrolizados evaluados el hidrolizado con tripsina presentó efecto antifúngico, siendo este mucho menor al efecto del ácido sórbico pero similar al del propionato de calcio. De su aplicación en arepas de maíz y yuca, se evidenció que su mezcla con ácido sórbico ambos a 500 ppm, limitaba el crecimiento de mohos tanto en refrigeración como en un ambiente con variación de temperatura y humedad relativa, logrando alcanzar una vida útil igual o superior a la exhibida por arepas con mezcla de conservantes (ácido sórbico 874 ppm y propionato de calcio 499 ppm) y con sólo ácido sórbico a 500 ppm, además el uso de este hidrolizado no produjo impacto negativo en las características fisicoquímicas y sensoriales analizadas. En conclusión, el hidrolizado del lactosuero WPC 80 con tripsina, es una opción para incrementar la vida útil de arepas que contienen ácido sórbico como conservante, en especial si se requiere un producto que se pueda almacenar fuera de nevera y con bajas concentraciones de conservantes sintéticos. (Texto tomado de la fuente)spa
dc.description.abstractArepas are products made from the dough of white corn, yellow corn, or a combination of both, previously cooked and mixed with other ingredients such as salt, cheese, among others, and then baked or grilled. One of the main limitations in their production and commercialization is mold contamination before the end of their shelf life. Therefore, solutions such as the use of new preservatives have been evaluated. In this context, studies aimed at the utilization of whey, a byproduct of cheese production, demonstrate that it can function as a natural preservative when hydrolyzed with proteases, since some peptides resulting from this hydrolysis are associated with antimicrobial and antifungal effects. For this reason, the objective of this research was to evaluate the antifungal potential of pre-treated whey protein concentrate (WPC) 80 through hydrolysis with proteases against Penicillium sp. in corn and cassava arepas. For this purpose, WPC 80 was hydrolyzed with five types of commercial proteases (Formea®, Alcalase®, Protamex®, Papain, and bovine pancreatic Trypsin), determining their antifungal effect in culture media and in corn and cassava arepas. The impact of its use on the sensory characteristics (flavor and acidity) and physicochemical properties (moisture content and pH) of these products was also analyzed. The results showed that, among all the hydrolysates evaluated, the hydrolysate with Trypsin presented an antifungal effect, which was much lower than the effect of sorbic acid but similar to that of calcium propionate. When applied to corn and cassava arepas, it was observed that the combination of the hydrolysate with Trypsin and sorbic acid, both at 500 ppm, inhibited mold growth both under refrigeration and in an environment with temperature and relative humidity variations, achieving a shelf life equal to or greater than that exhibited by arepas with a mixture of preservatives (sorbic acid 874 ppm and calcium propionate 499 ppm) and arepas with sorbic acid alone at 500 ppm. Furthermore, the use of this hydrolysate did not have a negative impact on the analyzed physicochemical and sensory characteristics. In conclusion, the hydrolysate of WPC 80 with Trypsin is an option to extend the shelf life of arepas containing sorbic acid as a preservative, especially if a product that can be stored outside the refrigerator and without high concentrations of synthetic preservatives is required.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias-Microbiologíaspa
dc.description.researchareaBioprocesos y Bioprospecciónspa
dc.format.extent120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85355
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAxel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417spa
dc.relation.referencesAyed, L., M’hir, S., & Asses, N. (2023). Sustainable whey processing techniques: Innovations in derivative and beverage production. Food Bioscience, 53. https://doi.org/10.1016/j.fbio.2023.102642spa
dc.relation.referencesBrandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161. https://doi.org/10.1016/j.foodres.2015.01.016spa
dc.relation.referencesCaicedo-Perea, C., Solis-Molina, M., & Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2). https://doi.org/10.23850/22565035.3985spa
dc.relation.referencesCampos, C. (1995). Estabilidad del ácido sórbico durante la preservación y el almacenamiento de alimentos. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2705_Campos.pdfspa
dc.relation.referencesCarrillo, L. (2003). Penicillium. In Los hongos de los alimentos y forrajes (pp. 61–69).spa
dc.relation.referencesCarvajal, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293spa
dc.relation.referencesCasquete, R., Benito, M. J., Córdoba, M. de G., Ruiz-Moyano, S., Galván, A. I., & Martín, A. (2018). Physicochemical factors affecting the growth and mycotoxin production of Penicillium strains in a synthetic cheese medium. LWT, 89, 179–185. https://doi.org/10.1016/j.lwt.2017.10.053spa
dc.relation.referencesCauvain, S. P., & Young, L. S. (2010). Chemical and physical deterioration of bakery products. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 381–412). Elsevier Inc. https://doi.org/10.1533/9781845699260.3.381spa
dc.relation.referencesChatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β lactoglobulin and α-lactalbumin-Technological implications for processing. In International Dairy Journal (Vol. 16, Issue 11, pp. 1229–1240). https://doi.org/10.1016/j.idairyj.2006.06.001spa
dc.relation.referencesChikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A., & Dicks, L. M. (2018). Functions and emerging applications of bacteriocins. In Current Opinion in Biotechnology (Vol. 49, pp. 23–28). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2017.07.011spa
dc.relation.referencesChourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144. https://doi.org/10.1016/j.biteb.2022.101144spa
dc.relation.referencesCorpas, E., & Tapasco, O. (2012). EVALUACIÓN DE CONSERVANTES PARA LIMITAR EL RECUENTO DE MOHOS EN AREPAS BAJO DOS CONDICIONES AMBIENTALES. Biotecnología En El Sector Agropecuario y Agroindustrial, 10(2), 249– 256.spa
dc.relation.referencesCorpas, E., & Tapasco, O. (2013). COMPORTAMIENTO DE MOHOS EN AREPA BLANCA ASADA EN RELACIÓN AL TIEMPO DE ALMACENAMIENTO EN REFRIGERACIÓN. ResearchGate. https://www.researchgate.net/publication/267211323spa
dc.relation.referencesCotter, P. D., Hill, C., & Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788. https://doi.org/https://doi.org/10.1038/nrmicro1273spa
dc.relation.referencesDaba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. In Biocatalysis and Agricultural Biotechnology (Vol. 28). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101750spa
dc.relation.referencesDinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. In Trends in Food Science and Technology (Vol. 103, pp. 57–67). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.06.017spa
dc.relation.referencesDopazo, V., Illueca, F., Luz, C., Musto, L., Moreno, A., Calpe, J., & Meca, G. (2023). Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. LWT, 174. https://doi.org/10.1016/j.lwt.2023.114427spa
dc.relation.referencesDziezak, J. D. (2015). Acids: Natural Acids and Acidulants. In Encyclopedia of Food and Health (pp. 15–18). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00004-0spa
dc.relation.referencesFarnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. In Molecular Immunology (Vol. 40, Issue 7, pp. 395–405). Elsevier Ltd. https://doi.org/10.1016/S0161-5890(03)00152-4spa
dc.relation.referencesFernandez, G. (2021). Diversity, Phylogenetic Profiling of Genus Penicillium, and Their Potential Applications. In Fungal Biology Industrially Important Fungi forrSustainable Development. Volume 1: Biodiversity and Ecological Perspectives (Vol. 1, pp. 335– 354). https://doi.org/https://doi.org/10.1007/978-3-030-67561-5spa
