Cambios en el PSI y su relación con algunas variables fisiológicas en caña de azúcar

dc.contributor.advisorMejía de Tafur, María sara
dc.contributor.authorEcheverri castro, Andrés
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001520228
dc.contributor.educationalvalidatorCadavid, Luis fernando
dc.contributor.orcidEcheverri Castro Andres [0000000294611093]
dc.date.accessioned2026-02-04T15:09:16Z
dc.date.available2026-02-04T15:09:16Z
dc.date.issued2025-01-27
dc.descriptionFiguras, tablasspa
dc.description.abstractLa salinización del suelo constituye una restricción clave para la sostenibilidad agrícola a nivel mundial, impactando alrededor de 1.125 millones de hectáreas en todo el planeta. En el Valle del Cauca, Colombia, los Vertisoles etiquetados como Sodic Endoaquerts, formados sobre sedimentos de lagos, exhiben niveles altos de sodicidad que afectan la productividad del cultivo de caña de azúcar (Saccharum officinarum L.), un sistema que aporta el 28% del PIB agrícola de la región. La situación se define por altos valores de porcentaje de sodio intercambiable (PSI > 15%), conductividad eléctrica alta (CE > 4 dS m⁻¹) y relación de adsorción de sodio (RAS > 13), factores que restringen gravemente el crecimiento y establecimiento vegetal. Se examinó el impacto de prototipos correctores enriquecidos con fósforo y silicio en las propiedades fisicoquímicas de un Vertisol salino-sódico y la reacción de Saccharum officinarum L. en condiciones controladas. La investigación se llevó a cabo mediante un muestreo pedológico sistemático con suelo tomado de Palmaseca, Palmira (3°31'N, 76°18'W, 1050 m.s.n.m.), eligiendo suelo con condiciones extremas: PSI = 37.3%, RAS = 4.86 (mmol L⁻¹)^0.5, CE = 6.8 dS m⁻¹ y pH = 8.4. El experimento se realizó en casas de malla aplicando cinco tratamientos: T0 (control), T1 (yeso comercial), T2, T3 y T4 (prototipos P-Si con concentraciones crecientes). Las evaluaciones abarcaron parámetros fisicoquímicos y reacción vegetal a lo largo de 180 días. Los resultados mostraron una diferencia significativa en la eficiencia entre los tratamientos. El pH mostró descensos desde 8.40 (control) hasta 8.05 (T1), 7.78 (T2), 7.85 (T4) y 7.61 (T3). La conductividad eléctrica bajó de 6.83 dS m⁻¹ (control) a 5.28 (T1), 4.65 (T2), 4.46 (T4) y 3.87 dS m⁻¹ (T3), mostrando disminuciones del 18.6%, 19.2%, 25.5% y 35.4% respectivamente. El sodio intercambiable disminuyó de 24.10 cmol(+) kg⁻¹ (control) a 20.90 (T1), 19.13 (T2), 18.61 (T4) y 17.38 cmol(+) kg⁻¹ (T3). El PSI mostró caídas significativas desde 37.30% hasta 32.42% (T1), 29.69% (T2), 28.87% (T4) y 26.92% (T3), logrando eficiencias del 22.4%, 41.9%, 46.9% y 58.1% en ese orden. La RAS disminuyó de 4.89 a 4.03 (T1), 3.37 (T2), 3.24 (T4) y 3.06 (T3) (mmol L⁻¹)^0.5. La reacción de la planta fue equivalente a la eficacia química. La emergencia avanzó desde una inhibición total (T0) hasta 1.2 (T1), 1.8 (T2), 2.1 (T4) y 2.4 brotes (T3). La fotosíntesis neta aumentó desde 0 (control) hasta 14.78 (T1), 22.84 (T2), 26.89 (T4) y 31.49 μmol CO₂ m⁻² s⁻¹ (T3). La eficiencia cuántica (Fv/Fm) logró valores de 0.699 (T1), 0.756 (T2), 0.775 (T4) y 0.806 (T3). La generación de materia seca fue de 15 (T1), 29 (T2), 22 (T4) y 41 g/100g (T3). Los prototipos correctores P-Si mostraron una notable superioridad técnica frente a enmiendas convencionales, siendo T3 el que logró la mayor eficiencia gracias a mecanismos sinérgicos de intercambio catiónico, estabilización estructural y disminución del estrés oxidativo. La tecnología creada constituye una alternativa factible para restaurar alrededor de 2.3 millones de hectáreas de Vertisoles dañados en la región, favoreciendo la sostenibilidad de agroecosistemas tropicales deteriorados (Texto tomado de la fuente).spa
dc.description.abstractSoil salinization is a key constraint on agricultural sustainability worldwide, impacting approximately 1.125 billion hectares worldwide. In the Cauca Valley, Colombia, Vertisols labeled Sodic Endoaquerts, formed on lake sediments, exhibit high levels of sodicity that affect the productivity of sugarcane (Saccharum officinarum L.) crops, a system that contributes 28% of the region's agricultural GDP. This situation is characterized by high exchangeable sodium percentages (ESP > 15%), high electrical conductivity (EC > 4 dS m⁻¹), and sodium adsorption ratios (SAR > 13), factors that severely restrict plant growth and establishment. The impact of phosphorus- and silicon-enriched corrective prototypes on the physicochemical properties of a saline-sodium Vertisol and the reaction of Saccharum officinarum L. under controlled conditions was examined. The research was carried out through systematic pedological sampling with soil taken from Palmaseca, Palmira (3°31'N, 76°18'W, 1050 m a.s.l.), selecting soil with extreme conditions: PSI = 37.3%, SAR = 4.86 (mmol L⁻¹)^0.5, EC = 6.8 dS m⁻¹, and pH = 8.4. The experiment was conducted in mesh houses using five treatments: T0 (control), T1 (commercial gypsum), T2, T3, and T4 (P-Si prototypes with increasing concentrations). The evaluations included physicochemical parameters and plant reaction over 180 days. The results showed a significant difference in efficiency between treatments. The pH showed decreases from 8.40 (control) to 8.05 (T1), 7.78 (T2), 7.85 (T4) and 7.61 (T3). The electrical conductivity decreased from 6.83 dS m⁻¹ (control) to 5.28 (T1), 4.65 (T2), 4.46 (T4) and 3.87 dS m⁻¹ (T3), showing decreases of 18.6%, 19.2%, 25.5% and 35.4% respectively. Exchangeable sodium decreased from 24.10 cmol(+) kg⁻¹ (control) to 20.90 (T1), 19.13 (T2), 18.61 (T4) and 17.38 cmol(+) kg⁻¹ (T3). The PSI showed significant decreases from 37.30% to 32.42% (T1), 29.69% (T2), 28.87% (T4), and 26.92% (T3), achieving efficiencies of 22.4%, 41.9%, 46.9%, and 58.1% in that order. The SAR decreased from 4.89 to 4.03 (T1), 3.37 (T2), 3.24 (T4), and 3.06 (T3) (mmol L⁻¹)^0.5. Plant reaction was equivalent to chemical efficacy. Emergence progressed from complete inhibition (T0) to 1.2 (T1), 1.8 (T2), 2.1 (T4), and 2.4 shoots (T3). Net photosynthesis increased from 0 (control) to 14.78 (T1), 22.84 (T2), 26.89 (T4), and 31.49 μmol CO₂ m⁻² s⁻¹ (T3). Quantum efficiency (Fv/Fm) achieved values of 0.699 (T1), 0.756 (T2), 0.775 (T4), and 0.806 (T3). Dry matter generation was 15 (T1), 29 (T2), 22 (T4), and 41 g/100 g (T3). The P-Si amendment prototypes showed significant technical superiority over conventional amendments, with T3 achieving the highest efficiency thanks to synergistic mechanisms of cation exchange, structural stabilization, and reduction of oxidative stress. The technology created constitutes a feasible alternative for restoring approximately 2.3 million hectares of damaged Vertisols in the region, promoting the sustainability of deteriorated tropical agroecosystems.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmira
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.methodsSe examinó el impacto de prototipos correctores enriquecidos con fósforo y silicio en las propiedades fisicoquímicas de un Vertisol salino-sódico y la reacción de Saccharum officinarum L. en condiciones controladas. La investigación se llevó a cabo mediante un muestreo pedológico sistemático con suelo tomado de Palmaseca, Palmira (3°31'N, 76°18'W, 1050 m.s.n.m.), eligiendo suelo con condiciones extremas: PSI = 37.3%, RAS = 4.86 (mmol L⁻¹)^0.5, CE = 6.8 dS m⁻¹ y pH = 8.4. El experimento se realizó en casas de malla aplicando cinco tratamientos: T0 (control), T1 (yeso comercial), T2, T3 y T4 (prototipos P-Si con concentraciones crecientes). Las evaluaciones abarcaron parámetros fisicoquímicos y reacción vegetal a lo largo de 180 días.
dc.description.researchareaSuelos y aguas
dc.format.extentxii, 73 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89389
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placePalmira, Valle, COlombia
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.relation.referencesAbou Seeda, M. A., Yassen, A. A., Abou El-Nour, E. A. A., Khater, E. S. G., & Zaghloul, S. M. (2024). Nano-fertilizers and their role in sustainable agriculture. Frontiers in Environmental Science, 11, 1308814. https://doi.org/10.3389/fenvs.2023.1308814
dc.relation.referencesAbrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management (FAO Soils Bulletin 39). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/x5871e/x5871e00.html
dc.relation.referencesAcosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Frontiers in Plant Science, 7, 1955. https://doi.org/10.3389/fpls.2016.01955
dc.relation.referencesAlcívar, M., Zurita-Silva, A., Sandoval, M., Muñoz, C., & Schoebitz, M. (2018). Reclamation of saline–sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability, 10(9), 3083. https://doi.org/10.3390/su10093083
dc.relation.referencesAmezketa, E., Aragüés, R., & Gazol, R. (2005). Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agronomy Journal, 97(3), 983-989. https://doi.org/10.2134/agronj2004.0236
dc.relation.referencesAshraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6
dc.relation.referencesAyers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (FAO Irrigation and Drainage Paper 29, Rev. 1). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/t0234e/t0234e00.htm
dc.relation.referencesBaker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
dc.relation.referencesBjörkman, O., & Demmig, B. (1987). Photon yield of O₂ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. https://doi.org/10.1007/BF00402983
dc.relation.referencesBrady, N. C., & Weil, R. R. (2017). The nature and properties of soils (15th ed.). Pearson.
dc.relation.referencesCadavid, L. F. (2011). Manual de nutrición vegetal: una visión de los aspectos nutricionales del cultivo de la yuca (Manihot esculenta Crantz). CIAT.
dc.relation.referencesCakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1-2), 1-4. https://doi.org/10.1007/s11104-013-1781-2
dc.relation.referencesCha-um, S., & Kirdmanee, C. (2010). Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turkish Journal of Agriculture and Forestry, 34(6), 517-527. https://doi.org/10.3906/tar-0906-34
dc.relation.referencesChaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. https://doi.org/10.1093/aob/mcn125
dc.relation.referencesCentro de Investigación de la Caña de Azúcar de Colombia (Cenicaña). (2013). Zonificación agroecológica para el cultivo de caña de azúcar en el Valle del Cauca (Cuarta aproximación). Cenicaña. https://www.cenicana.org/Cauca (Cuarta aproximación). Cenicaña. https://www.cenicana.org/
dc.relation.referencesCisneros, J. M. (2005). Relaciones entre la textura del suelo y sus propiedades hídricas: Aplicaciones en la estimación de parámetros de retención. Ciencia del Suelo, 23(1), 45-58.
dc.relation.referencesClearwater, R. L., Martin, T., & Hoppe, T. (2018). Environmental influences during development modify the expression of soybean traits in production systems. Crop Science, 58(3), 1013-1024. https://doi.org/10.2135/cropsci2017.05.0291
dc.relation.referencesFlexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C₃ plants. Plant Biology, 6(3), 269-279. https://doi.org/10.1055/s-2004-820867
dc.relation.referencesGarcía Sánchez, A. (2017). Levantamiento semidetallado de suelos [Informe técnico]. Corporación Autónoma Regional del Valle del Cauca (CVC). Ecopedia CVC. https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/1._levantamiento_semidetallado_de_suelos_dic2017.pdf
dc.relation.referencesGasca, C. A. (2011). Protocolos de desorción usados en estudios de PSI y RAS. Universidad Nacional de Colombia, Sede Palmira. [Material no publicado]
dc.relation.referencesGharaibeh, M. A., Eltaif, N. I., & Albalasmeh, A. A. (2010). Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. International Journal of Phytoremediation, 13(9), 873-883. https://doi.org/10.1080/15226514.2011.573821
dc.relation.referencesGonçalo Filho, F., Moura, A. B., Pereira, M. G., & Silva, C. F. (2021). Biological attributes of soil under different management systems in Brazilian Cerrado. Soil and Tillage Research, 209, 104945. https://doi.org/10.1016/j.still.2021.104945
dc.relation.referencesGrattan, S. R., & Oster, J. D. (2003). Use and reuse of saline-sodic waters for irrigation of crops. Journal of Crop Production, 7(1-2), 131-162. https://doi.org/10.1300/J144v07n01_05
dc.relation.referencesHillel, D. (1998). Environmental soil physics. Academic Press.
dc.relation.referencesInstituto Colombiano de Geografía Agustín Codazzi (IGAC). (2015). Informe sobre la salinidad de los suelos en Colombia. IDEAM.
dc.relation.referencesIlyas, M., Qureshi, R. H., & Qadir, M. (1997). Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technology, 10(3), 247-260. https://doi.org/10.1016/S0933-3630(96)00119-0
dc.relation.referencesInman-Bamber, N. G., Jackson, P. A., & Hewitt, M. (2011). Sucrose accumulation in sugarcane stalks does not limit photosynthesis and biomass production. Crop and Pasture Science, 62(10), 848-858. https://doi.org/10.1071/CP11128
dc.relation.referencesIsayenkov, S. V., & Maathuis, F. J. M. (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science, 10, 80. https://doi.org/10.3389/fpls.2019.00080
dc.relation.referencesIUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps (Update 2015). FAO. https://www.fao.org/3/i3794en/I3794en.pdf
dc.relation.referencesKeren, R. (2000). Salinity. In M. E. Sumner (Ed.), Handbook of soil science (pp. G3-G25). CRC Press.
dc.relation.referencesKhaled, A. Y., Abd El-Aziz, M., Abdelaal, K. A., Fouda, M. M., & Hafez, Y. M. (2020). Exogenous melatonin ameliorates the salinity stress by improving ion homeostasis and chloroplast structure in canola (Brassica napus L.). Arabian Journal of Chemistry, 13(11), 7309-7322. https://doi.org/10.1016/j.arabjc.2020.08.008
dc.relation.referencesKumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2023). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Plant Science, 14, 1216564. https://doi.org/10.3389/fmicb.2023.1216564
dc.relation.referencesLado, M., Paz, A., & Ben-Hur, M. (2004). Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss. Soil Science Society of America Journal, 68(3), 935-942. https://doi.org/10.2136/sssaj2004.9350
dc.relation.referencesLal, R. (2016). Soil health and carbon management. Food and Energy Security, 5(4), 212-222. https://doi.org/10.1002/fes3.96
dc.relation.referencesLiang, Y., Zhang, W., Chen, Q., Liu, Y., & Ding, R. (2015). Effect of exogenous silicon on growth and photosynthesis of Cucumis sativus under salt stress. Journal of Plant Nutrition, 38(14), 2163-2172. https://doi.org/10.1080/01904167.2015.1069331
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
dc.relation.referencesLingle, S. E., & Irvine, J. E. (1994). Sucrose synthase and natural ripening in sugarcane. Crop Science, 34(5), 1279-1283. https://doi.org/10.2135/cropsci1994.0011183X003400050025x
dc.relation.referencesLipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1-2), 107-136. https://doi.org/10.1016/S0016-7061(03)00097-1
dc.relation.referencesLiu, L., Wang, S., Guo, X., Zhao, T., & Zhang, B. (2021). Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in a saline-sodic soil. Environmental Science and Pollution Research, 28, 35528-35540. https://doi.org/10.1007/s11356-021-13224-9
dc.relation.referencesLong, S. P. (1999). Environmental responses. In R. F. Sage & R. K. Monson (Eds.), C₄ plant biology (pp. 215-249). Academic Press. https://doi.org/10.1016/B978-012614440-6/50008-2
dc.relation.referencesMaas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance—current assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134. https://doi.org/10.1061/JRCEA4.0001137
dc.relation.referencesMadero, E. (2009-2011). Protocolos y métodos de análisis de suelos. Universidad Nacional de Colombia, Sede Palmira. [Material no publicado]
dc.relation.referencesMartínez-Beltrán, J., & Manzur, C. L. (2019). Overview of salinity problems in the world and FAO strategies to address the problem. In Managing saline soils and water: Science, technology, and social issues (pp. 311-323). CRC Press.
dc.relation.referencesMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. https://doi.org/10.1093/jexbot/51.345.659
dc.relation.referencesMelgarejo, L. M. (Ed.). (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia. ISBN: 978-958-719-668-9.
dc.relation.referencesMeyer, J. H., Wood, R. A., & Leibbrandt, N. R. (2011). Recent advances in understanding the relationship between soil properties and sugarcane yield. Proceedings of the South African Sugar Technologists' Association, 84, 288-301.
dc.relation.referencesMinhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, 227, 105832. https://doi.org/10.1016/j.agwat.2019.105832
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural de Colombia. (2024). Boletín estadístico de caña de azúcar en Colombia. AGRONET. https://www.agronet.gov.co/estadistica/Paginas/caña.aspx
dc.relation.referencesMunns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
dc.relation.referencesMunns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
dc.relation.referencesMurata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 1767(6), 414-421. https://doi.org/10.1016/j.bbabio.2006.11.019
dc.relation.referencesMurtaza, G., Ghafoor, A., Qadir, M., Owens, G., Aziz, M. A., & Zia, M. H. (2013). Disposal and use of sewage on agricultural lands in Pakistan: A review. Pedosphere, 20(1), 23-34. https://doi.org/10.1016/S1002-0160(09)60279-4
dc.relation.referencesPankova, E. I., & Konyushkova, M. V. (2019). Salt-affected soils in Russia and methods for their amelioration. In Z. M. Siddiqui & A. Akhtar (Eds.), Adaptive soil management: From theory to practices (pp. 383-392). Springer Nature. https://doi.org/10.1007/978-981-10-8394-9
dc.relation.referencesQadir, M., Ghafoor, A., & Murtaza, G. (2001). Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils. Agricultural Water Management, 50(3), 197-210. https://doi.org/10.1016/S0378-3774(01)00101-9
dc.relation.referencesQadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2018). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295. https://doi.org/10.1111/1477-8947.12054
dc.relation.referencesQuirk, J. P., & Schofield, R. K. (1955). The effect of electrolyte concentration on soil permeability. Journal of Soil Science, 6(2), 163-178. https://doi.org/10.1111/j.1365-2389.1955.tb00841.x
dc.relation.referencesRengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613-620. https://doi.org/10.1071/FP09249
dc.relation.referencesRhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production (FAO Irrigation and Drainage Paper 48). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/t0667e/t0667e00.htm
dc.relation.referencesSharma, B. R., & Minhas, P. S. (2005). Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agricultural Water Management, 78(1-2), 136-151. https://doi.org/10.1016/j.agwat.2005.04.019
dc.relation.referencesSharma, D. K., Singh, A., Soni, P., Pandey, A., & Chaturvedi, A. K. (2022). Biochar-mediated amelioration of salt-affected soils: A review. Environmental Science and Pollution Research, 29, 71394-71413. https://doi.org/10.1007/s11356-022-22718-3
dc.relation.referencesSix, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008
dc.relation.referencesSoil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). USDA-Natural Resources Conservation Service.
dc.relation.referencesSparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (1996). Methods of soil analysis: Part 3—Chemical methods (SSSA Book Series 5). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3
dc.relation.referencesSposito, G. (2008). The chemistry of soils (2nd ed.). Oxford University Press.
dc.relation.referencesStamford, N. P., Santos, P. R., Santos, C. E. R. S., Freitas, A. D. S., Dias, S. H. L., & Lira Junior, M. A. (2007). Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus in a Brazilian tableland acidic soil grown with yam bean. Bioresource Technology, 98(6), 1311-1318. https://doi.org/10.1016/j.biortech.2006.05.007
dc.relation.referencesSuarez, D. L. (2001). Sodic soil reclamation: Modelling and field study. Australian Journal of Soil Research, 39(6), 1225-1246. https://doi.org/10.1071/SR00094
dc.relation.referencesSumner, M. E., Rengasamy, P., & Naidu, R. (1998). Sodic soils: A reappraisal. In M. E. Sumner & R. Naidu (Eds.), Sodic soils: Distribution, properties, management, and environmental consequences (pp. 3-17). Oxford University Press.
dc.relation.referencesTaiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates.
dc.relation.referencesU.S. Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils (USDA Handbook 60). United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf
dc.relation.referencesWerden, L. K., Holl, K. D., Rosales, J. A., Sylvester, O., & Zahawi, R. A. (2018). Effects of seed-addition and soil-restoration treatments on tropical forest restoration. Applied Vegetation Science, 21(4), 549-559. https://doi.org/10.1111/avsc.12394
dc.relation.referencesWong, V. N. L., Dalal, R. C., & Greene, R. S. B. (2009). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology, 41(1), 29-40. https://doi.org/10.1016/j.apsoil.2008.08.006
dc.relation.referencesZhang, H., Zhao, Y., & Zhu, J. K. (2020). Thriving under stress: How plants balance growth and the stress response. Developmental Cell, 55(5), 529-543. https://doi.org/10.1016/j.devcel.2020.10.012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocEstrés hídrico
dc.subject.agrovocWater stress
dc.subject.agrovocEstrés osmótico
dc.subject.agrovocOsmotic stress
dc.subject.agrovocRespuesta fisiológica
dc.subject.agrovocPhysiological response
dc.subject.agrovocPhotosynthesis
dc.subject.agrovocConductancia estomática
dc.subject.agrovocStomatal conductance
dc.subject.agrovocTensión de absorción
dc.subject.agrovocWater potential
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.proposalVertisolesspa
dc.subject.proposalEndoaquerts sódicosspa
dc.subject.proposalEnmiendas silicatadasspa
dc.subject.proposalRehabilitación del suelospa
dc.subject.proposalSaccharum officinarumeng
dc.subject.proposalEstrés salino-sódicospa
dc.subject.proposalFotosíntesisspa
dc.subject.proposalEficiencia cuánticaspa
dc.subject.proposalIntercambio de cationesspa
dc.subject.proposalVertisolseng
dc.subject.proposalSodium endoaquertseng
dc.subject.proposalSilicate amendmentseng
dc.subject.proposalSoil rehabilitationeng
dc.subject.proposalSalt-sodium stresseng
dc.subject.proposalPhotosynthesiseng
dc.subject.proposalQuantum efficiencyeng
dc.subject.proposalCation exchangeeng
dc.titleCambios en el PSI y su relación con algunas variables fisiológicas en caña de azúcarspa
dc.title.translatedChanges in PSI and its relationship with some physiological variables in sugar caneeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEstudiantes
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16866055.2025.pdf
Tamaño:
1.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_Andres Echeverri Castro.pdf
Tamaño:
461.37 KB
Formato:
Adobe Portable Document Format
Descripción: