Introducción a la electroquímica analítica
dc.contributor.author | Ágreda Bastidas, Jesús Alberto | spa |
dc.date.accessioned | 2024-11-06T22:40:26Z | |
dc.date.available | 2024-11-06T22:40:26Z | |
dc.date.issued | 2024-08 | |
dc.description | ilustraciones (principalmente a color), diagramas | spa |
dc.description.abstract | Este libro es fruto de la continua preparación (por más de 10 años) del curso de Química Analítica Instrumental, sección de electroquímica. El texto está enfocado en explicar en detalle los temas más relevantes de la electroquímica, para realizar mediciones en química analítica, de tal manera que el estudiante no solo obtenga resultados analíticos significativos, sino también comprenda de dónde vienen esos datos. Igualmente, se presentan desarrollos matemáticos detallados que contribuyen al entendimiento de los fundamentos teóricos de la electroquímica, puesto que los mismos son cruciales para la correcta ejecución de los protocolos de análisis químico, la búsqueda de soluciones a las dificultades que se presentan durante su ejecución y el desarrollo de nuevos procedimientos de análisis. Adicionalmente, a lo largo del libro se relacionan hojas de cálculo en LibreOffice Calc y scripts de R (software de acceso libre), que permiten plasmar las ideas antes expuestas y, en particular, poner de manifiesto la forma en que se comportan las funciones matemáticas más importantes que describen los resultados de los experimentos electroquímicos más comunes (Texto tomado de la fuente). | spa |
dc.description.edition | Primera edición, 2024 | spa |
dc.description.notes | Incluye referencias bibliográficas al final de cada capítulo e índice analítico | spa |
dc.format.extent | xiii, 417 páginas | spa |
dc.format.mimetype | application/epub+zip | spa |
dc.identifier.eisbn | 9789585056480 | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87154 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia. Facultad de Ciencias | spa |
dc.publisher | Centro Editorial de la Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.ispartofseries | Colección Textos; | spa |
dc.relation.references | [1] Harris DC. Quantitative chemical analysis. 5th ed. New York, NY: W. H. Freeman and Company; 1999. | spa |
dc.relation.references | [2] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2020. Available from: https://www. R-project.org/. | spa |
dc.relation.references | [3] Holden NE, Coplen TB, Böhlke JK, Tarbox LV, Benefield J, de Laeter JR, et al. IUPAC Periodic Table of the Elements and Isotopes (IPTEI) for the Education Community (IUPAC Technical Report) . Pure and Applied Chemistry. 2018 dec;90(12):1833–2092. Available from: http://www.degruyter.com/view/j/pac.2018.90. issue-12/pac-2015-0703/pac-2015-0703.xml. | spa |
dc.relation.references | [4] JCGM. Evaluation of measurement data-Guide to the expression of uncertainty in measurement Évaluation des données de mesure- Guide pour l’expression de l’incertitude de mesure. BIMP; 2008. Available from: www.bipm.org. | spa |
dc.relation.references | [5] Mills I, Marquardt R. The New SI: The International System of Units is getting a Makeover. Chemistry International. 2019 jan;41(1):32– 35. | spa |
dc.relation.references | [6] Serway RA, Jewett JW. Principles of physics. 4th ed. Belmont, CA: Thomson Brooks/Cole; 2006. | spa |
dc.relation.references | [7] Schoonover RM, Jones FE. Air buoyancy correction in high-accuracy weighing on analytical balances. Analytical Chemistry. 1981;53:900– 902. | spa |
dc.relation.references | [8] Jones FE, Schoonover RM. Handbook of mass measurement. Boca Raton: CRC Press; 2002. | spa |
dc.relation.references | [9] González AG, Ángeles HM. The assessment of electronic balances for accuracy of mass measurements in the analytical laboratory. Accreditation and Quality Assurance. 2007;12:21–29. | spa |
dc.relation.references | [10] Weisberg S. Applied linear regression. 3rd ed. New Jersey: Wiley- Interscience; 2005. | spa |
dc.relation.references | [11] Skoog DA, Holler J, Crouch SR. Principios de análisis instrumental. 6th ed. México, D.F.: Cengage Learning; 2008. | spa |
dc.relation.references | [12] Mocak J, Bond AM, Mitchell S, Scollary G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quatification: Application to voltammetric and stripping techniques. Pure & Applied Chemistry. 1997;69(2):297– 328. | spa |
dc.relation.references | [13] Ellison SLR, Thompson M. Standard additions: Myth and reality. Analyst. 2008;133(8):992–997. Available from: http://xlink.rsc. org/?DOI=b717660k. | spa |
dc.relation.references | [14] Bader M. A systematic approach to standard addition methods in instrumental analysis. J Chem Educ. 1980 oct;57(10):703–706. | spa |
dc.relation.references | [15] Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentos de química analítica. 8th ed. México, D.F.: Thomson; 2005. | spa |
dc.relation.references | [16] Irvin JA, Quickenden TI. Linear least squares treatment when there are errors in both x and y. J Chem Educ. 1983 September;60(9):711– 712. | spa |
dc.relation.references | [17] Ritz C, Streibig JC. Nonlinear Regression with R. Use R!. New York, NY: Springer; 2008. | spa |
dc.relation.references | [18] McNaught AD, Wilkinson A, editors. IUPAC. Compendium of Chemical Terminology. (the "Gold Book"). 2nd ed.Oxford: Blackwell Scientific Publications; 1997. Available from: http://goldbook. iupac.org/L03540.html. | spa |
dc.relation.references | [19] Ayres GH. Quantitative chemical analysis. New York, NY: Harpers; 1959. | spa |
dc.relation.references | [20] Ayres GH. Evaluation of Accuracy in Photometric Analysis. Analytical Chemistry. 1949 may;21(6):652–657. | spa |
dc.relation.references | [21] Ringbom A. Über die Genauigkeit der colorimetrischen Analysenmethoden I. Z Anal Chem. 1939;115:332–343. | spa |
dc.relation.references | [1] Harris DC. Quantitative chemical analysis. 5th ed. New York, NY: W. H. Freeman and Company; 1999. | spa |
dc.relation.references | [2] Harvey D. Química analítica moderna. Madrid: McGraw Hill; 2002. | spa |
dc.relation.references | [3] Sen SK, Agarwal H, Sen S. Chemical equation balancing: An integer programming approach. Mathematical and Computer Modelling. 2006 oct;44(7-8):678–691. | spa |
dc.relation.references | [4] Klotz R Irving; Rosenberg. Introduction to chemical thermodynamics. Menlo Park, CA:W. A. Benjamin, Inc.; 1972. | spa |
dc.relation.references | [5] E R Cohen, T Cvitas, J G Frey, B Holmström, K Kuchitsu, R Marquardt, I Mills, F Pavese, M Quack, J Stohner, H L Strauss, M Takami and A J Thor. Quantities, Units and Symbols in Physical Chemistry. IUPAC Green Book. 3rd ed. Cambridge: IUPAC & RSC Publishing; 2008. Available from: http://media.iupac.org/publications/books/gbook/ IUPAC-GB3-2ndPrinting-Online-22apr2011.pdf. | spa |
dc.relation.references | [6] McNaught AD, Wilkinson A, editors. IUPAC. Compendium of Chemical Terminology. (the "Gold Book"). 2nd ed.Oxford: Blackwell Scientific Publications; 1997. Available from: http://goldbook. iupac.org/L03540.html. | spa |
dc.relation.references | [7] Raff LM. Spontaneity and equilibrium: Why ΔG < 0 denotes a spontaneous process and ΔG = 0 means the system is at equilibrium are incorrect. J Chem Educ. 2014 January;91(1):386–395. | spa |
dc.relation.references | [8] Kovács KA, Gróf P, Burai L, Riedel M. Revising the mechanism of the permanganate/Oxalate reaction. J Phys Chem A. 2004;108:11026– 11031. | spa |
dc.relation.references | [9] Eaton AD, Franson MAH, AmericanWaterWorks Association WEF. Standard Methods for the Examination of Water & Wastewater. Denver, CO: American Public Health Association; 2000. | spa |
dc.relation.references | [10] Hargis LG. Analytical chemistry. Principles and techniques. New Jersey: Prentice Hall; 1988. | spa |
dc.relation.references | [11] J Albrich JH C McCarthy. Biological reactivity of hypochorous acid: Implications for microbicidal mechanism of leukocyte myeloperoxidase. Proc Natl Acad Sci USA. 1981;78(1):210–214. | spa |
dc.relation.references | [1] Harris DC. Quantitative chemical analysis. 5th ed. New York, NY: W. H. Freeman and Company; 1999. | spa |
dc.relation.references | [2] IUPAC Division of physical chemistry commission on symbols terminology and units. Manual of symbols and terminology for physicochemical quantities, and units. Pure & Applied Chemistry. 1979;51:1–41. | spa |
dc.relation.references | [3] Bratsch SG. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. Journal of Physical and Chemical Reference Data. 1989 jan;18(1):1–21. Available from: http://aip. scitation.org/doi/10.1063/1.555839. | spa |
dc.relation.references | [4] Monk P. Fundamentals of Electro-Analytical Chemistry. Monk P, editor. Analytical Techniques in the Sciences. Chichester, UK: John Wiley & Sons, Ltd.; 2007. Available from: http://doi.wiley.com/ 10.1002/9780470511329. | spa |
dc.relation.references | [5] Parsons R. Electrochemical Nomenclature. Pure & Applied Chemistry. 1973;37:499–516. | spa |
dc.relation.references | [6] Stern HAG, Sadoway DR, Tester JW. Copper sulfate reference electrode. Journal of Electroanalytical Chemistry. 2011 aug;659(2):143–150. | spa |
dc.relation.references | [7] Harvey D. Química analítica moderna. Madrid: McGraw Hill; 2002. | spa |
dc.relation.references | [8] Al-Soudi H. Confusion over electrochemical conventions. J Chem Educ. 1989;66:630. | spa |
dc.relation.references | [9] Robert D F. Electrochemical conventions: Responses to a provocative opinion. J Chem Educ. 1990;67:990–991. | spa |
dc.relation.references | [10] Wang J. Analytical electrochemistry. 2nd ed. New York:Wiley-VCH; 2000. | spa |
dc.relation.references | [11] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [1] da Rocha R, Gutz I, do Lago C. From christmas ornaments to glass electrode. J Chem Educ. 1995;72:1135–1136. | spa |
dc.relation.references | [2] Walczak MM, Dryer DA, Jacobson DD, Foss MG, Flynn NT. pHDependent Redox Couple: Illustrating the Nernst Equation Using Cyclic Voltammetry. J Chem Educ. 1997;74:1195–1197. | spa |
dc.relation.references | [3] Bakker E, Pretsch E. The New Wave of Ion-Selective Electrodes. Analytical Chemistry. 2002;74:420A–426A. | spa |
dc.relation.references | [4] Noszticzius Z, Noszticzius E, Schelly ZA. On the Use of Ion-Selective Electrodes forMonitoring Oscillating Reactions. 1. Potential Response of the Silver Halide Membrane Electrodes to Hypohalous Acids. Journal of the American Chemical Society. 1982 may;104(23):6194– 6199. | spa |
dc.relation.references | [5] Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camões MF, et al. Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002) . Pure and Applied Chemistry. 2002 nov;74(11):2169–2200. Available from: https://www.degruyter.com/document/doi/10.1351/ pac200274112169/html. | spa |
dc.relation.references | [1] Serway RA, Jewett JW. Principles of physics. 4th ed. Belmont, CA: Thomson Brooks/Cole; 2006. | spa |
dc.relation.references | [2] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [3] David R Lide, Editor-in-Chief. Handbook Book of Chemistry and Physics, 84th Edition, 2003-2004. Boca Raton: CRC Press; 2004. | spa |
dc.relation.references | [4] Bockris J, Reddy A. Modern Electrochemistry 1. 2nd ed. New York: Kluwer Academic Publishers; 2002. Available from: http://link. springer.com/10.1007/0-306-46909-X_1. | spa |
dc.relation.references | [5] Radiometer analytical. Conductivity Theory and Practice; 2023. Último acceso noviembre 14 de 2023. http://www.tau.ac.il/ ~chemlaba/Files/Theoryconductivity.pdf. | spa |
dc.relation.references | [6] Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chemical Reviews. 2017;117(19):12385–12414. Available from: https://pubs.acs.org/sharingguidelines. | spa |
dc.relation.references | [1] Fried V, Hameka HF, Blukis U. Physical Chemistry. New York: Macmillan Publishing Co., Inc.; 1977. | spa |
dc.relation.references | [2] Atkins PW. Fisico química. Wilmington, Delaware, E.U.A.: Addison- Wesley Iberoamérica; 1986. | spa |
dc.relation.references | [3] de Levie R. A pH centenary. Electrochim Acta. 2014;135:604–639. | spa |
dc.relation.references | [4] Pang XF. Water: Molecular structure and properties. Singapore: World Scientific Publishing Co.; 2014. Available from: https://www. worldscientific.com/worldscibooks/10.1142/8669. | spa |
dc.relation.references | [5] Millet P. Electric potential distribution in an electrochemical cell. J Chem Educ. 1996 October;73(10):956–958. | spa |
dc.relation.references | [1] Rieger PH. Electrochemistry. New York: Chapman & Hall; 1994. | spa |
dc.relation.references | [2] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [3] Ge Z, Wang Y. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. Journal of Physical Chemistry B. 2017 dec;121(15):3394–3402. | spa |
dc.relation.references | [4] Suárez-Herrera MF, Scanlon MD. On the non-ideal behaviour of polarised liquid-liquid interfaces. Electrochimica Acta. 2019 dec;328:135110. | spa |
dc.relation.references | [5] Suárez-Herrera MF;. Comunicación personal. | spa |
dc.relation.references | [1] Quinn TJ. Primary methods of measurement and primary standards. Metrologia. 1997 feb;34(1):61–65. Available from: https:// iopscience.iop.org/article/10.1088/0026-1394/34/1/9. | spa |
dc.relation.references | [2] Bund A, Peipmann R. Application of PEDOT layers for the electrogravimetric detection of sulphate and phosphate in aqueous media. Electrochimica Acta. 2008 apr;53(11):3772–3778. | spa |
dc.relation.references | [3] Harris DC. Quantitative chemical analysis. 5th ed. New York, NY:W. H. Freeman and Company; 1999. | spa |
dc.relation.references | [1] Verhoef JC, Barendrecht E. Mechanism and reaction rate of the karlfischer titration reaction. Part I. Potentiometric measurements. Journal of Electroanalytical Chemistry. 1976 aug;71(3):305–315. | spa |
dc.relation.references | [2] Quinn TJ. Primary methods of measurement and primary standards. Metrologia. 1997 feb;34(1):61–65. Available from: https:// iopscience.iop.org/article/10.1088/0026-1394/34/1/9. | spa |
dc.relation.references | [3] Gagliardi LG, Castells CB, Rosés M, Ràfols C, Bosch E. Acidbase dissociation constants of o-phthalic acid in acetonitrile/water mixtures over the (15 to 50) °C temperature range and related thermodynamic quantities. Journal of Chemical and Engineering Data. 2010 jan;55(1):85–91. Available from: https://pubs.acs.org/doi/ pdf/10.1021/je900273d. | spa |
dc.relation.references | [4] Pines D, Ditkovich J,Mukra T, Miller Y, Kiefer PM, Daschakraborty S, et al. How Acidic Is Carbonic Acid? Journal of Physical Chemistry B. 2016;120(9):2440–2451. | spa |
dc.relation.references | [5] Millero FJ, Pierrot D, Lee K, Wanninkhof R, Feely R, Sabine CL, et al. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Research Part I: Oceanographic Research Papers. 2002;49(10):1705–1723. | spa |
dc.relation.references | [6] Smith-Osorio JL, Torres-Quezada H, Sandoval-Rojas AP, Ágreda JA. Implementation of the Theoretical Coulometric Titration Curve in the Determination of the Amount of Substance of Potassium Hydrogen Phthalate: the Search for a BetterMetrological Approach. ACS Omega. 2022 dec;7(51):47851–47860. Available from: https://pubs.acs. org/doi/full/10.1021/acsomega.2c05642. | spa |
dc.relation.references | [1] Monk P. Fundamentals of Electro-Analytical Chemistry. Monk P, editor. Analytical Techniques in the Sciences. Chichester, UK: John Wiley & Sons, Ltd.; 2007. Available from: http://doi.wiley.com/ 10.1002/9780470511329. | spa |
dc.relation.references | [2] The CircuitLab team. CircuitLab; 2023. Último acceso noviembre 14 de 2.023. https://www.circuitlab.com/. | spa |
dc.relation.references | [3] The falstad team. Circuit simulator version 2.8.1js; 2023. Último acceso noviembre 14 de 2.023. https://www.falstad.com/circuit/. | spa |
dc.relation.references | [4] IUPAC Analytical Chemistry Division Commission on Electroanalytical Chemistry. Recommendations for sign conventions and plotting of electrochemical data. Pure & Appl Chem. 1976;45:131–134. Available from: https://www.degruyter. com/database/IUPAC/entry/iupac.45.0029/html. | spa |
dc.relation.references | [5] Liu Y, Liu Y, Drew MGB, Liu L. Anodic polarization curves revisited. J Chem Educ. 2013 jan;90(1):76–81. Available from: https://pubs. acs.org/doi/abs/10.1021/ed200835n. | spa |
dc.relation.references | [6] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [7] IUPAC Division of physical chemistry commission on symbols terminology and units. Manual of symbols and terminology for physicochemical quantities, and units. Pure & Applied Chemistry. 1979;51:1–41. | spa |
dc.relation.references | [8] Skoog DA,West DM, Holler FJ, Crouch SR. Fundamentos de química analítica. 8th ed. México, D.F.: Thomson; 2005. | spa |
dc.relation.references | [9] Inzelt G. Pseudo-reference Electrodes. In: Inzelt G, Lewenstam A, Scholz F, editors. Handbook of Reference Electrodes. Springer Berlin Heidelberg; 2013. p. 331–332. Available from: https://doi.org/10. 1007/978-3-642-36188-3_14. | spa |
dc.relation.references | [1] Berline S, Bricker C. The law of mass action. J Chem Educ. 1969;46(8):499 – 501. | spa |
dc.relation.references | [2] Suárez-Herrera MF. Electroquímica física e interfacial. Bogotá: Universidad Nacional de Colombia; 2011. | spa |
dc.relation.references | [3] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [4] Elgrishi N, Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ. 2018;95(2):197–206. Available from: https://pubs. acs.org/doi/pdf/10.1021/acs.jchemed.7b00361. | spa |
dc.relation.references | [1] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [2] Elgrishi N, Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ. 2018;95(2):197–206. Available from: https://pubs. acs.org/doi/pdf/10.1021/acs.jchemed.7b00361. | spa |
dc.relation.references | [3] IUPAC Analytical Chemistry Division Commission on Electroanalytical Chemistry. Recommendations for sign conventions and plotting of electrochemical data. Pure & Appl Chem. 1976;45:131–134. Available from: https://www.degruyter. com/database/IUPAC/entry/iupac.45.0029/html. | spa |
dc.relation.references | [4] Harris DC. Quantitative chemical analysis. 5th ed. New York, NY:W. H. Freeman and Company; 1999. | spa |
dc.relation.references | [5] Constantinides A. Applied Numerical Methods with Personal Computers. Singapore: McGraw-Hill; 1987. | spa |
dc.relation.references | [6] Britz D, Strutwolf J. Digital Simulation in Electrochemistry. 4th ed. Scholz F, editor.Monographs in Electrochemistry. Cham, Switzerland: Springer International Publishing; 2016. Available from: http:// link.springer.com/10.1007/978-3-319-30292-8. | spa |
dc.relation.references | [1] Osteryoung J. Voltammetry for the Future. Accounts of Chemical Research. 1993 mar;26(3):77–83. Available from: https://pubs. acs.org/doi/pdf/10.1021/ar00027a001. | spa |
dc.relation.references | [2] Wang J. Analytical electrochemistry. 2nd ed. New York:Wiley-VCH; 2000. | spa |
dc.relation.references | [1] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [2] Elgrishi N, Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ. 2018;95(2):197–206. Available from: https://pubs. acs.org/doi/pdf/10.1021/acs.jchemed.7b00361. | spa |
dc.relation.references | [1] Mabbott G. An introduction to cyclic voltammetry. J Chem Educ. 1983 sep;60(9):697 –702. | spa |
dc.relation.references | [2] Gosser D. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. New York, NY, USA: VCH Publishers, Inc.; 1993. Available from: https://books.google.com.co/books/about/ Cyclic_Voltammetry.html?id=4OLvAAAAMAAJ&redir_esc=y. | spa |
dc.relation.references | [3] Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, et al. A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chemical Science. 2019;10(26):6404–6422. | spa |
dc.relation.references | [1] Amatore C, Bouret Y, Maisonhaute E, Abruña HD, Goldsmith JI. Electrochemistry within molecules using ultrafast cyclic voltammetry. Comptes Rendus Chimie. 2003 jan;6(1):99–115. | spa |
dc.relation.references | [2] Qucs team. Qucs: Quite universal circuit simulator; 2023. Último acceso noviembre 14 de 2.023. https://qucs.sourceforge.net/ contact.html. | spa |
dc.relation.references | [3] Simmons GF. Ecuaciones diferenciales. Con aplicaciones y notas históricas. México: McGraw-Hill; 1972. | spa |
dc.relation.references | [4] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2020. Available from: https://www. R-project.org/. | spa |
dc.relation.references | [5] ChangW, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, et al.. shiny: Web Application Framework for R; 2023. R package version 1.7.5. Available from: https://CRAN.R-project.org/package=shiny. | spa |
dc.relation.references | [6] Borrelli RL, Coleman CS. Ecuaciones diferenciales. Una perspectiva de modelación. México: Oxford University Press; 2002. | spa |
dc.relation.references | [1] O’Haver TC. An introduction to signal processing in chemical measurement. J Chem Educ. 1991;68(6):A147 –A150. Available from: https://pubs-acs-org.ezproxy.unal.edu.co/doi/abs/10. 1021/ed068pA147. | spa |
dc.relation.references | [2] O’Haver TC. Differentiation; 2024. Última consulta enero 28 de 2024. https://terpconnect.umd.edu/~toh/spectrum/ Differentiation.html. | spa |
dc.relation.references | [3] Osteryoung J. Voltammetry for the Future. Accounts of Chemical Research. 1993 mar;26(3):77–83. Available from: https://pubs. acs.org/doi/pdf/10.1021/ar00027a001. | spa |
dc.relation.references | [4] Wang J. Analytical electrochemistry. 2nd ed. New York:Wiley-VCH; 2000. | spa |
dc.relation.references | [5] Carter MT, Osteryoung RA. Pulse Voltammetry. In: Encyclopedia of Analytical Chemistry. Chichester, UK: JohnWiley & Sons, Ltd; 2006. Available from: http://doi.wiley.com/10.1002/9780470027318. a5311. | spa |
dc.relation.references | [6] Molina Á, González J. Pulse Voltammetry in Physical Electrochemistry and Electroanalysis. Monographs in Electrochemistry. Cham: Springer International Publishing; 2016. Available from: http://link. springer.com/10.1007/978-3-319-21251-7. | spa |
dc.relation.references | [7] González-Basto MC, España-Sánchez CA, Ágreda JA, Sandoval-Rojas AdP. Improving precision and trueness in the quantification of cadmium using square wave anodic stripping voltammetry and bismuth film electrodes. Results in Chemistry. 2022 jan;4. | spa |
dc.relation.references | [1] Lubert KH, Kalcher K. History of Electroanalytical Methods. Electroanalysis. 2010 sep;22(17-18):1937–1946. Available from: http://doi.wiley.com/10.1002/elan.201000087. | spa |
dc.relation.references | [2] Weisstein EW. Argand Diagram. Wolfram Research, Inc.; 2005. En línea, última consulta 28 de enero de 2024. https://mathworld. wolfram.com/ArgandDiagram.html. | spa |
dc.relation.references | [3] Suárez-Herrera MF. Electroquímica física e interfacial. Bogotá: Universidad Nacional de Colombia; 2011. | spa |
dc.relation.references | [4] Randles JEB. Kinetics of rapid electrode reactions. Faraday Discussions. 1947 jan;1:11–19. Available from: https://pubs.rsc. org/en/content/articlehtml/1947/df/df9470100011https: //pubs.rsc.org/en/content/articlelanding/1947/df/ df9470100011. | spa |
dc.relation.references | [5] Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York: JohnWiley & Sons, Inc.; 2001. | spa |
dc.relation.references | [6] Gamry Instruments. Basics of electrochemical impedance spectroscopy; 2024. Última consulta enero 28 de 2024. https://www.gamry.com/application-notes/EIS/ basics-of-electrochemical-impedance-spectroscopy/. | spa |
dc.relation.references | [1] Ramette R. Equilibrio y análisis químico. México: Fondo educativo interamericano; 1983. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | spa |
dc.subject.lcc | Electrochemistry | eng |
dc.subject.lcc | Measurement | eng |
dc.subject.lcc | Problems, exercises, etc. | eng |
dc.subject.lcc | Electrochemical analysis | eng |
dc.subject.lcc | Mathematical models | eng |
dc.subject.lcc | Electrochemical apparatus | eng |
dc.subject.lcc | Electrolysis | eng |
dc.subject.lcc | Potentiometry | eng |
dc.subject.lcc | Coulometry | eng |
dc.subject.lemb | Electroquímica | spa |
dc.subject.lemb | Problemas, ejercicios, etc. | spa |
dc.subject.lemb | Electrólisis | spa |
dc.subject.lemb | Química analítica | spa |
dc.subject.lemb | Chemistry, analytic | eng |
dc.subject.other | Medición | spa |
dc.subject.other | Electroquímica -- Aparatos e instrumentos | spa |
dc.subject.other | Coulombimetría | spa |
dc.subject.proposal | Química analítica | spa |
dc.subject.proposal | Electroquímica | spa |
dc.subject.proposal | Potenciometría | spa |
dc.subject.proposal | Voltamperometría | spa |
dc.subject.proposal | Electrólisis | spa |
dc.subject.unam | Análisis electroquímico | spa |
dc.subject.unam | Modelos matemáticos | spa |
dc.subject.unam | Potenciometría | spa |
dc.subject.wikidata | Electrogravimetría | spa |
dc.subject.wikidata | Electrogravimetry | eng |
dc.subject.wikidata | Voltamperometría | spa |
dc.subject.wikidata | Voltammetry | eng |
dc.title | Introducción a la electroquímica analítica | spa |
dc.type | Libro | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/LIB | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TacoFinal_Electroquimica-analitica.pdf
- Tamaño:
- 14.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Libro completo_Introducción a la electroquímica analítica
Bloque de licencias
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4_Optimización_Electroquímica-crrg.pdf
- Tamaño:
- 479.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia_Introducción a la electroquímica analítica