dc.relation.referencesGamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & León Peláez, A. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85–92. https://doi.org/10.1016/j.ijfoodmicro.2016.06.03spa
dc.relation.referencesGarcia, M. V., Bernardi, A. O., & Copetti, M. V. (2019). The fungal problem in bread production: insights of causes, consequences, and control methods. In Current Opinion in Food Science (Vol. 29, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2019.06.010spa
dc.relation.referencesGarcía-García, R., & Searle, S. S. (2015). Preservatives: Food Use. In Encyclopedia of Food and Health (pp. 505–509). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00568-7spa
dc.relation.referencesGómez, A. (2007). Alimentos y micotoxinas: Implicaciones en la seguridad alimentaria. Farmacia y Espacio de Salud, 21, 49–53spa
dc.relation.referencesGómez, C. (2021, September 23). La apuesta de Bimbo con su nueva línea de arepas colombianas. Portafolio. https://www.portafolio.co/negocios/empresas/bimbo-entra en-el-mercado-de-las-arepas-556559spa
dc.relation.referencesGonzález-Forte, L. del S., Amalvy, J. I., & Bertola, N. (2019). Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi hard cheese during ripening. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01957spa
dc.relation.referencesGurtler, J. B., & Mai, T. L. (2014). Preservatives: Traditional Preservatives - Organic Acids. In Encyclopedia of Food Microbiology: Second Edition (pp. 119–130). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00260-3spa
dc.relation.referencesHan, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food Packaging: A Comprehensive Review and Future Trends. In Comprehensive Reviews in Food Science and Food Safety (Vol. 17, Issue 4, pp. 860–877). Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12343spa
dc.relation.referencesHernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. In Small Ruminant Research (Vol. 101, Issues 1–3, pp. 196–204). https://doi.org/10.1016/j.smallrumres.2011.09.040spa
dc.relation.referencesHossaini, A., Larsen, J.-J., & Larsen, J. C. (2000). Lack of Oestrogenic Efects of Food Preservatives (Parabens) in Uterotrophic Assays. Food and Chemical Toxicology, 38, 319–323. https://doi.org/10.1016/s0278-6915(99)00160-xspa
dc.relation.referencesICBF, & FAO. (2020). Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años (2nd ed.)spa
dc.relation.referencesNTC 5372: Arepas de maíz refrigeradas. Especificaciones de producto., Pub. L. No. NTC 5372:2007 (2007).spa
dc.relation.referencesJenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. In Biochimie (Vol. 91, Issue 1, pp. 19–29). https://doi.org/10.1016/j.biochi.2008.05.015spa
dc.relation.referencesKagliwal, L. D., Jadhav, S. B., Singhal, R. S., & Kulkarni, P. R. (2014). Preservatives: Permitted Preservatives - Propionic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 99–101). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730- 0.00270-6spa
dc.relation.referencesKapoor, R., Jash, A., & Rizvi, S. S. H. (2021). Shelf-life extension of Paneer by a sequential supercritical-CO2-based process. LWT, 135. https://doi.org/10.1016/j.lwt.2020.110060spa
dc.relation.referencesLiceaga-Gesualdo, A., Li-Chan, E. C. Y., & Skura, B. J. (2001). Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Research International, 34, 501–506. www.elsevier.com/locate/foodresspa
dc.relation.referencesLuz, C., Izzo, L., Ritieni, A., Mañes, J., & Meca, G. (2020). Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108717spa
dc.relation.referencesMadureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. In Journal of Dairy Science (Vol. 93, Issue 2, pp. 437–455). https://doi.org/10.3168/jds.2009-2566spa
dc.relation.referencesMagan, N., Arroyo, M., & Aldred, D. (2003). Natural antifungal agents for bakery products. In Natural Antimicrobials for the Minimal Processing of Foods (pp. 272–280). Elsevier. https://doi.org/10.1533/9781855737037.272spa
dc.relation.referencesMani-López, E., Palou, E., & López-Malo, A. (2018). Biopreservatives as Agents to Prevent Food Spoilage. In Microbial Contamination and Food Degradation (pp. 235– 270). Elsevier. https://doi.org/10.1016/b978-0-12-811515-2.00008-1spa
dc.relation.referencesMarqués, M. (2015). Composición química de los aceites esenciales de Lavanda y Tomillo. Determinación de la actividad antifúngica. https://riunet.upv.es/bitstream/handle/10251/62057/TFG%20MANUEL%20MARQUE S%20CAMARENA_14489064360187381276109123176571.pdf?sequence=1spa
dc.relation.referencesMartinez, E. (2003). Estudio de especies micotoxígenas del género Penicillium: Penicillium verrucosum Dierckx.spa
dc.relation.referencesMasyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13. https://doi.org/10.1016/j.fochx.2022.100217spa
dc.relation.referencesMcDonough, C. M., Alviola, J. N., & Waniska, R. D. (2015). Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas: Wheat Flour and Corn Products (pp. 195–200). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50009-8spa
dc.relation.referencesMehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H. S., Telessy, I. G., Awuchi, C. G., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. F. P. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. In Journal of Functional Foods (Vol. 87). Elsevier Ltd. https://doi.org/10.1016/j.jff.2021.104760spa
dc.relation.referencesMonari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., & Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLoS ONE, 14(12). https://doi.org/10.1371/journal.pone.0226834spa
dc.relation.referencesMorais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., & Silveira, J. N. (2015). Enzymatic hydrolysis of whey protein concentrate: effect of enzyme type and enzyme:substrate ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-zspa
dc.relation.referencesMoro, C. B., Lemos, J. G., Gasperini, A. M., Stefanello, A., Garcia, M. V., & Copetti, M. V. (2022). Efficacy of weak acid preservatives on spoilage fungi of bakery products. International Journal of Food Microbiology, 374. https://doi.org/10.1016/j.ijfoodmicro.2022.109723spa
dc.relation.referencesNielsen, P. V, & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. In International Journal of Food Microbiology (Vol. 60). www.elsevier.nl/locate/ijfoodmicrospa
dc.relation.referencesNovozymes. (2023). Novozymes Food & beverages solutions. https://www.novozymes.com/en/products/dairy/dairy-protein/formea-tspa
dc.relation.referencesOgbadu, L. J. (2014). Preservatives: Permitted Preservatives - Benzoic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 76–81). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00265-2spa
dc.relation.referencesOshima, S., Hirano, A., Kamikado, H., Nishimura, J., Kawai, Y., & Saito, T. (2014). Nisin A extends the shelf life of high-fat chilled dairy dessert, a milk-based pudding. Journal of Applied Microbiology, 116(5), 1218–1228. https://doi.org/10.1111/jam.12454spa
dc.relation.referencesOxford. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and toolsspa
dc.relation.referencesOzhelvaci, F., & Steczkiewicz, K. (2023). Identification and classification of papain-like cysteine proteinases. Journal of Biological Chemistry, 299(6). https://doi.org/10.1016/j.jbc.2023.104801spa
dc.relation.referencesParra, R. (2008). Lactosuero: importancia en la industria de alimentos. Revista Facultad Nacional de Agronomía Medellín, 62(1), 4967–4982. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472009000100021&lng=en&tlng=esspa
dc.relation.referencesPawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. In Advances in Food and Nutrition Research (Vol. 66, pp. 217–238). Academic Press Inc. https://doi.org/10.1016/B978-0-12-394597-6.00005-7spa
dc.relation.referencesPerry, R. J., Borders, C. B., Cline, G. W., Zhang, X. M., Alves, T. C., Petersen, K. F., Rothman, D. L., Kibbey, R. G., & Shulman, G. I. (2016). Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism. Journal of Biological Chemistry, 291(23), 12161–12170. https://doi.org/10.1074/jbc.M116.720631spa
dc.relation.referencesPino, S. (2020). Calidad Microbiológica del Pan: Bacillus cereus. https://uvadoc.uva.es/bitstream/handle/10324/42184/TFG-M N2026.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesPitt, J. (2002). Biology and ecology of toxigenic species. Mycotoxins and Food Safety, 29– 41.spa
dc.relation.referencesPoveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011spa
dc.relation.referencesProColombia. (2014). Logística de perecederos y cadena de frío en Colombia.spa
dc.relation.referencesProColombia. (2019). Las ‘exportaciones de nostalgia’ hacen su agosto en diciembre. https://prensa.procolombia.co/las-exportaciones-de-nostalgia-hacen-su-agosto-en diciembrespa
dc.relation.referencesQian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021a). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009spa
dc.relation.referencesQian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021b). A review of active packaging in bakery products: Applications and future trends. In Trends in Food Science and Technology (Vol. 114, pp. 459–471). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.06.009spa
dc.relation.referencesQuintero, A. (2018). ¿Sobrevivirá la arepa? ALMA MATER, 675, 13–13.spa
dc.relation.referencesRestrepo Flórez, C., Álvarez, M., Álvarez, G., Salazar, C., & Efectos, J. A. (2012). Efectos del empacado en atmósferas modificadas para la conservación de arepa de maíz. Revista Lasallista de Investigación, 9(2), 102–111. http://www.redalyc.org/articulo.oa?id=69525875006spa
dc.relation.referencesRiley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. In Annual Review of Microbiology (Vol. 56, pp. 117–137). https://doi.org/10.1146/annurev.micro.56.012302.161024spa
dc.relation.referencesRivas Alfonzo, B. (2014). El Casabe y la Arepa: Alimentos Prehispánicos de la Culinaria Indígena Venezolana. PASOS Revista de Turismo y Patrimonio Cultural, 12(2), 433– 442. https://doi.org/10.25145/j.pasos.2014.12.031spa
dc.relation.referencesRodríguez, H., Higuita, J., & Bonilla, K. (2018). Innovación en la industria de la arepa de maíz en Colombia. In G. Hoyos (Ed.), Algunos componentes generales, particulares y singulares del maíz en Colombia y México. (1st ed., pp. 113–129).spa
dc.relation.referencesSaldarriaga, G. (1999). La inserción del maíz en el gusto de la sociedad colonial del Nuevo Reino de Granada. Historia y Sociedad, 6, 84–106. https://revistas.unal.edu.co/index.php/hisysoc/article/view/23108spa
dc.relation.referencesSánchez, L. (2021). Diseño de una estrategia de producción de conidios termotolerantes para el hongo entomopatógeno Metarhizium rileyi Nm017.spa
dc.relation.referencesSerna-Saldivar, S. O., & Rooney, L. W. (2015). Industrial Production of Maize Tortillas and Snacks. In Tortillas: Wheat Flour and Corn Products (pp. 247–281). Elsevier Inc. https://doi.org/10.1016/B978-1-891127-88-5.50013-Xspa
dc.relation.referencesSiebert, A., Cholewiński, G., Trzonkowski, P., & Rachon, J. (2020). Immunosuppressive properties of amino acid and peptide derivatives of mycophenolic acid. European Journal of Medicinal Chemistry, 189. https://doi.org/10.1016/j.ejmech.2020.112091spa
dc.relation.referencesSigma-Aldrich. (2023). Trypsin from bovine pancreas. https://www.sigmaaldrich.com/CO/es/product/sigma/t1005?gclid=CjwKCAjwh8mlBhB _EiwAsztdBGfbtbjPt7XWdb6WK-me--Oe_iVoj0T6Q9wJuo5PcR_bPutpEh gfRoCGnUQAvD_BwE&gclsrc=aw.dsspa
dc.relation.referencesSilva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. In Frontiers in Microbiology (Vol. 9, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.00594spa
dc.relation.referencesSoares, C., Calado, T., & Venâncio, A. (2013). Producción de micotoxinas por aislamientos de Aspergillus niger procedentes de muestras de maíz recogido en tres regiones portuguesas. Revista Iberoamericana de Micologia, 30(1), 9–13. https://doi.org/10.1016/j.riam.2012.05.002spa
dc.relation.referencesStratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 166(1), 126– 134. https://doi.org/10.1016/j.ijfoodmicro.2013.06.025spa
dc.relation.referencesSuhr, K. I., & Nielsen, P. V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. International Journal of Food Microbiology, 95(1), 67–78. https://doi.org/10.1016/j.ijfoodmicro.2004.02.004spa
dc.relation.referencesSurekha, M., & Reddy, S. M. (2014). Preservatives: Classification and Properties. In Encyclopedia of Food Microbiology: Second Edition (pp. 69–75). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00257-3spa
dc.relation.referencesTavares, T., & Malcata, F. X. (2015). Whey and Whey Powders: Fermentation of Whey. In Encyclopedia of Food and Health (pp. 486–492). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00749-2spa
dc.relation.referencesThomas, L. V., & Delves-Broughton, J. (2014). Preservatives: Permitted Preservatives - Sorbic Acid. In Encyclopedia of Food Microbiology: Second Edition (pp. 102–107). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384730-0.00268-8spa
dc.relation.referencesTibasosa, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno en la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. https://repository.javeriana.edu.co/handle/10554/36984spa
dc.relation.referencesTirosh, A., Calay, E. S., Tuncman, G., Claiborn, K. C., Inouye, K. E., Eguchi, K., Alcala, M., Rathaus, M., Hollander, K. S., Ron, I., Livne, R., Heianza, Y., Qi, L., Shai, I., Garg, R., & Hotamisligil, G. S. (2019). The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. In Sci. Transl. Med (Vol. 11, Issue 0120). http://stm.sciencemag.org/spa
dc.relation.referencesTkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. In Trends in Food Science and Technology (Vol. 106, pp. 298–311). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.022spa
dc.relation.referencesUniversidad Nacional Autónoma de México (UNAM). (2020). Género Penicillium. Proyecto PAPIME PE206620: Mohos Productores de Micotoxinas. https://masam.cuautitlan.unam.mx/mohos_toxigenos_unigras/penicillium.htmlspa
dc.relation.referencesVilgis, T. A. (2015). Soft matter food physics - The physics of food and cooking. Reports on Progress in Physics, 78(12). https://doi.org/10.1088/0034-4885/78/12/124602spa
dc.relation.referencesWei, F., Mortimer, M., Cheng, H., Sang, N., & Guo, L. H. (2021). Parabens as chemicals of emerging concern in the environment and humans: A review. In Science of the Total Environment (Vol. 778). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.146150spa
dc.relation.referencesXu, Y. xin, Zhang, S. hui, Zhang, S. zhi, Yang, M. ying, Zhao, X., Sun, M. zhu, & Feng, X. zeng. (2022). Exposure of zebrafish embryos to sodium propionate disrupts circadian behavior and glucose metabolism-related development. Ecotoxicology and Environmental Safety, 241. https://doi.org/10.1016/j.ecoenv.2022.113791spa
dc.relation.referencesCarvajal-Moreno, M. (2022). Mycotoxin challenges in maize production and possible control methods in the 21st century. In Journal of Cereal Science (Vol. 103). Academic Press. https://doi.org/10.1016/j.jcs.2021.103293spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.decsSuero lácteo-Microbiologíaspa
dc.subject.decsWhey-Microbiologyeng
dc.subject.decsPenicilliumspa
dc.subject.decsFarmacorresistencia fúngicaspa
dc.subject.decsDrug resistance, fungaleng
dc.subject.lembArepas de maíz-Microbiologíaspa
dc.subject.lembCorn Griddle cake-Microbiologyeng
dc.subject.lembArepas de yuca-Microbiologíaspa
dc.subject.lembCassava griddle cake-Microbiologyeng
dc.subject.proposalEfecto antifúngicospa
dc.subject.proposalLactosuerospa
dc.subject.proposalPenicilliumother
dc.subject.proposalArepa de maíz y yucaspa
dc.subject.proposalAntifungal effecteng
dc.subject.proposalWheyeng
dc.subject.proposalCorn and cassava arepaeng
dc.titleEvaluación del efecto antifúngico del lactosuero sobre Penicillium sp. en arepas de maíz y yucaspa
dc.title.translatedAssessment of the antifungal effect of whey on Penicillium sp. in corn and cassava arepaseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1151959608.2023.pdf
Tamaño:
2.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: