Manual diagnóstico de defectos de desarrollo del esmalte

dc.contributor.authorNaranjo Sierra, María Claudiaspa
dc.date.accessioned2025-01-20T14:01:09Z
dc.date.available2025-01-20T14:01:09Z
dc.date.issued2024-11
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLos defectos de desarrollo del esmalte (DDE) son desviaciones de la apariencia normal del tejido, resultantes de alteraciones durante la amelogénesis. Aunque la alta prevalencia y las consecuencias negativas biológicas, psicosociales y económicas que derivan de ellos suponen un alto conocimiento en el tema, la literatura revisada muestra lo contrario. La presente publicación provee una herramienta para apoyar a educadores, clínicos e investigadores en un diagnóstico fiable. Para ello, se compila y sintetiza información de la mejor evidencia disponible; se profundiza en etiología y fisiopatología; se presenta un proceso diagnóstico que no implica tiempos ni esfuerzos adicionales, y se muestran más de noventa imágenes que representan conceptos y situaciones clínicas funcionales para el diagnóstico integral (Texto tomado de la fuente).spa
dc.description.editionPrimera edición, 2024spa
dc.description.notesIncluye índice temáticospa
dc.description.tableofcontentsIntroducción -- Referencias -- Capítulo 1. Generalidades de prevalencia, consecuencias, nombres y medición de los defectos de desarrollo del esmalte ; Prevalencia de los DDE ; Opacidades demarcadas (ODE) ; Opacidades difusas (ODI) ; Hipoplasias ; Consecuencias de los DDE ; Impacto en la calidad de vida ; Aumento del miedo y de la ansiedad a la consulta odontológica ; Susceptibilidad a desarrollar caries dental ; Susceptibilidad a fracturas dentales ; Incremento en los costos ; Nombres utilizados para llamar los DDE ; Opacidades demarcadas ; Opacidades difusas ; Hipoplasias ; Métodos de medición de los DDE ; ¿Por qué adoptar los criterios del índice DDEm para la escritura de este manual? ; ¿Qué adicionar al índice DDEm para medir con más precisión? ; Referencias -- Capítulo 2. Etiopatogenia de los defectos de desarrollo del DDE ; Formación de la corona del diente ; Estado de brote ; Estado de caperuza o casquete ; Estado de campana ; Formación del esmalte (amelogénesis) ; Estado presecretorio ; Estado secretorio ; Estado de maduración ; Etiología de los DDE ; Factores etiológicos genéticos o hereditarios de los DDE ; Factores etiológicos adquiridos de los DDE ; Factores ambientales ; Mecanismos patogénicos, celulares y moleculares de los DDE ; Hipótesis vía de equilibrio del calcio ; Hipótesis vía translocador nuclear del receptor de aril hidrocarburos (ARNT) ; Opacidades demarcadas ; Opacidades difusas ; Hipoplasias ; Estructura, propiedades físicas, propiedades mecánicas y composición química del esmalte sano y del esmalte con DDE ; Esmalte sano ; Esmalte afectado por DDE ; Referencias -- Capítulo 3. Diagnóstico integral de los defectos de desarrollo del esmalte (DDE) ; Introducción ; Proceso diagnóstico de los DDE ; La anamnesis ; Motivo de consulta ; Antecedentes psicosociales ; Antecedentes médicos ; Antecedentes odontológicos ; El examen clínico ; Criterios para la medición de los DDE ; Categorización global de los DDE a nivel del individuo ; Aspectos a considerar en el examen clínico ; Distribución de los DDE en la dentición y su relación con la etiología ; Presencia de DDE y lesiones de caries iniciales en una misma superficie y en una misma zona de la superficie dental ; Predicción o anticipación de DDE en dientes que no han erupcionado ; Diagnóstico diferencial ; Situaciones clínicas para diferenciar entre los tipos de DDE ; Situaciones clínicas para diferenciar entre DDE y caries dental ; Situaciones clínicas para diferenciar entre hipoplasias y desgaste dental erosivo; Protocolo para el examen clínico ; Registro de los DDE ; Formato para el registro de los DDE ; Consideraciones generales para el tratamiento de los DDE ; Tratamientos no operatorios: ; Tratamientos operatorios: ; Referencias -- Índice temático.spa
dc.format.extent372 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eisbn9789585057326spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87336spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia. Facultad de Odontologíaspa
dc.publisherEditorial Universidad Nacional de Colombiaspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.ispartofseriesColección Códice Abierto;spa
dc.relation.references(1) A review of the developmental defects of enamel index (dde Index): Commission on Oral Health, Research & Epidemiology: Report of an fdi Working Group. Int Dent J [Internet]. 1992 dic. 1 [citado 2022 nov. 6];42(6):411-26. Dis ponible en: https://pubmed.ncbi.nlm.nih.gov/1286924/ pmid: 1286924.spa
dc.relation.references(2) Suckling GW. Developmental defects of enamel - His torical and present-day perspectives of their patho genesis. Adv Dent Res. 1989 sept.;3(2):87-94. doi: 10.1177/08959374890030022901 pmid: 2701161.spa
dc.relation.references(3) Naranjo Sierra MC. Terminología, clasificación y me dición de los defectos en el desarrollo del esmalte. Revisión de literatura/Terminology, classification and measuring of the developmental defects of enamel. Literature review. Univ Odontol. 2013 jun. 30;32(68):33-44. Disponible en: https://revistas.javeriana.edu.co/index. php/revUnivOdontologica/article/view/SICI%3A%20 2027-3444%28201301%2932%3A68%3C33%3ATCMD DE%3E2.0.CO%3B2-Kspa
dc.relation.references(4) Weerheijm KL, Jälevik B, Alaluusua S. Molar-incisor hypo mineralisation. Caries Res [Internet]. 2001 oct. 12 [citado 2022 nov. 6];35(5):390-1. Disponible en: https://pubmed. ncbi.nlm.nih.gov/11641576/ doi: 10.1159/000047479spa
dc.relation.references(5) Elfrink MEC, Schuller AA, Weerheijm KL, Veerkamp JSJ. Hypomineralized second primary molars: prevalence data in Dutch 5-year-olds. Caries Res [Internet]. 2008 jun. 4;42(4):282-5. Disponible en: https://pubmed.ncbi. nlm.nih.gov/18523388/ doi: 10.1159/000135674spa
dc.relation.references(6) Elfrink MEC, ten Cate JM, Jaddoe VWV, Hofman A, Moll HA, Veerkamp JSJ. Deciduous molar hypomineraliza tion and molar incisor hypomineralization. J Dent Res [Internet]. Publicación electrónica 2012 febr. 27 [publica ción electrónica antes que en papel] [citado 2022 nov. 6];91(6):551-5. Disponible en: https://pubmed.ncbi.nlm. nih.gov/22370445/ doi: 10.1177/0022034512440450spa
dc.relation.references(7) Seow WK. Dental enamel defects in the primary den tition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 1-14. doi: 10.1007/978-3-662-44800-7_1spa
dc.relation.references(8) Anthonappa RP, King NM. Enamel defects in the perma nent dentition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 15-30. doi: 10.1007/978-3-662-44800-7_2spa
dc.relation.references(9) Zhao D, Dong B, Yu D, Ren Q, Sun Y. The prevalence of molar incisor hypomineralization: evidence from 70 studies. Int J Paediatr Dent [Internet]. 2018 febr. 13 [citado 2022 nov. 12];28(2):170-9. Disponible en: https://pubmed. ncbi.nlm.nih.gov/28732120/ doi: 10.1111/ipd.12323spa
dc.relation.references(10) Lygidakis NA, Garot E, Somani C, Taylor GD, Rouas P, Wong FSL. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor-hypo mineralisation (mih): an updated European Academy of Paediatric Dentistry policy document. Eur Arch Paediatr Dent. 2022 febr. 22;23(1):3-21. doi: 10.1007/s40368-021- 00668-5spa
dc.relation.references(11) Goodarzi F, Mahvi AH, Hosseini M, Nedjat S, Nabizadeh Nodehi R, Kharazifard MJ, et al. The prevalence of dental fluorosis and exposure to fluoride in drinking water: a systematic review. J Dent Res Dent Clin Dent Prospects. 2016 ag. 17;10(3):127-35. pmid: 27651877.spa
dc.relation.references(12) u.s. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep. 2015 jul. 1;130(4):318-31. doi: 10.1177/003335491513000408spa
dc.relation.references(13) Ministerio de Salud y Protección Social. IV Estudio Na cional de Salud Bucal (ENSAB IV). Bogotá: Ministerio de Salud y Protección Social (MINSALUD); 2014. p. 59-68.spa
dc.relation.references(14) Elfrink MEC, Ghanim A, Manton DJ, Weerheijm KL. Stan dardised studies on Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM): a need. Eur Arch Paediatr Dent [Internet]. 2015 abr. 18 [citado 2022 nov. 11];16(3):247-55. Disponible en: https://europepmc.org/article/med/25894247 DOI: 10.1007/s40368-015-0179-7spa
dc.relation.references(15) Bandeira Lopes L, Machado V, Botelho J, Haubek D. Mo lar-incisor hypomineralization: an umbrella review. Acta Odontol Scand [Internet]. 2021 febr. 1 [citado 2022 nov. 6];79(5):359-69. Disponible en: https://pubmed.ncbi.nlm. nih.gov/33524270/ DOI: 10.1080/00016357.2020.1863461spa
dc.relation.references(16) Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental fluorosis: the risk of misdiagnosis-a review. Biol Trace Elem Res [Internet]. 2021 my. 1 [citado 2022 dic. 7];199(5):1762-70. Disponible en: https://pubmed. ncbi.nlm.nih.gov/32705431/ DOI: 10.1007/s12011-020- 02296-4spa
dc.relation.references(17) Sabokseir A, Golkari A, Sheiham A. Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children. PeerJ [Internet]. 2016 febr. 25 [citado 2022 nov. 6];4(2):e1745. Disponible en: https://pubmed. ncbi.nlm.nih.gov/26966672/ DOI: 10.7717/peerj.1745spa
dc.relation.references(18) Castro, MJ, Mendes JJ, Vinga S, de Andrade DC. Differential diagnosis of developmental defects of enamel: a review. Ann Med [Internet]. 2021 sept. 28 [citado 2022 dic. 14];53(Supl. 1):S49-S50. Disponible en: https://www. tandfonline.com/doi/abs/10.1080/07853890.2021.18 97305 DOI: 10.1080/07853890.2021.1897305spa
dc.relation.references(19) Cutress TW, Suckling GW. Differential diagnosis of dental fluorosis. J Dent Res. 1990 febr.;69(Supl. 2):714-20. DOI: 10.1177/00220345900690S138spa
dc.relation.references(20) Joshi T, Rahman A, Rienhoff S, Rienhoff J, Stamm T, Bekes K. Impact of molar incisor hypomineralization on oral health-related quality of life in 8–10-year-old children. Clin Oral Invest. 2022 febr. 1;26(2):1753-9. DOI: 10.1007/s00784-021-04150-wspa
dc.relation.references(21) Reissenberger T, Ebel M, Klode C, Hirsch C, Bekes K. Hypomineralized teeth and their impact on oral-health related quality of life in primary school children. Int J Environ Res Public Health [Internet]. 2022 ag. 21 [citado 2022 nov. 6];19(16):10409. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9408049/ DOI: 10.3390/ijerph191610409spa
dc.relation.references(22) Marshman Z, Rodd HD. The psychosocial impacts of developmental enamel defects in children and young people. En: Drummond B, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 85-97. DOI: 10.1007/978-3-662-44800-7_7spa
dc.relation.references(23) Jälevik B, Sabel N, Robertson A. Can molar incisor hypomineralization cause dental fear and anxiety or influence the oral health-related quality of life in children and adolescents?-a systematic review. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 6];23(1):65-78. Disponible en: https://pubmed.ncbi.nlm. nih.gov/34110616/ DOI: 10.1007/s40368-021-00631-4spa
dc.relation.references(24) Chankanka O, Levy SM, Warren JJ, Chalmers JM. A literature review of aesthetic perceptions of dental fluorosis and relationships with psychosocial aspects/oral health-related quality of life. Community Dent Oral Epidemiol [Internet]. 2010 abr. [citado 2022 nov. 6];38(2):97-109. Disponible en: https://pubmed.ncbi.nlm. nih.gov/20002631/ DOI: 10.1111/j.1600-0528.2009.00507.xspa
dc.relation.references(25) Shyam R, Bhadravathi Chaluvaiah M, Kumar A, Pahwa M, Rani G, Phogat R. Impact of dental fluorosis on the oral health related quality of life among 11- to 14-year-old school children in endemic fluoride areas of Haryana (India). Int Dent J [Internet]. 2020 oct. [citado 2022 nov. 6];70(5):340-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32358889/ DOI: 10.1111/idj.12567spa
dc.relation.references(26) Pahuja M, Pradhan S, Nagar V. Knowledge, attitude, and esthetic perceptions about dental fluorosis amongst the rural population in Meerut District, Uttar Pradesh. Indian J Dent Sci [Internet]. 2019 en. [citado 2022 nov. 6];11:12-6. Disponible en: https://www.researchgate.net/ publication/331173453_Knowledge_attitude_and_esthe tic_perceptions_about_dental_fluorosis_amongst_the_ru ral_population_in_Meerut_District_Uttar_Pradesh DOI: 10.4103/IJDS.IJDS_65_18spa
dc.relation.references(27) Nilchian F, Asgary I, Mastan F. The effect of dental fluorosis on the quality of life of female high school and precollege students of high fluoride-concentrated area. J Int Soc Prev Community Dent [Internet]. 2018 jul. 1 [citado 2022 nov. 6];8(4):314-9. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC6071349/ DOI: 10.4103/jispcd.JISPCD_94_18spa
dc.relation.references(28) Onoriobe U, Rozier RG, Cantrell J, King RS. Effects of enamel fluorosis and dental caries on quality of life. J Dent Res [Internet]. 2014 oct. [citado 2022 nov. 6];93(10):972-9. Disponible en: https://pubmed.ncbi.nlm. nih.gov/25154834/ DOI: 10.1177/0022034514548705spa
dc.relation.references(29) Andrade NS, Torres dos Santos I, Santos Lima LM, Bran co Lima CC, Moura L de FA de D , Barros SSLV, et al. Impact of developmental enamel defects on quality of life in 5-year-old children. Int J Paediatr Dent [Internet]. 2019 sept. [citado 2022 nov. 6];29(5):557-65. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30912196/ DOI: 10.1111/ipd.12498spa
dc.relation.references(30) Rood HD, Boissonade FM, Day PF. Pulpal status of hypomineralized permanent molars. Pediatr Dent [Internet]. 2007 nov. [citado 2022 nov. 6];29(6):514-20. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18254423/ PMID: 18254423.spa
dc.relation.references(31) Linner T, Khazaei Y, Bücher K, Pfisterer J, Hickel R, Kühnisch J. Hypersensitivity in teeth affected by mo lar-incisor hypomineralization (MIH). Sci Rep [Internet]. 2021 sept. 9;11:17922. DOI: 10.1038/s41598-021-95875-xspa
dc.relation.references(32) Wall A, Leith R. A questionnaire study on perception and clinical management of molar incisor hypomineralisation (mih) by Irish dentists. Eur Arch Paediatr Dent [Internet]. 2020 dic. [citado 2022 nov. 6];21(6):703-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32185633/ DOI: 10.1007/s40368-020-00519-9spa
dc.relation.references(33) Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2008 sept. [citado 2022 nov. 6];18(5):333-40. Dis ponible en: https://pubmed.ncbi.nlm.nih.gov/18328044/ DOI: 10.1111/j.1365-263X.2007.00908.xspa
dc.relation.references(34) Jälevik B, Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent [Internet]. 2002 febr. [citado 2022 nov. 6];12(1):24-32. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/11853245/ DOI: 10.1046/j.0960- 7439.2001.00318.xspa
dc.relation.references(35) Jälevik B, Klingberg G. Treatment outcomes and dental anxiety in 18-year-olds with MIH, comparisons with heal thy controls - A longitudinal study. Int J Paediatr Dent. 2012 mzo.;22(2):85-91. DOI: 10.1111/j.1365-263X.2011.01161.xspa
dc.relation.references(36) Portella DP, Dias BC, Ferreira P, de Souza JF, Wambier L, da Silva Assunção LR. The association of developmental dental defects and the clinical consequences in the primary dentition: a systematic review of observational studies. Pediatr Dent [Internet]. 2022 sept. [citado 2023 en. 11];44(5):330-41. Disponible en: https://pubmed.ncbi. nlm.nih.gov/36309777/spa
dc.relation.references(37) Vargas-Ferreira F, Salas MMS, Nascimento GG, Tarquinio SBC, Faggion CM, Peres MA, et al. Association between developmental defects of enamel and dental caries: a systematic review and meta-analysis. J Dent [Internet]. 2015 jun. 1 [citado 2022 nov. 6];43(6):619-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25862273/ DOI: 10.1016/j.jdent.2015.03.011spa
dc.relation.references(38) Costa FS, Silveira ER, Pinto GS, Nascimento GG, Thomson WM, Demarco FF. Developmental defects of enamel and dental caries in the primary dentition: a systematic review and meta-analysis. J Dent [Internet]. 2017 my. 1 [citado 2022 nov. 6];60:1-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/28347809/ DOI: 10.1016/j. jdent.2017.03.006spa
dc.relation.references(39) Paixão-Gonçalves S, Corrêa-Faria P, Ferreira FM, Ramos-Jorge ML, Paiva SM, Pordeus IA. Risk of dental caries in primary teeth with developmental defects of enamel: a longitudinal study with a multilevel approach. Caries Res [Internet]. 2019 nov. [citado 2022 nov. 6];53(6):667-74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31291628/ DOI: 10.1159/000501029spa
dc.relation.references(40) Kosma I, Kevrekidou A, Boka V, Arapostathis K, Kotsanos N. Molar incisor hypomineralisation (MIH): correlation with dental caries and dental fear. Eur Arch Paediatr Dent [Internet]. 2016 abr. [citado 2022 nov. 6];17(2):123-9. Dispo nible en: https://pubmed.ncbi.nlm.nih.gov/27026246/ DOI: 10.1007/s40368-016-0221-4spa
dc.relation.references(41) Americano Andrade GC, Jacobsen PE, Mendes Soviero V, Haubek D. A systematic review on the association between molar incisor hypomineralization and dental caries. Int J Paediatr Dent [Internet]. 2017 en. [citado 2022 nov. 6];27(1):11-21. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27098755/ DOI: 10.1111/ipd.12233spa
dc.relation.references(42) Mahoney EK, Farah R. Molar incisor hypomineralization: structure, composition, and properties. En: Drummond B, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlin: Springer-Verlag Berlín Heidelberg; 2015 [Internet] [citado 2022 nov. 6]. p. 73-84. Disponible en: https://link. springer.com/chapter/10.1007/978-3-662-44800-7_6 DOI: 10.1007/978-3-662-44800-7_6spa
dc.relation.references(43) Schwendicke F, Elhennawy K. Health economic evaluation of management strategies for mih. En: Bekes K, editor. Molar incisor hypomineralization [Internet]. Cham (Suiza): Springer Nature; 2020 [citado 2022 nov. 11]. p. 197-205. Disponible en: https://www.researchgate.net/ publication/338369018_Health_Economic_Evaluation_ of_Management_Strategies_for_MIH DOI: 10.1007/978- 3-030-31601-3_16spa
dc.relation.references(44) Elhennawy K, Jost-Brinkmann PG, Manton DJ, Paris S, Schwendicke F. Managing molars with severe molar-incisor hypomineralization: a cost-effectiveness analysis within German healthcare. J Dent [Internet]. 2017 ag. [citado 2022 nov. 6];63:65-71. Disponible en: https://www. researchgate.net/publication/317326317_Managing_ molars_with_severe_molar-incisor_hypomineralization_A_ cost-effectiveness_analysis_within_German_healthcare DOI: 10.1016/j.jdent.2017.05.020spa
dc.relation.references(45) Schneider PM, Silva M. Endemic molar incisor hypomineralization: a pandemic problem that requires monitoring by the entire health care community. Curr Osteoporos Rep. 2018 jun.;16(3):283-8. DOI: 10.1007/s11914-018-0444-xspa
dc.relation.references(46) Almuallem Z, Busuttil-Naudi A. Molar incisor hypomineralisation (mih) - an overview. Br Dent J [Internet]. 2018 oct. 5;225(7):601-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30287963/ DOI: 10.1038/sj.bdj.2018.814spa
dc.relation.references(47) Masri AA bin HA, Khang KKY, Shen LLW, Ekambaram M, Loch C. Knowledge of dental enamel defects amongst undergraduate dental students–a cross-sectional survey. Eur J Dent Educ [Internet]. 2021 nov. [citado 2022 nov. 6];25(4):711-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/33369838/ DOI: 10.1111/eje.12650spa
dc.relation.references(48) Silva MJ, Alhowaish L, Ghanim A, Manton DJ. Knowledge and attitudes regarding molar incisor hypomineralisation amongst Saudi Arabian dental practitioners and dental students. Eur Arch Paediatr Dent [Internet]. 2016 ag. [citado 2022 nov. 6];17(4):215-22. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/27172776/ DOI: 10.1007/ s40368-016-0230-3spa
dc.relation.references(49) Liu Y, He M. A survey on knowledge and attitudes towards molar-incisor hypomineralization among undergraduate and postgraduate students at the School of Stomatology, Wuhan University. bmc Oral Health [Internet]. 2022 dic. [citado 2022 nov. 6];22(19):1-6. Disponible en: https:// bmcoralhealth.biomedcentral.com/articles/10.1186/ s12903-022-02055-y doi: 10.1186/s12903-022-02055-yspa
dc.relation.references(50) Serna-Muñoz C, Martínez-Beneyto Y, Pérez-Silva A, Poza-Pascual A, Ibáñez-López FJ, Ortiz-Ruiz AJ. Percep tion, knowledge, and attitudes towards molar incisor hypomineralization among Spanish dentists: a cross-sec tional study. BMC Oral Health [Internet]. 2020 sept. 18 [citado 2022 nov. 6];20(260):1-10. Disponible en: https:// bmcoralhealth.biomedcentral.com/articles/10.1186/ s12903-020-01249-6 DOI: 10.1186/s12903-020-01249-6spa
dc.relation.references(51) Hamza B, Elhennawy K, van Waes H, Papageorgiou SN. Knowledge, attitudes, and beliefs regarding molar incisor hypomineralisation amongst Swiss dental students. BMC Oral Health [Internet]. 2021 oct. 26 [citado 2022 nov. 6];21(548):1-6. Disponible en: https://bmcoralhealth. biomedcentral.com/articles/10.1186/s12903-021-01911- 7 DOI: 10.1186/s12903-021-01911-7spa
dc.relation.references(52) Negrescu J, Kodra L, Ziada H, Al-Talib T, Abubakr NH. Molar incisor hypomineralization: awareness among postdoctoral dental residents: a cross-sectional study. Dent J [Internet]. 2022 abr. 6 [citado 2022 nov. 6];10(4):64. Disponible en: https://www.researchgate.net/publication/359779943_ Molar_Incisor_Hypomineralization_Awareness_among_ Postdoctoral_Dental_Residents_A_Cross-Sectional_Study DOI: 10.3390/dj10040064spa
dc.relation.references(53) Camargo MGA de, Natera A. Nivel de conocimiento de defectos de esmalte y su tratamiento entre odontopediatras. Rev Odontopediatr Latinoam. 2020 mzo. 25;7(1):25-35. DOI: 10.47990/alop.v7i1.128spa
dc.relation.references(54) Ghanim A, Silva MJ, Elfrink MEC, Lygidakis NA, Mariño RJ, Weerheijm KL, et al. Molar incisor hypomineralisation (MIH) training manual for clinical field surveys and practice. Eur Arch Paediatr Dent [Internet]. 2017 ag. [citado 2022 nov. 6];18(4):225-42. Disponible en: https://pubmed. ncbi.nlm.nih.gov/28721667/ DOI: 10.1007/s40368-017- 0293-9spa
dc.relation.references(55) Hubbard MJ. Molar hypomineralization: what is the us experience? J Am Dent Assoc [Internet]. 2018 my.;149(5):329- 30. DOI: 10.1016/j.adaj.2018.03.013spa
dc.relation.references(56) Bekes K, Melichar K, Stamm T, Elhennawy K. Dental students’ knowledge, attitudes and beliefs regarding molar incisor hypomineralization (MIH): a survey in Vienna, Austria. J Multidiscip Healthc. 2021 oct. 13;14:2881-9. DOI: 10.2147/JMDH.S326846spa
dc.relation.references(57) Aguilar Gálvez D, Noal FC, Arriola-Guillén LE, Hugo FN, Leal SC, Borba de Araujo F. Virtual learning object for developing knowledge about the diagnosis and management of molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2022 jul. [citado 2022 nov. 6];32(4):458-63. Disponible en: https://pubmed.ncbi. nlm.nih.gov/34564920/ DOI: 10.1111/ipd.12925spa
dc.relation.references(58) Yehia AM, Abdelaziz AM, Badran A. “Knowledge, clinical experience, and perceived need for training regarding molar-incisor hypomineralization among a group of Egyptian dental students: a cross-sectional study”. BMC Oral Health. 2022 ag. 2;22(323). DOI: 10.1186/s12903- 022-02356-2spa
dc.relation.references(59) Jälevik B, Szigyarto-Matei A, Robertson A. Difficulties in identifying developmental defects of the enamel: a bita study. Eur Arch Paediatr Dent [Internet]. 2019 mzo. 18 [citado 2022 nov. 11];20(5):481-8. Disponible en: https:// europepmc.org/article/med/30887463 DOI: 10.1007/ s40368-019-00431-xspa
dc.relation.references(60) Gamboa GCS, Lee GHM, Ekambaram M, Yiu CKY. Knowledge, perceptions, and clinical experiences on molar incisor hypomineralization among dental care providers in Hong Kong. bmc Oral Health [Internet]. 2018 dic. 13 [citado 2022 nov. 6];18(217). Disponible en: https:// pubmed.ncbi.nlm.nih.gov/30545337/ DOI: 10.1186/ s12903-018-0678-0spa
dc.relation.references(61) Uzuner FD, Kaygısız E, Darendeliler N. Defining dental age for chronological age determination. En: Hakan Dogan K, editor. Post mortem examination and autopsy - Current issues from death to laboratory analysis. Rijeka (Croacia): InTechOpen; 2018. p. 77-104. DOI: 10.5772/ intechopen.71699spa
dc.relation.references(62) Antoine D, Hillson S, Dean MC. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. J Anat [Internet]. 2009 en. [citado 2022 nov. 20];214(1):45-55. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC2667916/ DOI: 10.1111/j.1469- 7580.2008.01010.xspa
dc.relation.references(63) Griffin RC, Donlon D. Patterns in dental enamel hypoplasia by sex and age at death in two archaeological populations. Arch Oral Biol [Internet]. 2009 dic. [citado 2022 nov. 20];54(Supl. 1):S93-S100. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/18990363/ DOI: 10.1016/j. archoralbio.2008.09.012spa
dc.relation.references(64) Guatelli-Steinberg D. What can developmental defects of enamel reveal about physiological stress in nonhuman primates? Evol Anthropol. 2001;10(4):138-51. DOI: 10.1002/evan.1027spa
dc.relation.references(65) Skinner M, Goodman A. Anthropological uses of developmental defects of enamel [pdf]. En: Saunders S, Katzenberg MA, editores. Skeletal biology of past peoples: advances in research methods [Internet]. Nueva York (ny): Wiley-Liss; 1992 [citado 2023 en. 12]. p. 153-175. Disponible en: https://www.researchgate.net/publication/303215163_ Anthropological_Uses_of_Developmental_Defects_of_ Enamelspa
dc.relation.references(66) Mahoney P. Intraspecific variation in M1 enamel development in modern humans: implications for human evolution. J Hum Evol [Internet]. 2008 jul. [citado 2022 nov. 20];55(1):131-47. Disponible en: https://pubmed.ncbi. nlm.nih.gov/18439653/ DOI: 10.1016/j.jhevol.2008.02.004spa
dc.relation.references(67) Seow WK. Clinical diagnosis of enamel defects: pitfalls and practical guidelines. Int Dent J [Internet]. 1997 jun. [citado 2022 nov. 6];47(3):173-82. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/9448804/ DOI: 10.1002/j.1875- 595X.1997.tb00783.xspa
dc.relation.references(1) A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J [Internet]. 1992 dic. 1 [citado 2022 nov. 6];42(6):411-426. Dis ponible en: https://pubmed.ncbi.nlm.nih.gov/1286924/ PMID: 1286924.spa
dc.relation.references(2) Seow WK. Dental enamel defects in the primary dentition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 1-14. DOI: 10.1007/978-3-662-44800-7_1spa
dc.relation.references(3) Anthonappa RP, King NM. Enamel defects in the permanent dentition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 15-30. DOI: 10.1007/978-3-662-44800-7_2spa
dc.relation.references(4) Lygidakis NA, Garot E, Somani C, Taylor GD, Rouas P, Wong FSL. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisorhypomineralisation (mih): an updated European Academy of Paediatric Dentistry policy document. Eur Arch Paediatr Dent. 2022 febr. 22;23(1):3-21. DOI: 10.1007/s40368-021- 00668-5spa
dc.relation.references(5) Bandeira Lopes L, Machado V, Botelho J, Haubek D. Molar-incisor hypomineralization: an umbrella review. Acta Odontol Scand [Internet]. 2021 febr. 1 [citado 2022 nov. 6];79(5):359-69. Disponible en: https://pubmed.ncbi.nlm. nih.gov/33524270/ DOI: 10.1080/00016357.2020.1863461spa
dc.relation.references(6) Jälevik B. Prevalence and diagnosis of molar-incisorhypomineralisation (mih): a systematic review. Eur Arch Paediatr Dent. 2010 abr.;11(2):59-64. doi: 10.1007/ BF03262714spa
dc.relation.references(7) Zhao D, Dong B, Yu D, Ren Q, Sun Y. The prevalence of molar incisor hypomineralization: evidence from 70 studies. Int J Paediatr Dent [Internet]. 2018 febr. 13 [citado 2022 nov. 12];28(2):170-9. Disponible en: https://pubmed. ncbi.nlm.nih.gov/28732120/ DOI: 10.1111/ipd.12323spa
dc.relation.references(8) Schwendicke F, Elhennawy K, Reda S, Bekes K, Manton DJ, Krois J. Global burden of molar incisor hypomineralization. J Dent. 2018 en.;68:10-8. DOI: 10.1016/j. jdent.2017.12.002spa
dc.relation.references(9) Ministerio de Salud y Protección Social. iv Estudio Nacional de Salud Bucal (ENSAB IV). Bogotá, Colombia: Ministerio de Salud y Protección Social (MINSALUD); 2014. p. 59-68.spa
dc.relation.references(10) Weerheijm KL, Duggal M, Mejàre I, Papagiannoulis L, Koch G, Martens LC, et al. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on mih held in Athens, 2003. Eur J Paediatr Dent. 2003 sept.;4(3):110-3. PMID: 14529329.spa
dc.relation.references(11) Elfrink MEC, Ghanim A, Manton DJ, Weerheijm KL. Standardised studies on Molar Incisor Hypomineralisation (MIH) and Hypomineralised Second Primary Molars (HSPM): a need. Eur Arch Paediatr Dent [Internet]. 2015 abr. 18 [citado 2022 nov. 11];16(3):247-55. Disponible en: https://europepmc.org/article/med/25894247 DOI: 10.1007/s40368-015-0179-7spa
dc.relation.references(12) Goodarzi F, Mahvi AH, Hosseini M, Nedjat S, Nabizadeh Nodehi R, Kharazifard MJ, et al. The prevalence of dental fluorosis and exposure to fluoride in drinking water: a systematic review. J Dent Res Dent Clin Dent Prospects. 2016 ag. 17;10(3):127-35. PMID: 27651877.spa
dc.relation.references(13) Khan A, Moola MH, Cleaton-Jones P. Global trends in dental fluorosis from 1980 to 2000: a systematic review. SADJ [Internet]. 2005 nov. [citado 2022 nov. 6];60(10):418-21. Disponible en: https://europepmc.org/ article/med/16438356 PMID: 16438356spa
dc.relation.references(14) Dean HT. Classification of mottled enamel diagnosis. J Am Dent Assoc. 1934 ag.;21(8):1421-6. DOI: 10.14219/ jada.archive.1934.0220spa
dc.relation.references(15) Marshman Z, Rodd HD. The psychosocial impacts of developmental enamel defects in children and young people. En: Drummond B, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 85-97. DOI: https://doi.org/10.1007/978-3-662- 44800-7_7spa
dc.relation.references(16) Jälevik B, Sabel N, Robertson A. Can molar incisor hypomineralization cause dental fear and anxiety or influence the oral health-related quality of life in children and adolescents?-a systematic review. Eur Arch Paediatr Dent [Internet]. 2022 febr. 1 [citado 2022 nov. 6];23(1):65-78. Disponible en: https://pubmed.ncbi.nlm. nih.gov/34110616/ DOI: 10.1007/s40368-021-00631-4spa
dc.relation.references(17) Elhennawy K, Rajjoub O, Reissmann DR, Doueiri MS, Hamad R, Sierwald I, et al. The association between molar incisor hypomineralization and oral health-related quality of life: a cross-sectional study. Clin Oral Invest. 2022 my. 1;26(5):4071-7. DOI: 10.1007/s00784-022-04375-3spa
dc.relation.references(18) Michaelis L, Ebel M, Bekes K, Klode C, Hirsch C. Influence of caries and molar incisor hypomineralization on oral health-related quality of life in children. Clin Oral Invest [Internet]. 2021 sept. 1 [citado 2022 nov. 14];25(9):5205-16. Disponible en: https://pubmed.ncbi.nlm. nih.gov/34259923/ DOI: 10.1007/s00784-021-03828-5spa
dc.relation.references(19) Dias FMCS, Gradella CMF, Ferreira MC, Oliveira LB. Molar-incisor hypomineralization: parent’s and children’s impact perceptions on the oral health-related quality of life. Eur Arch Paediatr Dent. 2021 abr. 1;22(2):273-82. DOI: 10.1007/s40368-020-00556-4spa
dc.relation.references(20) Kalkani M, Balmer RC, Homer RM, Day PF, Duggal MS. Molar incisor hypomineralisation: experience and perceived challenges among dentists specialising in paediatric dentistry and a group of general dental practitioners in the uk. Eur Arch Paediatr Dent [Internet]. 2016 abr. 1 [citado 2022 nov. 14];17(2):81-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26613718/ DOI: 10.1007/s40368-015-0209-5spa
dc.relation.references(21) Chankanka O, Levy SM, Warren JJ, Chalmers JM. A literature review of aesthetic perceptions of dental fluorosis and relationships with psychosocial aspects/ oral health-related quality of life. Community Dent Oral Epidemiol [Internet]. 2010 abr. [citado 2022 nov. 6];38(2):97-109. Disponible en: https://pubmed.ncbi.nlm. nih.gov/20002631/ DOI: 10.1111/j.1600-0528.2009.00507.xspa
dc.relation.references(22) Onoriobe U, Rozier RG, Cantrell J, King RS. Effects of enamel fluorosis and dental caries on quality of life. J Dent Res [Internet]. 2014 oct. [citado 2022 nov. 6];93(10):972-9. Disponible en: https://pubmed.ncbi.nlm. nih.gov/25154834/ DOI: 10.1177/0022034514548705spa
dc.relation.references(23) Andrade NS, Torres dos Santos I, Santos Lima LM, Branco Lima CC, Moura L de FA de D, Barros SSLV, et al. Impact of Developmental enamel defects on quality of life in 5-year-old children. Int J Paediatr Dent [Internet]. 2019 sept. 1 [citado 2022 nov. 6];29(5):557-65. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30912196/ DOI: 10.1111/ ipd.12498spa
dc.relation.references(24) García-Pérez Á, Irigoyen-Camacho ME, Borges-Yáñez SA, Zepeda-Zepeda MA, Bolona-Gallardo I, Maupomé G. Impact of caries and dental fluorosis on oral health-related quality of life: a cross-sectional study in schoolchildren receiving water naturally fluoridated at above-optimal levels. Clin Oral Invest. 2017 dic. 1;21(9):2771-80. DOI: 10.1007/s00784-017-2079-1spa
dc.relation.references(25) Nilchian F, Asgary I, Mastan F. The effect of dental fluorosis on the quality of life of female high school and precollege students of high fluoride-concentrated area. J Int Soc Prev Community Dent [Internet]. 2018 jul. 1 [citado 2022 nov. 6];8(4):314-9. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC6071349/ DOI: 10.4103/jispcd.JISPCD_94_18spa
dc.relation.references(26) Pahuja M, Pradhan S, Nagar V. Knowledge, attitude, and esthetic perceptions about dental fluorosis amongst the rural population in Meerut District, Uttar Pradesh. Indian J Dent Sci [Internet]. 2019 en. [citado 2022 nov. 6];11:12-6. Disponible en: https://www.researchgate. net/publication/331173453_Knowledge_attitude_and_ esthetic_perceptions_about_dental_fluorosis_amongst_ the_rural_population_in_Meerut_District_Uttar_Pradesh DOI: 10.4103/IJDS.IJDS_65_18spa
dc.relation.references(27) Shyam R, Bhadravathi Chaluvaiah M, Kumar A, Pahwa MB, Rani G, Phogat R. Impact of dental fluorosis on the oral health related quality of life among 11- to 14-year old school children in endemic fluoride areas of Haryana (India). Int Dent J [Internet]. 2020 oct. [citado 2022 nov. 6];70(5):340-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32358889/ DOI: 10.1111/idj.12567spa
dc.relation.references(28) Rood HD, Boissonade FM, Day PF. Pulpal status of hypomineralized permanent molars. Pediatr Dent [Internet]. 2007 nov. [citado 2022 nov. 6];29(6):514-20. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18254423/ PMID: 18254423.spa
dc.relation.references(29) Raposo F, De Carvalho Rodrigues AC, Lia ÉN, Leal SC. Prevalence of hypersensitivity in teeth affected by molar incisor hypomineralization (mih). Caries Res [Internet]. 2019 jun. 1 [citado 2022 nov. 6];53(4):424-30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30677762/ DOI: 10.1159/000495848spa
dc.relation.references(30) Wall A, Leith R. A questionnaire study on perception and clinical management of molar incisor hypomineralisation (MIH) by Irish dentists. Eur Arch Paediatr Dent [Internet]. 2020 dic. [citado 2022 nov. 11];21(6):703-10. Disponible en: https://link.springer.com/article/10.1007/s40368- 020-00519-9 DOI: 10.1007/s40368-020-00519-9spa
dc.relation.references(31) Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2008 sept. [citado 2022 nov. 6];18(5):333-40. Disponible en: https://pubmed.ncbi.nlm. nih.gov/18328044/ DOI: 10.1111/j.1365-263X.2007.00908.xspa
dc.relation.references(32) Jälevik B, Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent [Internet]. 2002 febr. [citado 2022 nov. 6];12(1):24-32. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/11853245/ DOI: 10.1046/j.0960- 7439.2001.00318.xspa
dc.relation.references(33) Jälevik B, Klingberg G. Treatment outcomes and dental anxiety in 18-year-olds with mih, comparisons with healthy controls - A longitudinal study. Int J Paediatr Dent. 2012 mzo.;22(2):85-91. DOI: 10.1111/j.1365-263X.2011.01161.xspa
dc.relation.references(34) Fejerskov O. Pathology of dental caries. En: Fejerskov O, Nyvad B, Kidd E, editores. Dental caries: the disease and its clinical management. 3.ª ed. Oxford: Willey-Blackwell; 2015. p. 49-85.spa
dc.relation.references(35) Marín LM, Cury JA, Tenuta LMA, Castellanos JE, Martignon S. Higher fluorosis severity makes enamel less resistant to demineralization. Caries Res [Internet]. 2016 sept. 1 [citado 2022 nov. 15];50(4):407-13. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27458817/ DOI: 10.1159/000447270spa
dc.relation.references(36) Martinez-Mier EA, Lippert F. Teeth with mild and moderate enamel fluorosis demonstrate increased caries susceptibility in vitro. J Evid Based Dent Pract. 2017 sept. 1;17(3):293-5. doi: 10.1016/j.jebdp.2017.07.001spa
dc.relation.references(37) Vargas-Ferreira F, Salas MMS, Nascimento GG, Tarquinio SBC, Faggion CM, Peres MA, et al. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis. J Dent [Internet]. 2015 jun. 1 [citado 2022 nov. 6];43(6):619-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25862273/ DOI: 10.1016/j.jdent.2015.03.011spa
dc.relation.references(38) Portella DP, Dias BC, Ferreira P, de Souza JF, Wambier L, da Silva Assunção LR. The Association of Developmental Dental Defects and the Clinical Consequences in the Primary Dentition: A Systematic Review of Observational Studies. Pediatr Dent [Internet]. 2022 sept. [citado 2023 en. 11];44(5):330-41. Disponible en: https://pubmed.ncbi. nlm.nih.gov/36309777/spa
dc.relation.references(39) Costa FS, Silveira ER, Pinto GS, Nascimento GG, Thomson WM, Demarco FF. Developmental defects of enamel and dental caries in the primary dentition: a systematic review and meta-analysis. J Dent [Internet]. 2017 my. 1 [citado 2022 nov. 6];60:1-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/28347809/ DOI: 10.1016/j. jdent.2017.03.006spa
dc.relation.references(40) Paixão-Gonçalves S, Corrêa-Faria P, Ferreira FM, Ramos-Jorge ML, Paiva SM, Pordeus IA. Risk of dental caries in primary teeth with developmental defects of enamel: a longitudinal study with a multilevel approach. Caries Res [Internet]. 2019 nov. [citado 2022 nov. 6];53(6):667-74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31291628/ DOI: 10.1159/000501029spa
dc.relation.references(41) Castañeda-Sarmiento S, Uchima Koecklin KH, Barahona Hernandez MB, Santos GP, Bruno Luyo JC, Sánchez Sotomayor JC, et al. Association between developmental defects of enamel and early childhood caries in children under 6 years old: a systematic review and meta-analysis. Heliyon [Internet]. 2022 sept. [citado 2023 en. 10];8(9):e10479. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC9469663/ DOI: 10.1016/j. heliyon.2022.e10479spa
dc.relation.references(42) Kosma I, Kevrekidou A, Boka V, Arapostathis K, Kotsanos N. Molar incisor hypomineralisation (mih): correlation with dental caries and dental fear. Eur Arch Paediatr Dent [Internet]. 2016 abr. 1 [citado 2022 nov. 6];17(2):123- 9. Disponible en: https://pubmed.ncbi.nlm.nih. gov/27026246/ DOI: 10.1007/s40368-016-0221-4spa
dc.relation.references(43) Americano Andrade GC, Jacobsen PE, Mendes Soviero V, Haubek D. A systematic review on the association between molar incisor hypomineralization and dental caries. Int J Paediatr Dent [Internet]. 2017 en. [citado 2022 nov. 6];27(1):11-21. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27098755/ DOI: 10.1111/ipd.12233spa
dc.relation.references(44) Nota A, Palumbo L, Pantaleo G, Gherlone EF, Tecco S. De velopmental enamel defects (DDE) and their association with oral health, preventive procedures, and children’s psychosocial attitudes towards home oral hygiene: a cross-sectional study. Int J Environ Res Public Health. 2020 jun. 5;17(11):4025. DOI: 10.3390/ijerph17114025spa
dc.relation.references(45) Mahoney EK, Farah R. Molar incisor hypomineralization: structure, composition, and properties. En: Drummond B, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer Verlag Berlin Heidelberg; 2015 [Internet] [citado 2022 nov. 6]. p. 73-84. Disponible en: https://link.springer.com/ch apter/10.1007/978-3-662-44800-7_6 DOI: 10.1007/978- 3-662-44800-7_6spa
dc.relation.references(46) Lygidakis NA, Wong F, Jälevik B, Vierrou A-M, Alaluusua S, Espelid I. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor- hypomineralisation (mih): an eapd policy document. Eur Arch Paediatr Dent. 2010 abr.;11(2):75-81. DOI: 10.1007/ BF03262716spa
dc.relation.references(47) Thylstrup A, Fejerskov O. Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dent Oral Epidemiol. 1978 dic.;6(6):315-28. Disponible en: https://pubmed.ncbi.nlm. nih.gov/282114/ DOI: 10.1111/j.1600-0528.1978.tb01173.xspa
dc.relation.references(48) Saldarriaga A, Rojas-Gualdrón DF, Restrepo M, Bussaneli DG, Fragelli C, de Cássia Loiola Cordeiro R, et al. Clinical changes in the severity of dental fluorosis: a longitudi nal evaluation. bmc Oral Health [Internet]. 2021 jul. 22 [citado 2022 dic. 6];21(366):1-9. Disponible en: https:// bmcoralhealth.biomedcentral.com/articles/10.1186/ s12903-021-01729-3 DOI: 10.1186/s12903-021-01729-3spa
dc.relation.references(49) Schwendicke F, Elhennawy K. Health economic evaluation of management strategies for mih. En: Bekes K, editor. Molar incisor hypomineralization [Internet]. Cham (Suiza): Springer Nature; 2020 [citado 2022 nov. 11]. p. 197- 205. Disponible en: https://www.researchgate.net/ publication/338369018_Health_Economic_Evaluation_ of_Management_Strategies_for_MIH DOI: 10.1007/978- 3-030-31601-3_16spa
dc.relation.references(50) Elhennawy K, Schwendicke F. Managing molar-incisor hypomineralization: a systematic review. J Dent [Internet]. 2016 dic. [citado 2022 nov. 11];55:16-24. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27693779/ DOI: 10.1016/j.jdent.2016.09.012spa
dc.relation.references(51) Elhennawy K, Jost-Brinkmann PG, Manton DJ, Paris S, Schwendicke F. Managing molars with severe molar-incisor hypomineralization: a cost-effectiveness analysis within German healthcare. J Dent [Internet]. 2017 ag. [citado 2022 nov. 6];63:65-71. Disponible en: https://www. researchgate.net/publication/317326317_Managing_ molars_with_severe_molar-incisor_hypomineralization_A_ cost-effectiveness_analysis_within_German_healthcare DOI: 10.1016/j.jdent.2017.05.020spa
dc.relation.references(52) Almuallem Z, Busuttil-Naudi A. Molar incisor hypomineralisation (mih) - an overview. Br Dent J [Internet]. 2018 oct. 5 [citado 2022 nov. 11];225(7):601-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30287963/ DOI: 10.1038/sj.bdj.2018.814spa
dc.relation.references(53) Naranjo Sierra MC. Terminología, clasificación y medición de los defectos en el desarrollo del esmalte. Revisión de literatura/Terminology, classification and measuring of the developmental defects of enamel. Literature review. Univ Odontol [Internet]. 2013 jun. 30 [citado 2022 nov. 6];32(68):33-44. Disponible en: https://revistas.javeriana. edu.co/index.php/revUnivOdontologica/article/view/ SICI%3A%202027-3444%28201301%2932%3A68%- 3C33%3ATCMDDE%3E2.0.CO%3B2-Kspa
dc.relation.references(54) Clarkson J. Review of terminology, classifications, and indices of developmental defects of enamel. Adv Dent Res. 1989 sept.;3(2):104-9. DOI: 10.1177/08959374890030020601spa
dc.relation.references(55) Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental fluorosis: the risk of misdiagnosis-a review. Biol Trace Elem Res [Internet]. 2021 my. 1 [citado 2022 nov. 6];199(5):1762-70. Disponible en: https://pubmed. ncbi.nlm.nih.gov/32705431/ DOI: 10.1007/s12011-020- 02296-4spa
dc.relation.references(56) Sabokseir A, Golkari A, Sheiham A. Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children. Peer J [Internet]. 2016 febr. 25 [citado 2022 nov. 6];4(2):e1745. Disponible en: https://pubmed. ncbi.nlm.nih.gov/26966672/ DOI: 10.7717/peerj.1745spa
dc.relation.references(57) Castro MJ, Mendes JJ, Vinga S, de Andrade DC. Differential diagnosis of developmental defects of enamel: a review. Ann Med [Internet]. 2021 sept. 28 [citado 2022 dic. 14];53(Supl. 1):S49-S50. Disponible en: https://www. tandfonline.com/doi/abs/10.1080/07853890.2021.18 97305 DOI: 10.1080/07853890.2021.1897305spa
dc.relation.references(58) Cutress TW, Suckling GW. Differential diagnosis of dental fluorosis. J Dent Res. 1990 febr.;69(Supl. 2):714-20. DOI: 10.1177/00220345900690S138spa
dc.relation.references(59) Weerheijm KL. Molar incisor hypomineralisation (MIH). Eur J Paediatr Dent. 2003 sept.;4(3):114-20. PMID: 14529330spa
dc.relation.references(60) Ghanim A, Elfrink M, Weerheijm K, Mariño R, Manton D. A practical method for use in epidemiological studies on enamel hypomineralisation. Eur Arch Paediatr Dent [Internet]. 2015 jun. 18 [citado 2022 nov. 6];16(3):235-46. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ar ticles/PMC4469791/ DOI: 10.1007/s40368-015-0178-spa
dc.relation.references(61) Thylstrup A, Fejerskov O. Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dent Oral Epidemiol [Internet]. 1978 dic. [citado 2022 dic. 6];6(6):315-28. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/282114/ DOI: 10.1111/j.1600- 0528.1978.tb01173.xspa
dc.relation.references(62) Horowitz HS, Driscoll WS, Meyers RJ, Heifetz SB, King man A. A new method for assessing the prevalence of dental fluorosis-the tooth surface index of fluorosis. J Am Dent Assoc. 1984 jul.;109(1):37-41. DOI: 10.14219/jada. archive.1984.0268spa
dc.relation.references(63) Pendrys DG. The fluorosis risk index: a method for investigating risk factors. J Public Health Dent. 1990 sept.;50(5):291-8. DOI: 10.1111/j.1752-7325.1990.tb02138.xspa
dc.relation.references(64) Rozier RG. Epidemiologic indices for measuring the clinical manifestations of dental fluorosis: overview and critique. Adv Dent Res. 1994 jun.;8(1):39-55. DOI: 10.1177/08959374940080010901spa
dc.relation.references(65) Farah R, Drummond B, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralisation to its mineral density. Int J Paediatr Dent. 2010 sept.;20(5):353-60. DOI: 10.1111/j.1365-263X.2010.01061.xspa
dc.relation.references(66) Farah RA, Monk BC, Swain MV, Drummond BK. Protein content of molar-incisor hypomineralisation enamel. J Dent [Internet]. 2010 jul. [citado 2022 dic. 6];38(7):591-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20447437/ DOI: 10.1016/j.jdent.2010.04.012spa
dc.relation.references(67) Da Costa-Silva CM, Ambrosano GMB, Jeremias F, De Souza JF, Mialhe FL. Increase in severity of molar-incisor hypomineralization and its relationship with the colour of enamel opacity: a prospective cohort study. Int J Paediatr Dent [Internet]. 2011 sept. [citado 2022 dic. 6];21(5):333-41. Disponible en: https://pubmed.ncbi.nlm. nih.gov/21470321/ DOI: 10.1111/j.1365-263X.2011.01128.xspa
dc.relation.references(68) Restrepo M, Rojas-Gualdrón DF, de Farias AL, Girotto Bussaneli D, Santos-Pinto L. Association between frequency and severity of dental fluorosis and molar incisor hypomineralization. J Clin Pediatr Dent [Internet]. 2022 mzo. 21 [citado 2022 dic. 18];46(1):30-4. Disponible en: https:// meridian.allenpress.com/jcpd/article/46/1/30/479335/ Association-Between-Frequency-and-Severity-of DOI: 10.17796/1053-4625-46.1.6spa
dc.relation.references(69) Bittencourt SP, Cesario FE. Association between molar incisor hypomineralization and enamel hypoplasia. J Clin Pediatr Dent. 2022 my. 9;46(2):143-7. DOI: 10.17796/1053- 4625-46.2.9spa
dc.relation.references(1) Nanci A, editor. Ten Cate’s oral histology: development, structure, and function [Internet]. 9.ª ed. St. Louis (Missouri): Mosby, Elsevier; 2016 [citado 2022 nov. 15]. Cap. 5, Development of the tooth and its supporting tissues; p. 179-231. Disponible en: http://dl.konkur.in/post/Book/ Dentistry/Ten-Cate-Oral-Histology-Development Structure-and-Function-9th-Edition-%5Bkonkur.in% 5D.pdfspa
dc.relation.references(2) Nanci A, editor. Ten Cate’s oral histology: development, structure, and function [Internet]. 9.ª ed. St. Louis (Missouri): Mosby, Elsevier; 2016 [citado 2022 nov. 15]. Cap. 7, Enamel: composition, formation, and structure; p. 288-369. Disponible en: http://dl.konkur.in/post/Book/Dentistry/ Ten-Cate-Oral-Histology-Development-Structure-and Function-9th-Edition-%5Bkonkur.in%5D.pdfspa
dc.relation.references(3) Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev [Internet]. 2017 my. 3;97(3):939- 93. Disponible en: https://journals.physiology.org/ doi/full/10.1152/physrev.00030.2016 doi: 10.1152/ physrev.00030.2016spa
dc.relation.references(4) Yamazaki H, Tran B, Beniash E, Kwak SY, Margolis HC. Proteolysis by MMP20 prevents aberrant mineralization in secretory enamel. J Dent Res [Internet]. 2019 abr. 1 [citado 2022 nov. 20];98(4):468-75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30744480/ doi: 10.1177/0022034518823537spa
dc.relation.references(5) Guo J, Lyaruu DM, Takano Y, Gibson CW, DenBesten PK, Bronckers ALJJ. Amelogenins as potential buffers during secretory-stage amelogenesis. J Dent Res. 2015 mzo. 16;94(3):412-20. doi: 10.1177/0022034514564186spa
dc.relation.references(6) Aris C. Enamel growth rate variation of inner, mid, and outer enamel regions between select permanent tooth types across five temporally distinct British samples. Arch Oral Biol [Internet]. 2022 my. [citado 2022 nov. 20];137:105394. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/35279434/ doi: 10.1016/j. archoralbio.2022.105394spa
dc.relation.references(7) McFarlane G, Loch C, Guatelli-Steinberg D, Bayle P, Le Luyer M, Sabel N, et al. Enamel daily secretion rates of deciduous molars from a global sample of children. Arch Oral Biol. 2021 dic.;132:105290. doi: 10.1016/j. archoralbio.2021.105290spa
dc.relation.references(8) Lacruz RS, Smith CE, Kurtz I, Hubbard MJ, Paine ML. New paradigms on the transport functions of maturation stage ameloblasts. J Dent Res. 2013 Feb;92(2):122-9. Disponible en: https://journals.sagepub.com/ doi: 10.1177/0022034512470954spa
dc.relation.references(9) Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca2+ transport and signalling in enamel cells. J Physiol. 2017 May 15;595(10):3015-3039. Disponible en: https:// doi.org/10.1113/JP272775spa
dc.relation.references(10) Suga S. Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res [Internet]. 1989 sept. [citado 2022 nov. 20];3(2):188-98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2640430/ doi: 10.1177/08959374890030021901spa
dc.relation.references(11) Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics. 3.ª ed. Canadá: Mosby, Elsevier; 2013. Cap. 3, Early stages of development; p. 66-91.spa
dc.relation.references(12) A review of the developmental defects of enamel index (dde Index): Commission on Oral Health, Research & Epidemiology: Report of an fdi Working Group. Int Dent J [Internet]. 1992 dic. 1 [citado 2022 nov. 6];42(6):411- 26. Disponible en: https://pubmed.ncbi.nlm.nih. gov/1286924/ pmid: 1286924.spa
dc.relation.references(13) Suckling GW. Developmental defects of enamel - Historical and present-day perspectives of their pathogenesis. Adv Dent Res. 1989 sept.;3(2):87-94. doi: 10.1177/08959374890030022901 pmid: 2701161.spa
dc.relation.references(14) Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. omim.org: Online Mendelian Inheritance in Man (omim®), an online catalog of human genes and genetic disorders. Nucleic Acids Res [Internet]. 2015 en. 28 [citado 2022 nov. 20];43(D1):D789-D798. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4383985/ doi: 10.1093/nar/gku1205spa
dc.relation.references(15) Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res [Internet]. 2015 en. 20 [citado 2022 nov. 20];94(1):52- 61. Disponible en: https://pubmed.ncbi.nlm.nih. gov/25389004/ doi: 10.1177/0022034514556708spa
dc.relation.references(16) Crawford PJM, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis [Internet]. 2007 abr. 4 [citado 2022 nov. 20];2(17):1-11. Disponible en: https://ojrd. biomedcentral.com/articles/10.1186/1750-1172-2-17 doi: 10.1186/1750-1172-2-17spa
dc.relation.references(17) Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol [Internet]. 2017 jun. [citado 2022 nov. 20];8:435. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC5483479/ doi: 10.3389/fphys.2017.00435spa
dc.relation.references(18) Wright JT. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet Part A. 2006 dic.;140A(23):2547-55. doi: 10.1002/ ajmg.a.31358spa
dc.relation.references(19) Simancas-Escorcia VH, Natera-Guarapo AE, Acosta de Camargo MG. Genes involved in amelogenesis imperfecta. Part ii. Rev Fac Odontol Univ Antioq. 2019 oct.;30(2):236-47. doi: 10.17533/udea.rfo.v30n2a9spa
dc.relation.references(20) Freiman A, Borsuk D, Barankin B, Sperber GH, Krafchik B. Dental manifestations of dermatologic conditions. J Am Acad Dermatol [Internet]. 2009 febr. [citado 2022 nov. 20];60(2):289-98. Disponible en: https://pubmed.ncbi. nlm.nih.gov/19027989/ doi: 10.1016/j.jaad.2008.09.056spa
dc.relation.references(21) Hickey AJ, Vergo TJ. Prosthetic treatments for patients with ectodermal dysplasia. J Prosthet Dent [Internet]. 2001 oct. [citado 2022 nov. 22];86(4):364-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11677529/ doi: 10.1067/mpr.2001.118876spa
dc.relation.references(22) Kantaputra PN, Matangkasombut O, Sripathomsawat W. Split hand-split foot-ectodermal dysplasia and amelogenesis imperfecta with a tp63 mutation. Am J Med Genet Part A [Internet]. 2012 en. [citado 2022 nov. 20];158A(1):188-92. Disponible en: https://pubmed.ncbi. nlm.nih.gov/22065540/ doi: 10.1002/ajmg.a.34356spa
dc.relation.references(23) Laugel-Haushalter V, Langer A, Marrie J, Fraulob V, Schuhbaur B, Koch-Phillips M, et al. From the transcription of genes involved in ectodermal dysplasias to the understanding of associated dental anomalies. Mol Syndromol [Internet]. 2012 oct. [citado 2022 nov. 20];3(4):158-68. Disponible en: https://www.karger. com/Article/FullText/342833 doi: 10.1159/000342833spa
dc.relation.references(24) Lee SK, Lee ZH, Lee SJ, Ahn BD, Kim YJ, Lee SH, et al. dlx3 mutation in a new family and its phenotypic variations. J Dent Res [Internet]. 2008 abr. [citado 2022 nov. 20];87(4):354-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/18362318/ doi: 10.1177/154405910808700402spa
dc.relation.references(25) Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, et al. dlx3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs [Internet]. 2011 jun. [citado 2022 nov. 20];194(1):49-59. Disponible en: https://www.karger.com/Article/FullText/322561 doi: 10.1159/000322561spa
dc.relation.references(26) Jagtap R, Alansari R, Ruprecht A, Kashtwari D. Trichodentoosseous syndrome: a case report and review of literature. bjr Case Rep [Internet]. 2019 dic. [citado 2022 nov. 20];5(4):20190039. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/31938567 doi: 10.1259/bjrcr.20190039spa
dc.relation.references(27) Polizzi A, Santonocito S, Patini R, Quinzi V, Mummolo S, Leonardi R, et al. Oral alterations in heritable epidermolysis bullosa: a clinical study and literature review. BioMed Res Int [Internet]. 2022 my. [citado 2022 nov. 20];2022:6493156. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC9173894/ doi: 10.1155/2022/6493156spa
dc.relation.references(28) Seow WK. Developmental defects of enamel and dentine: challenges for basic science research and clinical management. Aust Dent J [Internet]. 2014 jun. [citado 2022 nov. 20];59(Supl. 1):143-54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24164394/ doi: 10.1111/adj.12104spa
dc.relation.references(29) Wright JK. Oral manifestations in the epidermolysis bullosa spectrum. Dermatol Clin [Internet]. 2010 en. [citado 2022 nov. 20];28(1):159-64. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2787479/ doi: 10.1016/j.det.2009.10.022spa
dc.relation.references(30) Wright JT, Johnson LB, Fine JD. Developmental defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol. 1993 nov. 1;38(11):945-55. doi: 10.1016/0003-9969(93)90107-Wspa
dc.relation.references(31) Chavez MB, Kramer K, Chu EY, Thumbigere-Math V, Foster BL. Insights into dental mineralization from three heritable mineralization disorders. J Struct Biol. 2020 oct. 1;212(1):107597. doi: 10.1016/j.jsb.2020.107597spa
dc.relation.references(32) Foster BL, Nociti FH, Somerman MJ. The rachitic tooth. Endocr Rev [Internet]. 2013 dic. 4 [citado 2022 nov. 20];35(1):1-34. Disponible en: https://europepmc.org/ articles/PMC3895863 doi: 10.1210/er.2013-1009spa
dc.relation.references(33) Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis [Internet]. 2007 sept. [citado 2022 nov. 20];13(5):482-9. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/17714351/ doi: 10.1111/j.1601- 0825.2006.01326.xspa
dc.relation.references(34) Rabbani A, Rahmani P, Ziaee V, Ghodoosi S. Dental problems in hypophosphatemic rickets, a cross sectional study. Iran J Pediatr. 2012 dic.;22(4):531-4. pmid: 23430969spa
dc.relation.references(35) Souza MA, Soares LAV, Santos MA Dos, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (Sao Paulo) [Internet]. 2010 nov. [citado 2022 nov. 20];65(10):1023-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21120305/ doi: 10.1590/S1807-59322010001000017spa
dc.relation.references(36) De Boeck K, Vermeulen F, Dupont L. The diagnosis of cystic fibrosis. Presse Med. 2017 jun.;46(6 Pt. 2):e97-e108. doi: 10.1016/j.lpm.2017.04.010spa
dc.relation.references(37) Azevedo TDPL, Feijó GCS, Bezerra ACB. Presence of developmental defects of enamel in cystic fibrosis patients. J Dent Child (Chic). 2006;73(3):159-63. pmid: 17367033.spa
dc.relation.references(38) Narang A, Maguire A, Nunn JH, Bush A. Oral health and related factors in cystic fibrosis and other chronic respiratory disorders. Arch Dis Child [Internet]. 2003 ag. [citado 2022 nov. 20];88(8):702-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/12876168/ doi: 10.1136/ adc.88.8.702spa
dc.relation.references(39) Ferrazzano GF, Sangianantoni G, Cantile T, Amato I, Orlando S, Ingenito A. Dental enamel defects in Italian children with cystic fibrosis: an observational study. Community Dent Health. 2012 mzo.;29(1):106-9. pmid: 22482260.spa
dc.relation.references(40) Nordgarden H, Lima K, Skogedal N, Følling I, Storhaug K, Abrahamsen TG. Dental developmental disturbances in 50 individuals with the 22q11.2 deletion syndrome; relation to medical conditions? Acta Odontol Scand [Internet]. 2012 my. [citado 2022 nov. 20];70(3):194- 201. Disponible en: https://pubmed.ncbi.nlm.nih. gov/22070626/ doi: 10.3109/00016357.2011.629624spa
dc.relation.references(41) Wong DH, Rajan S, Hallett KB, Manton DJ. Medical and dental characteristics of children with chromosome 22q11.2 deletion syndrome at the Royal Children’s Hospital, Melbourne. Int J Paediatr Dent [Internet]. 2021 nov. 1 [citado 2022 nov. 20];31(6):682-90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33222329/ doi: 10.1111/ipd.12755spa
dc.relation.references(42) Luder HU, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet DF. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the cnnm4 gene. PLoS one [Internet]. 2013 oct. 23 [citado 2022 nov. 20];8(10):e78529. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC3806830/ doi: 10.1371/journal.pone.0078529spa
dc.relation.references(43) Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, et al. Mutations in cnnm4 cause Jalili syndrome, consisting of autosomal-recessive cone rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009 febr.;84(2):266-73. doi: 10.1016/j. ajhg.2009.01.009spa
dc.relation.references(44) Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy candidiasis-ectodermal dystrophy (apeced) in a series of 68 patients. N Engl J Med [Internet]. 1990 jun. 28 [citado 2022 nov. 20];322(26):1829-36. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/2348835/ doi: 10.1056/ NEJM199006283222601spa
dc.relation.references(45) Collins SM, Dominguez M, Ilmarinen T, Costigan C, Irvine AD. Dermatological manifestations of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Br J Dermatol. 2006 jun.;154(6):1088-93. doi: 10.1111/j.1365-2133.2006.07166.xspa
dc.relation.references(46) Hoff M, van Grunsven MF, Jongebloed WL, ’s-Gravenmade EJ. Enamel defects associated with tuberous sclerosis: a clinical and scanning-electron-microscope study. Oral Surg Oral Med Oral Pathol. 1975 ag.;40(2):261-9. doi: 10.1016/0030-4220(75)90158-9spa
dc.relation.references(47) Sampson JR, Attwood D, Mughery ASA, Reid JS. Pitted enamel hypoplasia in tuberous sclerosis. Clin Genet. 1992 jul.;42(1):50-2. doi: 10.1111/j.1399-0004.1992.tb03137.xspa
dc.relation.references(48) Martelli H, Lima LS, Bonan PRF, Coletta RD. Oral manifestations leading to the diagnosis of familial tuberous sclerosis. Indian J Dent Res. 2010 en. 1;21(1):138-40.spa
dc.relation.references(49) Flanagan N, O’Connor WJ, McCartan B, Miller S, McMenamin J, Watson R. Developmental enamel defects in tuberous sclerosis: a clinical genetic marker? J Med Genet [Internet]. 1997 ago. [citado 2022 nov. 20];34(8):637-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/9279754/ doi: 10.1136/jmg.34.8.637spa
dc.relation.references(50) Sparling JD, Hong CH, Brahim JS, Moss J, Darling TN. Oral findings in 58 adults with tuberous sclerosis complex. J Am Acad Dermatol [Internet]. 2007 my. [citado 2022 nov. 20];56(5):786-90. Disponible en: https://pubmed.ncbi. nlm.nih.gov/17239986/ doi: 10.1016/j.jaad.2006.11.019spa
dc.relation.references(51) Tidyman WE, Rauen KA. The rasopathies: developmental syndromes of Ras/mapk pathway dysregulation. Curr Opin Genet Dev. 2009 jun.;19(3):230-6. doi: 10.1016/j. gde.2009.04.001spa
dc.relation.references(52) Goodwin AF, Tidyman WE, Jheon AH, Sharir A, Zheng X, Charles C, et al.. Abnormal Ras signaling in Costello syndrome (cs) negatively regulates enamel formation. Hum Mol Genet [Internet]. 2014 febr. [citado 2022 nov. 20];23(3):682-92. Disponible en: https://pubmed.ncbi. nlm.nih.gov/24057668/ doi: 10.1093/hmg/ddt455spa
dc.relation.references(53) Roomaney IA, Kabbashi S, Chetty M. Enamel renal syndrome: protocol for a scoping review. jmir Res Protoc [Internet]. 2021 nov. 30 [citado 2022 nov. 20];10(11). Disponible en: https://pubmed.ncbi.nlm. nih.gov/34851300/ doi: 10.2196/29702spa
dc.relation.references(54) Farias MLM, Ornela GO, de Andrade RS, Martelli DRB, Dias VO, Júnior HM. Enamel renal syndrome: a systematic review. Indian J Nephrol [Internet]. 2021 en. [citado 2022 nov. 20];31(1):1-8. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/33994680 doi: 10.4103/ijn.IJN_27_19spa
dc.relation.references(55) Dourado MR, dos Santos CRR, Dumitriu S, Iancu D, Albanyan S, Kleta R, et al. Enamel renal syndrome: a novel homozygous fam20a founder mutation in 5 new Brazilian families. Eur J Med Genet [Internet]. 2019 nov. [citado 2022 nov. 20];62(11):103561. Disponible en: https://doi.org/10.1016/j.ejmg.2018.10.013 doi: 10.1016/j. ejmg.2018.10.013spa
dc.relation.references(56) Bussaneli DG, Vieira AR, Santos-Pinto L, Restrepo M. Molar-incisor hypomineralisation: an updated view for aetiology 20 years later. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 20];23(1):193-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34392496/ doi: 10.1007/s40368-021-00659-6spa
dc.relation.references(57) Pang L, Li X, Wang K, Tao Y, Cui T, Xu Q, et al. Interactions with the aquaporin 5 gene increase the susceptibility to molar-incisor hypomineralization. Arch Oral Biol. 2020 mzo.;111:104637. doi: 10.1016/j.archoralbio.2019.104637spa
dc.relation.references(58) Teixeira RJPB, Andrade NS, Queiroz LCC, Mendes FM, Moura MS, Moura L de FA de D, et al. Exploring the association between genetic and environmental factors and molar incisor hypomineralization: evidence from a twin study. Int J Paediatr Dent [Internet]. 2018 mzo. 1 [citado 2022 nov. 20];28(2):198-206. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28833715/ doi: 10.1111/ipd.12327spa
dc.relation.references(59) Vieira AR, Kup E. On the etiology of molar-incisor hypomineralization. Caries Res [Internet]. 2016 my. [citado 2022 nov. 20];50(2):166-9. Disponible en: https://pubmed. ncbi.nlm.nih.gov/27111773/ doi: 10.1159/000445128spa
dc.relation.references(60) Garot E, Rouas P, Somani C, Taylor GD, Wong F, Lygidakis NA. An update of the aetiological factors involved in molar incisor hypomineralisation (mih): a systematic review and meta-analysis. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 20];23(1):23-38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34164793/ doi: 10.1007/s40368-021-00646-xspa
dc.relation.references(61) Elfrink MEC, Schuller AA, Weerheijm KL, Veerkamp JSJ. Hypomineralized second primary molars: prevalence data in Dutch 5-year-olds. Caries Res. 2008 jun. 4;42(4):282-5. doi: 10.1159/000135674spa
dc.relation.references(62) Marina L, Lima S, Dantas-Neta N, Moura W da S, Moura MS de, Mantesso A, et al. Impact of dental fluorosis on the quality of life of children and adolescents/Impacto da fl uorose dentária na qualidade de vida de crianças e adolescentes. Rev odontol unesp. 2014 oct.;43(5):326- 32. doi: 10.1590/rou.2014.052spa
dc.relation.references(63) Wong HM, Peng SM, King NM, McGrath C. Infant growth and the occurrence of developmental defects of enamel in 12-year-olds. Caries Res [Internet]. 2015 sept. [citado 2022 nov. 22];49(6):575-82. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26418680/ doi: 10.1159/000381425spa
dc.relation.references(64) Collignon A-M, Vergnes J-N, Germa A, Azogui S, Breinig S, Hollande C, et al. Factors and mechanisms involved in acquired developmental defects of enamel: a scoping review. Front Pediatr. 2022 febr. 24;10:836708. doi: 10.3389/fped.2022.836708spa
dc.relation.references(65) Lygidakis NA, Garot E, Somani C, Taylor GD, Rouas P, Wong FSL. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor hypomineralisation (mih): an updated European Academy of Paediatric Dentistry policy document. Eur Arch Paediatr Dent. 2022 febr.;23(1):3-21. doi: 10.1007/s40368-021- 00668-5spa
dc.relation.references(66) Fatturi AL, Wambier LM, Chibinski AC, Assunção LR da S, Brancher JA, Reis A, et al. A systematic review and meta-analysis of systemic exposure associated with molar incisor hypomineralization. Community Dent Oral Epidemiol [Internet]. 2019 oct. [citado 2022 nov. 22];47(5):407-15. Disponible en: https://pubmed.ncbi. nlm.nih.gov/31111554/ doi: 10.1111/cdoe.12467spa
dc.relation.references(67) Mariam S, Goyal A, Dhareula A, Gauba K, Bhatia SK, Kapur A. A case-controlled investigation of risk factors associated with molar incisor hypomineralization (MIH) in 8-12 year-old children living in Chandigarh, India. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 22];23(1):97-107. Disponible en: https://pubmed. ncbi.nlm.nih.gov/34725798/ doi: 10.1007/s40368-021- 00665-8spa
dc.relation.references(68) Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Invest [Internet]. 2021 dic. 1 [citado 2022 nov. 20];25(12):6501-16. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/34414520 doi: 10.1007/s00784-021-04146-6spa
dc.relation.references(69) Limeira FIR, Yamauti M, Moreira AN, Galdino TM, de Magalhães CS, Abreu LG. Dental caries and developmental defects of enamel in individuals with chronic kidney disease: systematic review and meta-analysis. Oral Dis [Internet]. 2019 sept. [citado 2022 nov. 22];25(6):1446-64. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30338628/ doi: 10.1111/odi.12993spa
dc.relation.references(70) Sezer B, Kaya R, Kodaman Dokumacıgil N, Sıddıkoğlu D, Güven S, Yıldız N, et al. Assessment of the oral health status of children with chronic kidney disease. Pediatr Nephrol [Internet]. 2022 abr. 30 [citado 2022 nov. 22];38:269-77. Disponible en: https://europepmc.org/article/med/35499576 doi: 10.1007/s00467-022-05590-6spa
dc.relation.references(71) Harrison M, Cameron A, Kilpatrick N. Syndromes and diseases associated with developmental defects of enamel. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 45-58. doi: 10.1007/978-3-662- 44800-7_4spa
dc.relation.references(72) Venkatesh Babu NS, Patel PB. Oral health status of children suffering from thyroid disorders. J Indian Soc Pedod Prev Dent [Internet]. 2016 abr. [citado 2022 nov. 22];34(2):139-44. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27080964/ doi: 10.4103/0970-4388.180443spa
dc.relation.references(73) Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2008 sept. [citado 2022 nov. 6];18(5):333- 40. Disponible en: https://pubmed.ncbi.nlm.nih. gov/18328044/ doi: 10.1111/j.1365-263X.2007.00908.xspa
dc.relation.references(74) Souto-Souza D, da Consolação Soares ME, Rezende VS, de Lacerda Dantas PC, Galvão EL, Falci SGM. Association between developmental defects of enamel and celiac disease: a meta-analysis. Arch Oral Biol [Internet]. 2018 mzo. [citado 2022 nov. 22];87:180-90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29306074/ doi: 10.1016/j.archoralbio.2017.12.025spa
dc.relation.references(75) Macho VMP, de Barros Menéres Manso MCA, E Silva DMV, de Andrade DJC. The difference in symmetry of the enamel defects in celiac disease versus non-celiac pediatric population. J Dent Sci [Internet]. 2020 sept. [citado 2022 nov. 22];15(3):345-50. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32952893/ doi: 10.1016/j. jds.2020.02.006spa
dc.relation.references(76) Tolomeu JSO, Soares MEC, Mourão PS, Ramos-Jorge ML. Is gestational diabetes mellitus associated with developmental defects of enamel in children? A systematic review with meta-analysis. Arch Oral Biol [Internet]. 2022 sept. [citado 2022 nov. 22];141:105488. Disponible en: https://pubmed.ncbi.nlm.nih. gov/35802995/ doi: 10.1016/j.archoralbio.2022.105488spa
dc.relation.references(77) Pascon T, Barbosa AMP, Cordeiro RCL, Bussaneli DG, Prudencio CB, Nunes SK, et al. Prenatal exposure to gestational diabetes mellitus increases developmental defects in the enamel of offspring. PLoS one. 2019 febr.;14(2):e0211771. doi: 10.1371/journal.pone.0211771spa
dc.relation.references(78) Neto MBC, Silva-Souza KP da, Maranhão VF, Botelho KVG, Heimer MV, Dos Santos-Junior VE. Enamel defects in deciduous dentition and their association with the occurrence of adverse effects from pregnancy to early childhood. Oral Health Prev Dent [Internet]. 2020 sept. 4 [citado 2022 nov. 22];18(1):741-6. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32895657/ doi: 10.3290/j. ohpd.a45077spa
dc.relation.references(79) Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev [Internet]. 2013 febr. [citado 2022 nov. 22];34(1):33-83. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23169676/ doi: 10.1210/er.2012-1012spa
dc.relation.references(80) Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc [Internet]. 2006 mzo. [citado 2023 en. 11];81(3):353-73. Disponible en: http://www.mayoclinicproceedings.org/article/ S0025619611614651/fulltext doi: 10.4065/81.3.353spa
dc.relation.references(81) Elger W, Illge C, Kiess W, Körner A, Kratzsch J, Schrock A, et al. Relationship between deciduous molar hypomineralisation and parameters of bone metabolism in preschool children. Int Dent J [Internet]. 2020 ag. [citado 2022 nov. 22];70(4):303-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32043580/ doi: 10.1111/idj.12550spa
dc.relation.references(82) Beckett DM, Broadbent JM, Loch C, Mahoney EK, Drummond BK, Wheeler BJ. Dental consequences of vitamin D deficiency during pregnancy and early infancy–An observational study. Int J Environ Res Public Health [Internet]. 2022 febr. 9 [citado 2022 nov. 22];19(4):1932. Disponible en: https://pubmed.ncbi.nlm. nih.gov/35206117/ doi: 10.3390/ijerph19041932spa
dc.relation.references(83) Reed SG, Voronca D, Wingate JS, Murali M, Lawson AB, Hulsey TC, et al. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: a pilot study. Pediatr Dent J [Internet]. 2017 abr. [citado 2022 nov. 22];27(1):21-8. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30100673/ doi: 10.1016/j.pdj.2016.08.001spa
dc.relation.references(84) Zerofsky M, Ryder M, Bhatia S, Stephensen CB, King J, Fung EB. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity. Matern Child Nutr [Internet]. 2016 oct. [citado 2022 nov. 22];12(4):898-907. Disponible en: https://pubmed.ncbi. nlm.nih.gov/25850574/ doi: 10.1111/mcn.12187spa
dc.relation.references(85) Bucci P, Carile F, Sangianantoni A, D’Angiò F, Santarelli A, Lo Muzio L. Oral aphthous ulcers and dental enamel defects in children with coeliac disease. Acta Paediatr Int J Paediatr. 2006 febr.;95(2):203-7. doi: 10.1111/j.1651- 2227.2006.tb02208.xspa
dc.relation.references(86) Masterson EE, Fitzpatrick AL, Enquobahrie DA, Mancl LA, Conde E, Hujoel PP. Malnutrition-related early childhood exposures and enamel defects in the permanent dentition: a longitudinal study from the Bolivian Amazon. Am J Phys Anthropol [Internet]. 2017 oct. [citado 2022 nov. 22];164(2):416-23. Disponible en: https://pubmed. ncbi.nlm.nih.gov/28752513/ doi: 10.1002/ajpa.23283spa
dc.relation.references(87) Bensi C, Costacurta M, Belli S, Paradiso D, Docimo R. Relationship between preterm birth and developmental defects of enamel: a systematic review and meta analysis. Int J Paediatr Dent [Internet]. 2020 nov. [citado 2022 nov. 22];30(6):676-86. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32243004/ doi: 10.1111/ ipd.12646spa
dc.relation.references(88) Mohamed RN, Basha S, Virupaxi SG, Eregowda NI, Parameshwarappa P. Hypomineralized primary teeth in preterm low birth weight children and its association with molar incisor hypomineralization-a 3-year-prospective study. Children (Basel, Switzerland) [Internet]. 2021 dic. 2 [citado 2022 nov. 22];8(12):1111. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/34943307/ doi: 10.3390/ children8121111spa
dc.relation.references(89) Ruschel HC, Vargas-Ferreira F, Tovo MF, Kramer PF, Feldens CA. Developmental defects of enamel in primary teeth: highly prevalent, unevenly distributed in the oral cavity and not associated with birth weight. Eur Arch Paediatr Dent [Internet]. 2019 jun. 1 [citado 2022 nov. 22];20(3):241-8. Disponible en: https://pubmed. ncbi.nlm.nih.gov/30888582/ doi: 10.1007/s40368-018- 0402-4spa
dc.relation.references(90) Casey BM, McIntire DD, Leveno KJ. The continuing value of the Apgar score for the assessment of newborn infants. N Engl J Med. 2001 febr. 15;344(7):467-71. doi: 10.1056/NEJM200102153440701spa
dc.relation.references(91) Nirmala SVSG, Quadar MA, Veluru S, Tharay N, Kolli NK, Minor Babu MS. Apgar index as a probable risk indicator for enamel defects in primary dentition: a cross sectional study. J Indian Soc Pedod Prev Dent [Internet]. 2015 jul. 1 [citado 2022 nov. 22];33(3):229-33. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26156278/spa
dc.relation.references(92) Pinto G dos S, Costa F dos S, Machado TV, Hartwig A, Pinheiro RT, Goettems ML, et al. Early-life events and developmental defects of enamel in the primary dentition. Community Dent Oral Epidemiol [Internet]. 2018 oct. [citado 2022 dic. 5];46(5):511-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30080266/ doi: 10.1111/cdoe.12408spa
dc.relation.references(93) Wilhoit LF, Scott DA, Simecka BA. Fetal alcohol spectrum disorders: characteristics, complications, and treatment. Community Ment Health J. 2017 ag.;53(6):711-8. doi: 10.1007/s10597-017-0104-0spa
dc.relation.references(94) Blanck-Lubarsch M, Dirksen D, Feldmann R, Sauerland C, Hohoff A. Tooth malformations, DMFT index, speech impairment and oral habits in patients with fetal alcohol syndrome. Int J Environ Res Public Health [Internet]. 2019 nov. 11 [citado 2022 nov. 22];16(22):4401. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31717945/ doi: 10.3390/ijerph16224401spa
dc.relation.references(95) Costello A, Dua T, Duran P, Gülmezoglu M, Oladapo OT, Perea W, et al. Defining the syndrome associated with congenital Zika virus infection: Vol. 94, Bulletin of the World Health Organization. Bull World Health Organ. 2016;94:406-406A. doi: 10.2471/BLT.16.176990spa
dc.relation.references(96) de Oliveira AMM, de Melo EGM, Mendes MLT, dos Santos Oliveira SJG, Tavares CSS, Vaez AC, et al. Oral and maxillofacial conditions, dietary aspects, and nutritional status of children with congenital Zika syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2020 jul. [citado 2022 nov. 29];130(1):71-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32493680/ doi: 10.1016/j. oooo.2020.02.019spa
dc.relation.references(97) Gusmão TP de L, Santos de Faria AB, Leão Filho JC, Carvalho A de AT, Gueiros LAM, Leão JC. Dental changes in children with congenital Zika syndrome. Oral Dis. 2020 mzo. 1;26(2):457-64. doi: 10.1111/odi.13238spa
dc.relation.references(98) Nóbrega Gomes PI, Aguiar do Amaral B, Duarte Azevedo I, Cunha de Medeiros Maia H, Rodrigues Arrais NM, Costa de Lima K. Association of congenital Zika syndrome with dental alterations in children with microcephaly. PLoS one [Internet]. 2022 nov. 1 [citado 2022 nov. 29];17(11):e0276931. Disponible en: https://journals.plos. org/plosone/article?id=10.1371/journal.pone.0276931 doi: 10.1371/journal.pone.0276931spa
dc.relation.references(99) Silva MCPM da, Arnaud M de A, Lyra MCA, Alencar Filho AV de, Rocha MÂW, Ferreira Ramos RC, et al. Dental development in children born to Zikv-infected mothers: a case-based study. Arch Oral Biol [Internet]. 2020 febr. [citado 2022 nov. 29];110:104598. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31775105/ doi: 10.1016/j.archoralbio.2019.104598spa
dc.relation.references(100) de Carvalho P, Arima L, Abanto J, Bönecker M. Maternal child health indicators associated with developmental defects of enamel in primary dentition. Ped Dent J. 2022 nov. 15; 44(6):425-32. pmid: 36947752.spa
dc.relation.references(101) Corrêa-Faria P, Martins-Júnior PA, Vieira-Andrade RG, Marques LS, Ramos-Jorge ML. Perinatal factors associated with developmental defects of enamel in primary teeth: a case-control study. Braz Oral Res [Internet]. 2013 my. 17 [citado 2022 nov. 29];27(4):363-8. Disponible en: http://www.scielo.br/j/bor/a/KK5X5V CmtyvqJYR4JzDM8jp/?lang=en doi: 10.1590/S1806- 83242013005000017spa
dc.relation.references(102) Fagrell TG, Ludvigsson J, Ullbro C, Lundin S-A, Koch G. Aetiology of severe demarcated enamel opacities--an evaluation based on prospective medical and social data from 17,000 children. Swed Dent J. 2011;35(2):57- 67. pmid: 21827015.spa
dc.relation.references(103) Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Hölttä P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci [Internet]. 1996 oct. [citado 2022 dic. 5];104 (5-6):493-7. Disponible en: https://pubmed.ncbi.nlm.nih. gov/9021315/ doi: 10.1111/j.1600-0722.1996.tb00131.xspa
dc.relation.references(104) Modrić VE, Verzak Ž, Karlović Z. Developmental defects of enamel in children with intellectual disability. Acta Stomatol Croat [Internet]. 2016 [citado 2022 nov. 29];50(1):65-71. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC5017281/ doi: 10.15644/ asc50/1/9spa
dc.relation.references(105) Nissanka-Jayasuriya EH, Odell EW, Phillips C. Dental stigmata of congenital syphilis: a historic review with present day relevance. Head Neck Pathol [Internet]. 2016 sept. [citado 2022 nov. 22];10(3):327-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4972761/ doi: 10.1007/s12105-016-0703-zspa
dc.relation.references(106) Leão JC, Gueiros LA, Porter SR. Oral manifestations of syphilis. Clinics (Sao Paulo) [Internet]. 2006 abr. [citado 2022 nov. 22];61(2):161-6. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/16680334/ doi: 10.1590/ S1807-59322006000200012spa
dc.relation.references(107) Putkonen T. Dental changes in congenital syphilis: relationship to other syphilitic stigmata. Acta Derm Venereol. 1962;42:44-62. pmid: 14489299.spa
dc.relation.references(108) Goho C. Chemoradiation therapy: effect on dental development. Pediatr Dent. 1993;15(1):6-12. pmid: 8233995.spa
dc.relation.references(109) Atif M, Mathur VP, Tewari N, Bansal K, Rahul M, Bakhshi S. Long-term effect of anticancer therapy on dentition in childhood cancer survivors: an observational, cross sectional study. Indian J Pediatr [Internet]. 2022 abr. [citado 2022 nov. 29];89(4):327-32. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/34106443/ doi: 10.1007/ s12098-021-03818-1spa
dc.relation.references(110) Peyam S, Bansal D. Anticancer therapy and dentition: an overlooked late adverse effect in childhood cancer survivors. Indian J Pediatr. 2022 abr.;89(4):319-20. doi: 10.1007/s12098-021-04071-2spa
dc.relation.references(111) Guagnano R, Romano F, Berger M, Fagioli F, Vallone V, Bello L, et al. Long-term effect of anticancer therapy on dentition of Italian children in remission from malignant disease: a cross-sectional study. Eur J Paediatr Dent [Internet]. 2022 jun. [citado 2022 nov. 29];23(2):131-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/35722839/ doi: 10.23804/ejpd.2022.23.02.11spa
dc.relation.references(112) Halperson E, Matalon V, Goldstein G, Saieg Spilberg S, Herzog K, Fux-Noy A, et al. The prevalence of dental developmental anomalies among childhood cancer survivors according to types of anticancer treatment. Sci Rep. 2022 dic.;12:4485. doi: 10.1038/s41598-022- 08266-1spa
dc.relation.references(113) Avşar A, Elli M, Darka Ö, Pinarli G. Long-term effects of chemotherapy on caries formation, dental development, and salivary factors in childhood cancer survivors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2007 dic. [citado 2022 nov. 29];104(6):781-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17618135/ doi: 10.1016/j.tripleo.2007.02.029spa
dc.relation.references(114) Krasuska-Sławińska E, Dembowska-Bagińska B, Brożyna A, Olczak-Kowalczyk D, Czarnowska E, Sowińska A. Changes in the chemical composition of mineralised teeth in children after antineoplastic treatment. Contemp Oncol (Poznan, Poland) [Internet]. 2018 [citado 2022 nov. 29];22(1):37-41. Disponible en: https://pubmed.ncbi.nlm. nih.gov/29692662/ doi: 10.5114/wo.2018.74392spa
dc.relation.references(115) Serna C, Vicente A, Finke C, Ortiz AJ. Drugs related to the etiology of molar incisor hypomineralization: a systematic review. J Am Dent Assoc [Internet]. 2016 febr. [citado 2022 nov. 29];147(2):120-30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26552335/ doi: 10.1016/j.adaj.2015.08.011spa
dc.relation.references(116) Serna Muñoz C, Ortiz Ruiz AJ, Pérez Silva A, Bravo González LA, Vicente A. Second primary molar hypomineralisation and drugs used during pregnancy and infancy: a systematic review. Clin Oral Invest [Internet]. 2020 mzo. [citado 2022 nov. 29];24(3):1287- 97. Disponible en: https://pubmed.ncbi.nlm.nih. gov/31312969/ doi: 10.1007/s00784-019-03007-7spa
dc.relation.references(117) Mastora A, Vadiakas G, Agouropoulos A, Gartagani Panagiotopoulou P, Gemou Engesaeth V. Developmental defects of enamel in first permanent molars associated with use of asthma drugs in preschool aged children: a retrospective case-control study. Eur Arch Paediatr Dent [Internet]. 2017 abr. [citado 2022 nov. 29];18(2):105- 11. Disponible en: https://pubmed.ncbi.nlm.nih. gov/28255932/ doi: 10.1007/s40368-017-0280-1spa
dc.relation.references(118) Faustino-Silva DD, Rocha AF, da Rocha BS, Stein C. Use of antibiotics in early childhood and dental enamel defects in 6- to 12-year-old children in primary health care. Acta Odontol Latinoam. 2020 abr.;33(1):6-13. doi: 10.54589/aol.33/1/006spa
dc.relation.references(119) França TKXS, de Lima M de DM, Lima CCB, de Moura MS, Lopes TSP, de Moura JSS, et al. Quilombola children and adolescents show high prevalence of developmental defects of enamel. Cien Saude Colet [Internet]. 2021 jul. [citado 2022 nov. 22];26(7):2889-98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34231701/ doi: 10.1590/1413-81232021267.12762019spa
dc.relation.references(120) Seow WK. Dental enamel defects in the primary dentition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlin: Springer-Verlag Berlin Heidelberg; 2015. p. 1-14. doi: 10.1007/978-3-662-44800-7_1spa
dc.relation.references(121) Anthonappa RP, King NM. Enamel defects in the permanent dentition: prevalence and etiology. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlin: Springer-Verlag Berlin Heidelberg; 2015. p. 15-30. doi: 10.1007/978-3-662-44800-7_2spa
dc.relation.references(122) Seow WK. Clinical diagnosis of enamel defects: pitfalls and practical guidelines. Int Dent J [Internet]. 1997 jun. [citado 2022 nov. 6];47(3):173-82. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/9448804/ doi: 10.1002/j.1875- 595X.1997.tb00783.xspa
dc.relation.references(123) Caeiro-Villasenín L, Serna-Muñoz C, Pérez-Silva A, Vicente-Hernández A, Poza-Pascual A, Ortiz-Ruiz AJ. Developmental dental defects in permanent teeth resulting from trauma in primary dentition: a systematic review. Int J Environ Res Public Health [Internet]. 2022 en. 10 [citado 2022 nov. 29];19(2):754. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/35055575/ doi: 10.3390/ ijerph19020754spa
dc.relation.references(124) Skinner MF, Hung JTW. Social and biological correlates of localized enamel hypoplasia of the human deciduous canine tooth. Am J Phys Anthropol. 1989 jun.;79(2):159- 75. doi: 10.1002/ajpa.1330790204spa
dc.relation.references(125) Dinur N, Becker T, Levin A, Zadik Y, Itzhak J Ben, Azizi H, et al. Long-term dental implications of infant oral mutilation: a case series. Br Dent J [Internet]. 2021 sept. 24 [citado 2022 nov. 29];231(6):335-40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34561584/ doi: 10.1038/s41415-021-3456-3spa
dc.relation.references(126) Williamson JJ. Trauma during exodontia: an aetiologic factor in hypoplastic premolars. Br Dent J [Internet]. 1966 sept. 20 [citado 2022 nov. 29];121(6):284-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/5222639/spa
dc.relation.references(127) Kleine-Hakala M, Hukki J, Hurmerinta K. Effect of mandibular distraction osteogenesis on developing molars. Orthod Craniofac Res [Internet]. 2007 nov. [citado 2022 nov. 29];10(4):196-202. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/17973686/ doi: 10.1111/j.1601- 6343.2007.00400.xspa
dc.relation.references(128) Alexander WN. Composite dysplasia of a single tooth as a result of electric burn damage: report of case. J Am Dent Assoc [Internet]. 1964 nov. [citado 2022 nov. 29];69(5):589-91. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/14201501/ doi: 10.14219/ jada.archive.1964.0330spa
dc.relation.references(129) Neiburger EJ. Tooth stain due to electric burn. Oral Surg Oral Med Oral Pathol. 1978 febr.;45(2):178. doi: 10.1016/0030-4220(78)90082-8spa
dc.relation.references(130) Kim I-H, Kang C-M, Song JS, Lee J-H. Dental complications associated with neonatal intubation in preterm infants. J Dent Anesth Pain Med [Internet]. 2019 oct. [citado 2022 nov. 29];19(5):245-52. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/31723664/ doi: 10.17245/ jdapm.2019.19.5.245spa
dc.relation.references(131) Cortines AA de O, Corrêa-Faria P, Paulsson L, Costa PS, Costa LR. Developmental defects of enamel in the deciduous incisors of infants born preterm: prospective cohort. Oral Dis [Internet]. 2019 mzo. 1 [citado 2022 nov. 29];25(2):543-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30537164/ doi: 10.1111/odi.13011spa
dc.relation.references(132) de Oliveira Melo NSF, da Silva RPGVC, de Lima AAS. The neonatal intubation causes defects in primary teeth of premature infants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub [Internet]. 2014 dic. [citado 2022 nov. 29];158(4):605-12. Disponible en: https://pubmed. ncbi.nlm.nih.gov/23446261/ doi: 10.5507/bp.2013.004spa
dc.relation.references(133) Seow WK, Brown JP, Tudehope DI, O’Callaghan M. Developmental defects in the primary dentition of low birth-weight infants: adverse effects of laryngoscopy and prolonged endotracheal intubation. Pediatr Dent [Internet]. 1984 mar. [citado 2022 nov. 29];6(1):28- 31. Disponible en: https://pubmed.ncbi.nlm.nih. gov/6592545/ pmid: 6592545.spa
dc.relation.references(134) Korolenkova MV, Starikova NV, Udalova NV. The role of external aetiological factors in dental anomalies in non-syndromic cleft lip and palate patients. Eur Arch Paediatr Dent [Internet]. 2019 abr. 1 [citado 2022 nov. 29];20(2):105-11. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30511277/ doi: 10.1007/s40368-018-0397-xspa
dc.relation.references(135) Dixon DA. Defects of structure and formation of the teeth in persons with cleft palate and the effect of reparative surgery on the dental tissues. Oral Surg Oral Med Oral Pathol [Internet]. 1968 mar. [citado 2022 nov. 29];25(3):435-46. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/5245201/ doi: 10.1016/0030- 4220(68)90019-4spa
dc.relation.references(136) Weraarchakul W, Weraarchakul W, Weraarchakul S, Siritapetawee M. Prevalence of developmental enamel defects in children with cleft lip and palate: a systematic review. J Med Assoc Thai [Internet]. 2018 my. 1 [citado 2022 nov. 29];101(Supl. 5):S239-S245. Disponible en: http://www.jmatonline.com/index.php/jmat/article/ view/9876spa
dc.relation.references(137) Shen CA, Guo R, Li W. Enamel defects in permanent teeth of patients with cleft lip and palate: a cross-sectional study. J Int Med Res [Internet]. 2019 my. [citado 2022 nov. 29];47(5):2084-96. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30913937/ doi: 10.1177/0300060519832165spa
dc.relation.references(138) Fonseca-Souza G, de Oliveira LB, Wambier LM, Scariot R, Feltrin-Souza J. Tooth abnormalities associated with non-syndromic cleft lip and palate: systematic review and meta-analysis. Clin Oral Invest [Internet]. 2022 jun. 21 [citado 2022 nov. 29];26(8):5089-103. Disponible en: https://europepmc.org/article/med/35729285 doi: 10.1007/s00784-022-04540-8spa
dc.relation.references(139) McCormick J, Filostrat DJ. Injury to the teeth of succession by abscess of the temporary teeth. J Dent Child [Internet]. 1967 nov. [citado 2022 nov. 29];34(6):501-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4864183/ pmid: 4864183.spa
dc.relation.references(140) Turner J. Effects of abscess arising from temporary teeth. Br J Dent Sci. 1906;49:562-4.spa
dc.relation.references(141) Rodriguez Cordeiro MM, De Carvalho Rocha MJ. The effects of periradicular pecializing and infection on a primary tooth and permanent successor. J Clin Pediatr Dent [Internet]. 2005 en. 1 [citado 2022 nov. 29];29(3):193- 200. Disponible en: https://europepmc.org/article/ med/15926433 doi: 10.17796/jcpd.29.3.5238p10v21r2j162spa
dc.relation.references(142) Broadbent JM, Thomson WM, Williams SM. Does caries in primary teeth predict enamel defects in permanent teeth? A longitudinal study. J Dent Res [Internet]. 2005 mzo. [citado 2022 nov. 29];84(3):260-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15723867/ doi: 10.1177/154405910508400310spa
dc.relation.references(143) Míšová E, Žižka R, Vágnerová B, Morozova Y, Langr O, Voborná I. Prospective longitudinal study of early childhood caries and developmental defects of enamel on permanent successors in children in the Czech Republic. Eur J Paediatr Dent [Internet]. 2021 [citado 2022 nov. 29];22(1):41-6. Disponible en: https://pubmed.ncbi. nlm.nih.gov/33719482/ doi: 10.23804/ejpd.2021.22.01.08spa
dc.relation.references(144) Lo ECM, Zheng CG, King NM. Relationship between the presence of demarcated opacities and hypoplasia in permanent teeth and caries in their primary predecessors. Caries Res. 2003 nov.;37(6):456-61. doi: 10.1159/000073400spa
dc.relation.references(145) Chalakkal P, De Souza N, De Ataide I De, Akkara F, Chandran R. The resistance of succedaneous teeth to periapical infection: a series of seven cases. Contemp Clin Dent [Internet]. 2021 en. [citado 2022 nov. 29];12(1):88- 93. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8092089/ doi: 10.4103/ccd.ccd_68_20spa
dc.relation.references(146) Kimoto S, Suga H, Yamaguchi M, Uchimura N, Ikeda M, Kakizawa T. Hypoplasia of primary and permanent teeth following osteitis and the implications of delayed diagnosis of a neonatal maxillary primary molar. Int J Paediatr Dent [Internet]. 2003 en. 22 [citado 2022 nov. 29];13(1):35-40. Disponible en: https://pubmed. ncbi.nlm.nih.gov/12542622/ doi: 10.1046/j.1365- 263X.2003.00418.xspa
dc.relation.references(147) Velló MA, Martínez-Costa C, Catalá M, Fons J, Brines J, Guijarro-Martínez R. Prenatal and neonatal risk factors for the development of enamel defects in low birth weight children. Oral Dis [Internet]. 2010 abr. 15 [citado 2022 dic. 5];16(3):257-62. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/19849806/ doi: 10.1111/j.1601- 0825.2009.01629.xspa
dc.relation.references(148) Pinho JRO, Thomaz EBAF, Ribeiro CCC, Alves CMC, Da Silva AAM. Factors associated with the development of dental defects acquired in the extrauterine environment. Braz Oral Res [Internet]. 2019 oct. 10 [citado 2022 dic. 5];33:e094. Disponible en: http://www.scielo.br/j/ bor/a/Fzq84QTzCmv47KDtRvgbxbD/?lang=en doi: 10.1590/1807-3107bor-2019.vol33.0094spa
dc.relation.references(149) Via Jr. WF, Churchill JA. Relationship of enamel hypoplasia to abnormal events of gestation and birth. J Am Dent Assoc [Internet]. 1959 oct. [citado 2022 dic. 5];59(4):702-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/13842031/ doi: 10.14219/jada.archive.1959.0209spa
dc.relation.references(150) Saitoh M, Nakamura Y, Hanasaki M, Saitoh I, Murai Y, Kurashige Y, et al. Prevalence of molar incisor hypomineralization and regional differences throughout Japan. Environ Health Prev Med [Internet]. 2018 oct. 31 [citado 2022 dic. 5];23(1):55. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/30382812/ doi: 10.1186/ s12199-018-0748-6spa
dc.relation.references(151) Pontigo-Loyola AP, Medina-Solís CE, Lara-Carrillo E, Patiño-Marín N, Escoffié-Ramirez M, Mendoza Rodríguez M, et al. Impact of socio-demographic, socioeconomic, and water variables on dental fluorosis in adolescents growing up during the implementation of a fluoridated domestic salt program. Odontology. 2014 en.;102(1):105-15. doi: 10.1007/s10266-012-0094-xspa
dc.relation.references(152) Bianchi S, Bernardi S, Belli M, Varvara G, Macchiarelli G. Exposure to persistent organic pollutants during tooth formation: molecular mechanisms and clinical findings. Rev Environ Health [Internet]. 2020 abr. 17 [citado 2022 nov. 30];35(4):303-10. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32304316/ doi: 10.1515/ reveh-2019-0093spa
dc.relation.references(153) Clarkson J. Review of terminology, classifications, and indices of developmental defects of enamel. Adv Dent Res. 1989 sept.;3(2):104-9. doi: 10.1177/08959374890030020601spa
dc.relation.references(154) Fejerskov O, Cury JA, Tenuta LM, Marinho VC. Fluorides in caries control. En: Fejerskov O, Nyvad B, Kidd E, editores. Dental caries: the disease and its clinical management. 3.ª ed. Oxford: Wiley-Blackwell; 2015. p. 245-76spa
dc.relation.references(155) Hujoel PP, Zina LG, Moimaz SAS, Cunha-Cruz J. Infant formula and enamel fluorosis: a systematic review. J Am Dent Assoc [Internet]. 2009 jul. [citado 2022 nov. 30];140(7):841-54. Disponible en: https://www.ncbi. nlm.nih.gov/books/NBK77904/ doi: 10.14219/jada. archive.2009.0278spa
dc.relation.references(156) Heilman JR, Kiritsy MC, Levy SM, Wefel JS. Assessing fluoride levels of carbonated soft drinks. J Am Dent Assoc [Internet]. 1999 nov. [citado 2022 nov. 30];130(11):1593- 9. Disponible en: https://pubmed.ncbi.nlm.nih. gov/10573939/ doi: 10.14219/jada.archive.1999.0098spa
dc.relation.references(157) Levy SM, Kiritsy MC, Warren JJ. Sources of fluoride intake in children. J Public Health Dent. 1995 en.;55(1):39-52. doi: 10.1111/j.1752-7325.1995.tb02330.xspa
dc.relation.references(158) Pattaravisitsate N, Phetrak A, Denpetkul T, Kittipongvises S, Kuroda K. Effects of brewing conditions on infusible fluoride levels in tea and herbal products and probabilistic health risk assessment. Sci Reports [Internet]. 2021 jul. 8 [citado 2022 nov. 30];11(1):14115. Disponible en: https:// www.nature.com/articles/s41598-021-93548-3 doi: 10.1038/s41598-021-93548-3spa
dc.relation.references(159) Fujimaki Hayacibara M, Queiroz CS, Machado Tabchoury CP, Aparecido Cury J. Fluoride and aluminum in teas and tea-based beverages. Rev Saude Publica [Internet]. 2004 febr. [citado 2022 nov. 30];38(1):100-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14963548/ doi: 10.1590/S0034-89102004000100014spa
dc.relation.references(160) Das S, de Oliveira LM, da Silva E, Liu Y, Ma LQ. Fluoride concentrations in traditional and herbal teas: health risk assessment. Environ Pollut. 2017 dic.;231(Pt. 1):779-84. doi: 10.1016/j.envpol.2017.08.083spa
dc.relation.references(161) Malinowska E, Inkielewicz I, Czarnowski W, Szefer P. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. Food Chem Toxicol [Internet]. 2008 mzo. [citado 2022 nov. 30];46(3):1055-61. Disponible en: https://pubmed.ncbi. nlm.nih.gov/18078704/ doi: 10.1016/j.fct.2007.10.039spa
dc.relation.references(162) Ganta S, Yousuf A, Nagaraj A, Pareek S, Sidiq M, Singh K, et al. Evaluation of fluoride retention due to most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh as a contributing factor to dental fluorosis: a cross-sectional study. J Clin Diagn Res [Internet]. 2015 jun. [citado 2022 nov. 30];9(6):ZC11-ZC15. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC4525598/ doi: 10.7860/JCDR/2015/12271.6035spa
dc.relation.references(163) Petersen PE, Phantumvanit P. Perspectives in the effective use of fluoride in Asia. J Dent Res. 2012 febr.;91(2):119-21. doi: 10.1177/0022034511429347spa
dc.relation.references(164) O’Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, Rugg-Gunn AJ, et al. Fluoride and oral health. Community Dent Health [Internet]. 2016 jun. [citado 2022 nov. 30];33(2):69-99. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/27352462/ doi: 10.1922/ CDH_3707O’Mullane31spa
dc.relation.references(165) Wong MCM, Clarkson J, Glenny A-M, Lo ECM, Marinho VCC, Tsang BWK, et al. Cochrane reviews on the benefits/ risks of fluoride toothpastes. J Dent Res [Internet]. 2011 my. [citado 2022 nov. 30];90(5):573-9. Disponible en: https://www.researchgate.net/publication/49768198_ Cochrane_Reviews_on_the_BenefitsRisks_of_Fluoride_ Toothpastes doi: 10.1177/0022034510393346spa
dc.relation.references(166) Levy SM. A review of fluoride intake from fluoride dentifrice. ASDC J Dent Child. 1993;60(2):115-24. PMID: 8486854.spa
dc.relation.references(167) Cury JA, Del Fiol FS, Tenuta LMA, Rosalen PL. Low-fluoride dentifrice and gastrointestinal fluoride absorption after meals. J Dent Res [Internet]. 2005 dic. [citado 2022 dic. 1];84(12):1133-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/16304442/ doi: 10.1177/154405910508401208spa
dc.relation.references(168) Ekstrand J, Spak C-J, Vogel G. Pharmacokinetics of fluoride in man and its clinical relevance. J Dent Res. 1990 febr.;69(Supl. 2):550-5. doi: 10.1177/00220345900690S109spa
dc.relation.references(169) Whitford GM. Determinants and mechanisms of enamel fluorosis. En: Chadwick DJ, Cardew G, editores. CIBA Foundation Symposium 205 – Dental enamel 1997. Chichester, Sussex (Reino Unido): John Wiley & Sons; 1997 [citado 2022 dic. 1]. p. 226-45. Novartis Foundation Symposia Book Series. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470515303.ch16 doi: 10.1002/9780470515303.ch16spa
dc.relation.references(170) Falcão A, Tenuta LMA, Cury JA. Fluoride gastrointestinal absorption from Na2FPO3/CaCO3- and NaF/SiO2- based toothpastes. Caries Res [Internet]. 2013 abr. [citado 2022 dic. 1];47(3):226-33. Disponible en: https:// www.karger.com/Article/FullText/346006 doi: 10.1159/000346006spa
dc.relation.references(171) Irigoyen-Camacho ME, García Pérez A, Mejía González A, Huizar Alvarez R. Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Sci Total Environ [Internet]. 2016 en. 15 [citado 2022 dic. 1];541:512-9. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/26426374/ doi: 10.1016/j. scitotenv.2015.09.085spa
dc.relation.references(172) Charone S, Küchler EC, Leite ADL, Silva Fernandes M, Taioqui Pelá V, Martini T, et al. Analysis of polymorphisms in genes differentially expressed in the enamel of mice with different genetic susceptibilities to dental fluorosis. Caries Res [Internet]. 2019 febr. 1 [citado 2022 dic. 2];53(2):228-33. Disponible en: https://www.karger. com/Article/FullText/491554 doi: 10.1159/000491554spa
dc.relation.references(173) Jedeon K, De La Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol [Internet]. 2013 jul. [citado 2022 dic. 5];183(1):108-18. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23764278/ doi: 10.1016/j.ajpath.2013.04.004spa
dc.relation.references(174) Li H, Cui D, Zheng L, Zhou Y, Gan L, Liu Y, et al. Bisphenol A exposure disrupts enamel formation via EZH2-mediated H3K27me3. J Dent Res [Internet]. 2021 jul. [citado 2022 dic. 5];100(8):847-57. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33655795/ doi: 10.1177/0022034521995798spa
dc.relation.references(175) Jedeon K, Loiodice S, Salhi K, Le Normand M, Houari S, Chaloyard J, et al. Androgen receptor involvement in rat amelogenesis: an additional way for endocrine disrupting chemicals to affect enamel synthesis. Endocrinology [Internet]. 2016 nov. 1 [citado 2022 dic. 5];157(11):4287-96. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27684650/ doi: 10.1210/en.2016-1342spa
dc.relation.references(176) Jedeon K, Houari S, Loiodice S, Thuy TT, Le Normand M, Berdal A, et al. Chronic exposure to bisphenol A exacerbates dental fluorosis in growing rats. J Bone Miner Res [Internet]. 2016 nov. 1 [citado 2022 dic. 5];31(11):1955-66. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27257137/ doi: 10.1002/jbmr.2879spa
dc.relation.references(177) Piedrahita Sánchez M, Mejía JD, Santos Pinto L. Bisfenol A e hipomineralización molar incisiva: revisión de tema [Internet]. Acta Odontol Venez. 2021 [citado 2023 en. 11];59(1). Disponible en: https://www.actaodontologica. com/ediciones/2021/1/art-5/spa
dc.relation.references(178) Jan J, Vrbič V. Polychlorinated biphenyls cause developmental enamel defects in children. Caries Res [Internet]. 2000 nov. [citado 2022 dic. 5];34(6):469-73. Disponible en: https://pubmed.ncbi.nlm.nih. gov/11093020/ doi: 10.1159/000016625spa
dc.relation.references(179) Jan J, Sovcikova E, Kočan A, Wsolova L, Trnovec T. Developmental dental defects in children exposed to PCBs in eastern Slovakia. Chemosphere. 2007 abr.;67(9): S350-S354. doi: 10.1016/j.chemosphere.2006.05.148spa
dc.relation.references(180) Organización Mundial de la Salud [Sitio virtual]. Las dioxinas y sus efectos en la salud humana [Internet]. Ginebra (Suiza): Organización Mundial de la Salud; [Actualizado 2023 nov. 29; citado 2023 en. 11]. Disponible en: https://www.who.int/es/news-room/fact-sheets/ detail/dioxins-and-their-effects-on-human-healthspa
dc.relation.references(181) Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds–a review. Int Dent J [Internet]. 2006 dic. [citado 2022 dic. 5];56(6):323- 31. Disponible en: https://pubmed.ncbi.nlm.nih. gov/17243464/ doi: 10.1111/j.1875-595X.2006.tb00336.xspa
dc.relation.references(182) Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect [Internet]. 2004 sept. [citado 2022 dic. 5];112(13):1313-8. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC1247522/ doi: 10.1289/ ehp.6920spa
dc.relation.references(183) Ngoc VTN, Huong LT, Van Nhon B, Tan NTM, Van Thuc P, Hien VTT, et al. The higher prevalence of developmental defects of enamel in the dioxin-affected region than non-dioxin-affected region: result from a cross-sectional study in Vietnam. Odontology [Internet]. 2019 en. 25 [citado 2022 dic. 5];107(1):17-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29752597/ doi: 10.1007/s10266-018-0358-1spa
dc.relation.references(184) Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, et al. Lactational exposure of Han/Wistar rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. J Dent Res [Internet]. 2004 febr. [citado 2022 dic. 5];83(2):139-44. Disponible en: https://pubmed.ncbi.nlm. nih.gov/14742652/ doi: 10.1177/154405910408300211spa
dc.relation.references(185) Sevbitov A, Kuznetsova M, Dorofeev A, Borisov V, Mironov S, Iusupova I. Dental anomalies in people living in radionuclide-contaminated regions. J Environ Radioact [Internet]. 2020 my. 1 [citado 2022 dic. 5];216:106190. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32056793/ doi: 10.1016/j.jenvrad.2020.106190spa
dc.relation.references(186) van Amerongen WE, Kreulen CM. Cheese molars: a pilot study of the etiology of hypocalcifications in first permanent molars. ASDC J Dent Child. 1995 jul.- ag.;62(4):266-9. PMID: 7593885.spa
dc.relation.references(187) Seow WK, Masel JP, Weir C, Tudehope DI. Mineral deficiency in the pathogenesis of enamel hypoplasia in prematurely born, very low birthweight children. Pediatr Dent. 1989 dic.;11(4):297-302. PMID: 2639324.spa
dc.relation.references(188) Peacock M. Phosphate metabolism in health and disease. Calcif Tissue Int [Internet]. 2021 en. [citado 2022 dic. 5];108(1):3-15. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32266417/ doi: 10.1007/s00223-020-00686-3spa
dc.relation.references(189) Parks SK, Cormerais Y, Pouysségur J. Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol [Internet]. 2017 abr. 15 [citado 2022 dic. 5];595(8):2439- 50. Disponible en: https://pubmed.ncbi.nlm.nih. gov/28074546/ doi: 10.1113/JP273309spa
dc.relation.references(190) Rodd HD, Graham A, Tajmehr N, Timms L, Hasmun N. Molar incisor hypomineralisation: current knowledge and practice. Int Dent J [Internet]. 2021 ag. [citado 2022 dic. 5];71(4):285-91. Disponible en: https://pubmed.ncbi. nlm.nih.gov/34286697/ doi: 10.1111/idj.12624spa
dc.relation.references(191) Vorrink SU, Domann FE. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node. Chem Biol Interact [Internet]. 2014 jul. 25 [citado 2022 dic. 5];218:82-8. Disponible en: https://pubmed.ncbi. nlm.nih.gov/24824450/ doi: 10.1016/j.cbi.2014.05.001spa
dc.relation.references(192) Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev [Internet]. 2013 jun. [citado 2022 dic. 5];71(6):353-69. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23731446/ doi: 10.1111/nure.12024spa
dc.relation.references(193) Xu LX, Kukita T, Yu H, Nakano Y, Koga T. Expression of the mRNA for types I and II interleukin-1 receptors in dental tissues of mice during tooth development. Calcif Tissue Int [Internet]. 1998 oct. [citado 2022 dic. 5];63(4):351-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/9744996/ doi: 10.1007/s002239900539spa
dc.relation.references(194) Gao Y, Li D, Han T, Sun Y, Zhang J. TGF-beta1 and TGFBR1 are expressed in ameloblasts and promote MMP20 expression. Anat Rec (Hoboken) [Internet]. 2009 jun. [citado 2022 dic. 5];292(6):885-90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19462458/ doi: 10.1002/ar.20901spa
dc.relation.references(195) Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J [Internet]. 2000 abr. 17 [citado 2022 dic. 6];19(8):1745-54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10775259/ doi: 10.1093/emboj/19.8.1745spa
dc.relation.references(196) Jeremias F, Pierri RAG, Souza JF, Fragelli CMB, Restrepo M, Finoti LS, et al. Family-based genetic association for molar-incisor hypomineralization. Caries Res [Internet]. 2016 jun. [citado 2022 dic. 5];50(3):310-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27179118/ doi: 10.1159/000445726spa
dc.relation.references(197) Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci [Internet]. 2020 jun. [citado 2022 dic. 5];21(12):4458. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC7352428/ doi: 10.3390/ijms21124458spa
dc.relation.references(198) Weerheijm KL. Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management. Dent Update [Internet]. 2004 en.-febr. [citado 2022 dic. 6];31(1):9-12. Disponible en: https://pubmed.ncbi.nlm. nih.gov/15000003/ doi: 10.12968/denu.2004.31.1.9spa
dc.relation.references(199) Williams R, Perez VA, Mangum JE, Hubbard MJ. Pathogenesis of molar hypomineralisation: hypomineralised 6-year molars contain traces of fetal serum albumin. Front Physiol. 2020 jun. 12;11:619. doi: 10.3389/fphys.2020.00619spa
dc.relation.references(200) Hubbard MJ, Perez VA, Ganss B. 100 years of chalky teeth research: from pioneering histopathology to social good. Front Dent Med [Internet]. 2021 en. 15 [citado 2022 nov. 11];1:632534. Disponible en: https://www. readcube.com/articles/10.3389%2Ffdmed.2020.632534 doi: 10.3389/fdmed.2020.632534spa
dc.relation.references(201) Needleman HL, Leviton A, Allred E. Macroscopic enamel defects of primary anterior teeth–types, prevalence, and distribution. Pediatr Dent. 1991 jul.-ag.;13(4):208-16. PMID: 1886825.spa
dc.relation.references(202) Richards A, Kragstrup J, Josephsen K, Fejerskov O. Dental fluorosis developed in post-secretory enamel. J Dent Res [Internet]. 1986 dic. [citado 2022 dic. 6];65(12):1406- 9. Disponible en: https://pubmed.ncbi.nlm.nih. gov/3465769/ doi: 10.1177/00220345860650120501spa
dc.relation.references(203) Aoba T, Fejerskov O. Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med [Internet]. 2002 mzo. [citado 2022 dic. 6];13(2):155-70. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12097358/ doi: 10.1177/154411130201300206spa
dc.relation.references(204) Castiblanco Rubio GA, Martignon-Biermann S, Castellanos-Parra JE, Mejía-Naranjo WA. Pathogenesis of dental fluorosis: biochemical and cellular mechanisms. Rev Fac Odontol Univ Antioq. 2017 jun. 30;28(2):408- 21. Disponible en: https://revistas.udea.edu.co/index. php/odont/article/view/22870 doi: 10.17533/udea. rfo.v28n2a10spa
dc.relation.references(205) Matsuo S, Inai T, Kurisu K, Kiyomiya KI, Kurebe M. Influence of fluoride on secretory pathway of the secretory ameloblast in rat incisor tooth germs exposed to sodium fluoride. Arch Toxicol [Internet]. 1996 abr. [citado 2022 dic. 6];70(7):420-9. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/8740536/ doi: 10.1007/ s002040050294spa
dc.relation.references(206) DenBesten PK, Yan Y, Featherstone JDB, Hilton JF, Smith CE, Li W. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol [Internet]. 2002 nov. [citado 2022 dic. 6];47(11):763-70. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/12446183/ doi: 10.1016/ S0003-9969(02)00117-6spa
dc.relation.references(207) Bronckers ALJJ, Lyaruu DM, Bervoets TJM, Wöltgen JHM. Fluoride enhances intracellular degradation of amelogenins during secretory phase of amelogenesis of hamster teeth in organ culture. Connect Tissue Res. 2002;43(2-3):456-65. doi: 10.1080/03008200290001113spa
dc.relation.references(208) Bronckers ALJJ, Lyaruu DM, DenBesten PK. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res [Internet]. 2009 oct. [citado 2022 dic. 6];88(10):877-93. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC3318083/ doi: 10.1177/0022034509343280spa
dc.relation.references(209) Ji M, Xiao L, Xu L, Huang S, Zhang D. How pH is regulated during amelogenesis in dental fluorosis (Review). Exp Ther Med. 2018 sept. 11;16(5):3759-65. doi: 10.3892/ etm.2018.6728spa
dc.relation.references(210) Goodman AH, Rose JC. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Am J Phys Anthropol [Internet]. 1990 en. 1 [citado 2023 en. 12];33(S11):59-110. Disponible en: https://onlinelibrary. wiley.com/doi/full/10.1002/ajpa.1330330506 doi: 10.1002/ajpa.1330330506spa
dc.relation.references(211) King T, Humphrey LT, Hillson S. Linear enamel hypoplasias as indicators of systemic physiological stress: evidence from two known age-at-death and sex populations from postmedieval London. Am J Phys Anthropol [Internet]. 2005 nov. [citado 2023 en. 12];128(3):547-59. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15861429/ doi: 10.1002/ajpa.20232spa
dc.relation.references(212) Hillson S, Bond S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am J Phys Anthropol. 1997 sept.;104(1):89-103. doi: 10.1002/(SICI)1096-8644(199709)104:1<89::AID AJPA6>3.0.CO;2-8spa
dc.relation.references(213) Nikita E. Osteoarchaeology: a guide to the macroscopic study of human skeletal remains. London: Academic Press (Elsevier); 2017. Cap. 8, Pathological conditions; p. 301-54. doi: 10.1016/B978-0-12-804021-8.00008-5spa
dc.relation.references(214) Fejerskov O. Pathology of dental caries. En: Fejerskov O, Nyvad B, Kidd E, editores. Dental caries: the disease and its clinical management. 3.ª ed. Oxford: Willey Blackwell; 2015. p. 49-85spa
dc.relation.references(215) Meng Z, Yao XS, Yao H, Liang Y, Liu T, Li Y, et al. Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt [Internet]. 2009 my. [citado 2022 dic. 6];14(3):034010. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19566303/ doi: 10.1117/1.3130322spa
dc.relation.references(216) Brodbelt RHW, O’brien WJ, Fan PL, Frazer-Dib JG, Yu R. Translucency of human dental enamel. J Dent Res [Internet]. 1981 oct.;60(10):1749-53. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6944339/ doi: 10.1177/00220345810600100401spa
dc.relation.references(217) Baldassarri M, Margolis HC, Beniash E. Compositional determinants of mechanical properties of enamel. J Dent Res [Internet]. 2008 jul. [citado 2022 dic. 6];87(7):645-9. Disponible en: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC2658820/ doi: 10.1177/154405910808700711spa
dc.relation.references(218) Martinez-Mier EA, Lippert F. Teeth with mild and moderate enamel fluorosis demonstrate increased caries susceptibility in vitro. J Evid Based Dent Pract. 2017 sept. 1;17(3):293-5. doi: 10.1016/j.jebdp.2017.07.001spa
dc.relation.references(219) Elhennawy K, Manton DJ, Crombie F, Zaslansky P, Radlanski RJ, Jost-Brinkmann PG, et al. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: a systematic review. Arch Oral Biol [Internet]. 2017 nov. [citado 2022 dic. 6];83:272-81. Disponible en: https://pubmed.ncbi.nlm.nih. gov/28843745/ doi: 10.1016/j.archoralbio.2017.08.008spa
dc.relation.references(220) Alifakioti E, Arhakis A, Oikonomidis S, Kotsanos N. Structural and chemical enamel characteristics of hypomineralised second primary molars. Eur Arch Paediatr Dent [Internet]. 2021 jun. [citado 2022 dic. 6];22(3):361-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32865711/spa
dc.relation.references(221) Da Costa-Silva CM, Ambrosano GMB, Jeremias F, De Souza JF, Mialhe FL. Increase in severity of molar-incisor hypomineralization and its relationship with the colour of enamel opacity: a prospective cohort study. Int J Paediatr Dent [Internet]. 2011 sept. [citado 2022 dic. 6];21(5):333-41. Disponible en: https://pubmed.ncbi.nlm. nih.gov/21470321/ doi: 10.1111/j.1365-263X.2011.01128.xspa
dc.relation.references(222) Farah R, Drummond B, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralisation to its mineral density. Int J Paediatr Dent. 2010 sept.;20(5):353-60. doi: 10.1111/j.1365-263X.2010.01061.xspa
dc.relation.references(223) Crombie FA, Manton DJ, Palamara JEA, Zalizniak I, Cochrane NJ, Reynolds EC. Characterisation of developmentally hypomineralised human enamel. J Dent [Internet]. 2013 jul. [citado 2022 dic. 6];41(7):611- 8. Disponible en: https://pubmed.ncbi.nlm.nih. gov/23685033/ doi: 10.1016/j.jdent.2013.05.002spa
dc.relation.references(224) Mangum JE, Crombie FA, Kilpatrick N, Manton DJ, Hubbard MJ. Surface integrity governs the proteome of hypomineralized enamel. J Dent Res. 2010 oct.;89(10):1160-5. doi: 10.1177/0022034510375824spa
dc.relation.references(225) Farah RA, Monk BC, Swain MV, Drummond BK. Protein content of molar-incisor hypomineralisation enamel. J Dent [Internet]. 2010 jul. [citado 2022 dic. 6];38(7):591-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/20447437/ doi: 10.1016/j.jdent.2010.04.012spa
dc.relation.references(226) Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: an overview. Med Res Rev [Internet]. 2018 mzo. [citado 2022 dic. 6];38(2):655- 83. Disponible en: https://pubmed.ncbi.nlm.nih. gov/28609548/ doi: 10.1002/med.21451spa
dc.relation.references(227) Malmberg P, Norén JG, Bernin D. Molecular insights into hypomineralized enamel. Eur J Oral Sci [Internet]. 2019 ag. [citado 2022 dic. 6];127(4):340-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31032998/ doi: 10.1111/eos.12619spa
dc.relation.references(228) Lee E-S, Wadhwa P, Kim M-K, Bo Jiang H, Um I-W, Kim Y-M. Cap. 1, Organic matrix of enamel and dentin and developmental defects. En: Gil de Bona A, Karaaslan H, editores. Human tooth and developmental dental defects – Compositional and genetic implications [Internet]. IntechOpen; 2022 [citado 2022 dic. 6]. Disponible en: https://www.intechopen.com/chapters/77993 doi: 10.5772/intechopen.99542spa
dc.relation.references(229) Rood HD, Boissonade FM, Day PF. Pulpal status of hypomineralized permanent molars. Pediatr Dent [Internet]. 2007 nov. [citado 2022 nov. 6];29(6):514-20 Disponible en: https://pubmed.ncbi.nlm.nih. gov/18254423/ PMID: 18254423.spa
dc.relation.references(230) Thylstrup A, Fejerskov O. Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dent Oral Epidemiol. 1978 dic.;6(6):315-28. Disponible en: https://pubmed.ncbi. nlm.nih.gov/282114/ doi: 10.1111/j.1600-0528.1978. tb01173.xspa
dc.relation.references(231) Fejerskov O, Manji F, Baelum V. The nature and mechanisms of dental fluorosis in man. J Dent Res. 1990 febr. 4;69(Supl. 2):692-700. doi: 10.1177/00220345900690S135spa
dc.relation.references(232) Saldarriaga A, Rojas-Gualdrón DF, Restrepo M, Bussaneli DG, Fragelli C, de Cássia Loiola Cordeiro R, et al. Clinical changes in the severity of dental fluorosis: a longitudinal evaluation. bmc Oral Health [Internet]. 2021 jul. 22 [citado 2022 dic. 6];21(366):1-9. Disponible en: https:// bmcoralhealth.biomedcentral.com/articles/10.1186/ s12903-021-01729-3 doi: 10.1186/s12903-021-01729-3spa
dc.relation.references(233) Wright JT, Chen SC, Hall KI, Yamauchi M, Bawden JW. Protein characterization of fluorosed human enamel. J Dent Res [Internet]. 1996 dic. [citado 2022 dic. 6];75(12):1936-41. Disponible en: https://pubmed.ncbi.nlm. nih.gov/9033447/ doi: 10.1177/00220345960750120401spa
dc.relation.references(234) Lelis IMP, Molina GF, Souza C, Perez WB, Laure HJ, Rosa JC, et al. Peptide characterization of mature fluorotic and control human enamel. Braz Dent J [Internet]. 2016 en.-febr. [citado 2022 dic. 6];27(1):66-71. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27007349/ doi: 10.1590/0103-6440201600424spa
dc.relation.references(235) Wright JT, Hall KL, Deaton TG, Fine JD. Structural and compositional alteration of tooth enamel in hereditary epidermolysis bullosa. Connect Tissue Res [Internet]. 1996 [citado 2022 dic. 6];34(4):271-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9084636/ doi: 10.3109/03008209609005271spa
dc.relation.references(236) Zheng S, Deng H, Gao X. [The study on chemical composition and crystalline structure of hypoplastic primary dental enamel]. Zhonghua Kou Qiang Yi Xue Za Zhi. 1997 nov.;32(6):366-8. pmid: 11189313.spa
dc.relation.references(237) Wright JT, Hall KI, Yamauchi M. The enamel proteins in human amelogenesis imperfecta. Arch Oral Biol [Internet]. 1997 febr. [citado 2022 dic. 6];42(2):149-59. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9134127/ doi: 10.1016/S0003-9969(96)00096-9spa
dc.relation.references(238) Takagi Y, Fujita H, Katano H, Shimokawa H, Kuroda T. Immunochemical and biochemical characteristics of enamel proteins in hypocalcified amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 1998 abr. [citado 2022 dic. 6];85(4):424-30. Disponible en: https://pubmed.ncbi.nlm. nih.gov/9574951/ doi: 10.1016/S1079-2104(98)90068-3spa
dc.relation.references(239) Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol [Internet]. 2017 jun. [citado 2022 dic. 6];8:435. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28694781/ doi: 10.3389/fphys.2017.00435spa
dc.relation.references(240) Kirkham J, Robinson C, Strafford SM, Shore RC, Bonass WA, Brookes SJ, et al. The chemical composition of tooth enamel in junctional epidermolysis bullosa. Arch Oral Biol [Internet]. 2000 my. [citado 2022 dic. 6];45(5):377-86. Disponible en: https://pubmed.ncbi.nlm. nih.gov/10739859/ doi: 10.1016/S0003-9969(00)00003-0spa
dc.relation.references(1) Baelum V, Nyvad B, Gröndahl H-G, Fejerskov O. The foundations of good diagnostic practice. En: Fejerskov O, Nyvad B, Kidd E, editores. Dental caries: the disease and its clinical management. 3.ª ed. Oxford: Willey Blackwell; 2015. p. 173-90spa
dc.relation.references(2) Spaulding W. The foundation of clinical training. En: Gøtzsche PC, editor. Contemporary psychology: a journal of reviews. 4.ª ed. Oxford: Blackwell Sciences Willey; 1986. p. 349-51.spa
dc.relation.references(3) Skinner M, Goodman A. Anthropological uses of developmental defects of enamel [pdf]. En: Saunders S, Katzenberg MA, editores. Skeletal biology of past peoples: advances in research methods [Internet]. Nueva York (ny): Wiley-Liss; 1992 [citado 2023 en. 12]. p. 153-175. Disponible en: https://www.researchgate. net/publication/303215163_Anthropological_Uses_of_ Developmental_Defects_of_Enamelspa
dc.relation.references(4) Guatelli-Steinberg D. What can developmental defects of enamel reveal about physiological stress in nonhuman primates? Evol Anthropol. 2001;10(4):138-51. doi: 10.1002/ evan.1027spa
dc.relation.references(5) Antoine D, Hillson S, Dean MC. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. J Anat [Internet]. 2009 en. [citado 2022 nov. 20];214(1):45-55. Disponible en: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC2667916/ doi: 10.1111/j.1469- 7580.2008.01010.xspa
dc.relation.references(6) Griffin RC, Donlon D. Patterns in dental enamel hypoplasia by sex and age at death in two archaeological populations. Arch Oral Biol [Internet]. 2009 dic. [citado 2022 nov. 20];54(Supl. 1):S93-S100. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/18990363/ doi: 10.1016/j. archoralbio.2008.09.012spa
dc.relation.references(7) McFarlane G, Loch C, Guatelli-Steinberg D, Bayle P, Le Luyer M, Sabel N, et al. Enamel daily secretion rates of deciduous molars from a global sample of children. Arch Oral Biol. 2021 dic.;132:105290. doi: 10.1016/j. archoralbio.2021.105290spa
dc.relation.references(8) Uzuner FD, Kaygısız E, Darendeliler N. Defining dental age for chronological age determination. En: Hakan Dogan K, editor. Post mortem examination and autopsy – Current issues from death to laboratory analysis. Rijeka (Croacia): InTechOpen; 2018. p. 77-104. doi: 10.5772/ intechopen.71699spa
dc.relation.references(9) Lygidakis NA, Garot E, Somani C, Taylor GD, Rouas P, Wong FSL. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor hypomineralisation (mih): an updated European Academy of Paediatric Dentistry policy document. Eur Arch Paediatr Dent. 2022 febr.;23(1):3-21. doi: 10.1007/ s40368-021-00668-5spa
dc.relation.references(10) Ghanim A, Silva MJ, Elfrink MEC, Lygidakis NA, Mariño RJ, Weerheijm KL, et al. Molar incisor hypomineralisation (MIH) training manual for clinical field surveys and practice. Eur Arch Paediatr Dent [Internet]. 2017 ag. [citado 2022 nov. 6];18(4):225-42. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/28721667/ doi: 10.1007/ s40368-017-0293-9spa
dc.relation.references(11) Fejerskov O, Manji F, Bælum V, Møller I. Dental fluorosis: a handbook for health workers [Internet]. Munksgaard (Copenhage): Elsevier Science Health Science Division; 1988 [citado 2022 dic. 19]. Disponible en: https://www. worldcat.org/es/title/dental-fluorosis-a-handbook for-health-workers/oclc/466636905?referer=di&ht= editionspa
dc.relation.references(12) Schneider PM, Silva M. Endemic molar incisor hypomineralization: a pandemic problem that requires monitoring by the entire health care community. Curr Osteoporos Rep. 2018 jun.;16(3):283-8. doi: 10.1007/ s11914-018-0444-xspa
dc.relation.references(13) Almuallem Z, Busuttil-Naudi A. Molar incisor hypomineralisation (mih) – an overview. Br Dent J. 2018 oct. 5;225(7):601-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30287963/ doi: 10.1038/sj.bdj.2018.814spa
dc.relation.references(14) Garot E, Denis A, Delbos Y, Manton D, Silva M, Rouas P. Are hypomineralised lesions on second primary molars (hspm) a predictive sign of molar incisor hypomineralisation (MIH)? A systematic review and a meta-analysis. J Dent. 2018 my.;72:8-13. doi: 10.1016/j. jdent.2018.03.005spa
dc.relation.references(15) da Silva Figueiredo Sé MJ, Dias Ribeiro AP, Dos Santos-Pinto LAM, de Cassia Loiola Cordeiro R, Nunes Cabral R, Coelho Leal S. Are hypomineralized primary molars and canines associated with molar-incisor hypomineralization? Pediatr Dent. 2017 nov. 1;39(7):445- 9. pmid: 29335050.spa
dc.relation.references(16) Vlachou C, Arhakis A, Kotsanos N. Distribution and morphology of enamel hypomineralisation defects in second primary molars. Eur Arch Paediatr Dent. 2021 abr.;22(2):241-6.spa
dc.relation.references(17) Garot E, Rouas P, Somani C, Taylor GD, Wong F, Lygidakis NA. An update of the aetiological factors involved in molar incisor hypomineralisation (mih): a systematic review and meta-analysis. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 20];23(1):23-38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34164793/ doi: 10.1007/s40368-021-00646-xspa
dc.relation.references(18) Negre-Barber A, Montiel-Company JM, Boronat-Catalá M, Catalá-Pizarro M, Almerich-Silla JM. Hypomineralized second primary molars as predictor of molar incisor hypomineralization. Sci Rep. 2016 ag. 25;6:31929. Disponible en: https://www.nature.com/articles/ srep31929spa
dc.relation.references(19) Pinho JRO, Thomaz EBAF, Ribeiro CCC, Alves CMC, Da Silva AAM. Factors associated with the development of dental defects acquired in the extrauterine environment. Braz Oral Res [Internet]. 2019 oct. 10 [citado 2022 dic. 5];33:e094. Disponible en: http://www.scielo.br/j/ bor/a/Fzq84QTzCmv47KDtRvgbxbD/?lang=en doi: 10.1590/1807-3107bor-2019.vol33.0094spa
dc.relation.references(20) Saitoh M, Nakamura Y, Hanasaki M, Saitoh I, Murai Y, Kurashige Y, et al. Prevalence of molar incisor hypomineralization and regional differences throughout Japan. Environ Health Prev Med [Internet]. 2018 oct. 31 [citado 2022 dic. 5];23(1):55. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/30382812/ doi: 10.1186/ s12199-018-0748-6spa
dc.relation.references(21) Jan J, Vrbič V. Polychlorinated biphenyls cause developmental enamel defects in children. Caries Res [Internet]. 2000 nov. [citado 2022 dic. 5];34(6):469- 73. Disponible en: https://pubmed.ncbi.nlm.nih. gov/11093020/ doi: 10.1159/000016625spa
dc.relation.references(22) Jan J, Sovcikova E, Kočan A, Wsolova L, Trnovec T. Developmental dental defects in children exposed to pcbs in eastern Slovakia. Chemosphere. 2007 abr.;67(9): S350-S354. doi: 10.1016/j.chemosphere.2006.05.148spa
dc.relation.references(23) Ngoc VTN, Huong LT, Van Nhon B, Tan NTM, Van Thuc P, Hien VTT, et al. The higher prevalence of developmental defects of enamel in the dioxin-affected region than non-dioxin-affected region: result from a cross-sectional study in Vietnam. Odontology [Internet]. 2019 en. 25 [citado 2022 dic. 5];107(1):17-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29752597/ doi: 10.1007/s10266-018-0358-1spa
dc.relation.references(24) Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, et al. Lactational exposure of Han/Wistar rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. J Dent Res [Internet]. 2004 febr. [citado 2022 dic. 5];83(2):139-44. Disponible en: https://pubmed.ncbi.nlm. nih.gov/14742652/ doi: 10.1177/154405910408300211spa
dc.relation.references(25) Sevbitov A, Kuznetsova M, Dorofeev A, Borisov V, Mironov S, Iusupova I. Dental anomalies in people living in radionuclide-contaminated regions. J Environ Radioact [Internet]. 2020 my. 1 [citado 2022 dic. 5];216:106190. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32056793/ doi: 10.1016/j.jenvrad.2020.106190spa
dc.relation.references(26) Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect [Internet]. 2004 sept. [citado 2022 dic. 5];112(13):1313-8. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC1247522/ doi: 10.1289/ ehp.6920spa
dc.relation.references(27) Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Hölttä P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci [Internet]. 1996 oct. [citado 2022 dic. 5];104(5- 6):493-7. Disponible en: https://pubmed.ncbi.nlm.nih. gov/9021315/ doi: 10.1111/j.1600-0722.1996.tb00131.xspa
dc.relation.references(28) Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds–a review. Int Dent J [Internet]. 2006 dic. [citado 2022 dic. 5];56(6):323-31. Disponible en: https://pubmed.ncbi.nlm.nih.gov/172434 64/ doi: 10.1111/j.1875-595X.2006.tb00336.xspa
dc.relation.references(29) u.s. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep. 2015 jul. 1;130(4):318- 31. doi:10.1177/003335491513000408spa
dc.relation.references(30) Goodarzi F, Mahvi AH, Hosseini M, Nedjat S, Nabizadeh Nodehi R, Kharazifard MJ, et al. The prevalence of dental fluorosis and exposure to fluoride in drinking water: a systematic review. J Dent Res Dent Clin Dent Prospects. 2016 ag. 17;10(3):127-35. pmid: 27651877.spa
dc.relation.references(31) Fejerskov O, Cury JA, Tenuta LM, Marinho VC. Fluorides in caries control. En: Fejerskov O, Nyvad B, Kidd E, editores. Dental caries: the disease and its clinical management. 3.ª ed. Oxford: Willey-Blackwell; 2015. p. 245-76.spa
dc.relation.references(32) Rood HD, Boissonade FM, Day PF. Pulpal status of hypomineralized permanent molars. Pediatr Dent [Internet]. 2007 nov. [citado 2022 nov. 6];29(6):514- 20. Disponible en: https://pubmed.ncbi.nlm.nih. gov/18254423/ pmid: 18254423.spa
dc.relation.references(33) Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2008 sept. [citado 2022 nov. 11];18(5):333- 40. Disponible en: https://www.researchgate. net/publication/5524292_Bacterial_invasion_of_ dentinal_tubules_beneath_apparently_intact_but_ hipomineralized_enamel_in_molar_with_molar_incisor_ hypomineralization doi: 10.1111/j.1365-263X.2007.00908.xspa
dc.relation.references(34) Raposo F, De Carvalho Rodrigues AC, Lia ÉN, Leal SC. Prevalence of hypersensitivity in teeth affected by molar incisor hypomineralization (mih). Caries Res [Internet]. 2019 jun. 1;53(4):424-30. Disponible en: https://pubmed. ncbi.nlm.nih.gov/30677762/ doi: 10.1159/000495848spa
dc.relation.references(35) Linner T, Khazaei Y, Bücher K, Pfisterer J, Hickel R, Kühnisch J. Hypersensitivity in teeth affected by molar incisor hypomineralization (mih). Sci Rep [Internet]. 2021 sept. 9;11:17922. doi: 10.1038/s41598-021-95875-xspa
dc.relation.references(36) Elhennawy K, Rajjoub O, Reissmann DR, Doueiri MS, Hamad R, Sierwald I, et al. The association between molar incisor hypomineralization and oral health-related quality of life: a cross-sectional study. Clin Oral Invest. 2022 my. 1;26(5):4071-7. doi: 10.1007/s00784-022-04375- 3spa
dc.relation.references(37) Jälevik B, Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent [Internet]. 2002 febr. [citado 2022 nov. 6];12(1):24-32. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11853245/ doi: 10.1046/j.0960-7439.2001.00318.xspa
dc.relation.references(38) Jälevik B, Sabel N, Robertson A. Can molar incisor hypomineralization cause dental fear and anxiety or influence the oral health-related quality of life in children and adolescents?-a systematic review. Eur Arch Paediatr Dent [Internet]. 2022 febr. 1 [citado 2022 nov. 6];23(1):65-78. Disponible en: https://pubmed.ncbi.nlm. nih.gov/34110616/ doi: 10.1007/s40368-021-00631-4spa
dc.relation.references(39) Jälevik B, Klingberg G. Treatment outcomes and dental anxiety in 18-year-olds with mih, comparisons with healthy controls – A longitudinal study. Int J Paediatr Dent. 2012 mzo.;22(2):85-91. doi: 10.1111/j.1365- 263X.2011.01161.xspa
dc.relation.references(40) Chankanka O, Levy SM, Warren JJ, Chalmers JM. A literature review of aesthetic perceptions of dental fluorosis and relationships with psychosocial aspects/ oral health-related quality of life. Community Dent Oral Epidemiol [Internet]. 2010 abr. [citado 2022 nov. 6];38(2):97-109. Disponible en: https://pubmed. ncbi.nlm.nih.gov/20002631/ doi: 10.1111/j.1600- 0528.2009.00507.xspa
dc.relation.references(41) Onoriobe U, Rozier RG, Cantrell J, King RS. Effects of enamel fluorosis and dental caries on quality of life. J Dent Res [Internet]. 2014 oct. [citado 2022 nov. 6];93(10):972-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/25154834/ doi: 10.1177/0022034514548705spa
dc.relation.references(42) Pahuja M, Pradhan S, Nagar V. Knowledge, attitude, and esthetic perceptions about dental fluorosis amongst the rural population in Meerut District, Uttar Pradesh. Indian J Dent Sci [Internet]. 2019 en. [citado 2022 nov. 6];11:12-6. Disponible en: https://www.researchgate. net/publication/331173453_Knowledge_attitude_and_ esthetic_perceptions_about_dental_fluorosis_amongst_ the_rural_population_in_Meerut_District_Uttar_Pradesh doi: 10.4103/IJDS.IJDS_65_18spa
dc.relation.references(43) Nilchian F, Asgary I, Mastan F. The effect of dental fluorosis on the quality of life of female high school and precollege students of high fluoride-concentrated area. J Int Soc Prev Community Dent [Internet]. 2018 jul. 1;8(4):314-9. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC6071349/ doi: 10.4103/ jispcd.JISPCD_94_18spa
dc.relation.references(44) Shyam R, Bhadravathi Chaluvaiah M, Kumar A, Pahwa MB, Rani G, Phogat R. Impact of dental fluorosis on the oral health related quality of life among 11- to 14-year-old school children in endemic fluoride areas of Haryana (India). Int Dent J [Internet]. 2020 oct. [citado 2022 nov. 14];70(5):340-6. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32358889/ doi: 10.1111/idj.12567spa
dc.relation.references(45) Corrêa-Faria P, Martins-Júnior PA, Vieira-Andrade RG, Marques LS, Ramos-Jorge ML. Perinatal factors associated with developmental defects of enamel in primary teeth: a case-control study. Braz Oral Res [Internet]. 2013 my. 17 [citado 2022 nov. 29];27(4):363-8. Disponible en: http://www.scielo.br/j/bor/a/KK5X5V CmtyvqJYR4JzDM8jp/?lang=en doi: 10.1590/S1806- 83242013005000017spa
dc.relation.references(46) Velló MA, Martínez-Costa C, Catalá M, Fons J, Brines J, Guijarro-Martínez R. Prenatal and neonatal risk factors for the development of enamel defects in low birth weight children. Oral Dis [Internet]. 2010 abr. 15 [citado 2022 dic. 5];16(3):257-62. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/19849806/ doi: 10.1111/j.1601- 0825.2009.01629.xspa
dc.relation.references(47) França TKXS, de Lima M de DM, Lima CCB, de Moura MS, Lopes TSP, de Moura JSS, et al. Quilombola children and adolescents show high prevalence of developmental defects of enamel. Cien Saude Colet [Internet]. 2021 jul. [citado 2022 nov. 22];26(7):2889-98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34231701/ doi: 10.1590/1413-81232021267.12762019spa
dc.relation.references(48) Via Jr. WF, Churchill JA. Relationship of enamel hypoplasia to abnormal events of gestation and birth. J Am Dent Assoc [Internet]. 1959 oct. [citado 2022 dic. 5];59(4):702-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/13842031/ doi: 10.14219/jada.archive.1959.0209spa
dc.relation.references(49) Reissenberger T, Ebel M, Klode C, Hirsch C, Bekes K. Hypomineralized teeth and their impact on oral-health related quality of life in primary school children. Int J Environ Res Public Health [Internet]. 2022 ag. 21 [citado 2022 nov. 6];19(16):10409. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9408049/ doi: 10.3390/ijerph191610409spa
dc.relation.references(50) Marshman Z, Rodd HD. The psychosocial impacts of developmental enamel defects in children and young people. En: Drummond B, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 85-97. doi: https://doi.org/10.1007/978-3-662-44800- 7_7.spa
dc.relation.references(51) Kalkani M, Balmer RC, Homer RM, Day PF, Duggal MS. Molar incisor hypomineralisation: experience and perceived challenges among dentists pecializing in paediatric dentistry and a group of general dental practitioners in the uk. Eur Arch Paediatr Dent [Internet]. 2016 abr. 1 [citado 2022 nov. 14];17(2):81-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26613718/ doi: 10.1007/s40368-015-0209-5spa
dc.relation.references(52) Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol [Internet]. 2017 jun.;8:435. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/28694781/ doi: 10.3389/ fphys.2017.00435spa
dc.relation.references(53) Wright JT, Carrion IA, Morris C. The molecular basis of hereditary enamel defects in humans. J Dent Res [Internet]. 2015 en. 20 [citado 2022 nov. 20];94(1):52- 61. Disponible en: https://pubmed.ncbi.nlm.nih. gov/25389004/ doi: 10.1177/0022034514556708spa
dc.relation.references(54) Simancas-Escorcia VH, Natera-Guarapo AE, Acosta de Camargo MG. Genes involved in amelogenesis imperfecta. Part ii. Rev Fac Odontol Univ Antioq. 2019 oct.;30(2):236-47. doi: 10.17533/udea.rfo.v30n2a9spa
dc.relation.references(55) Freiman A, Borsuk D, Barankin B, Sperber GH, Krafchik B. Dental manifestations of dermatologic conditions. J Am Acad Dermatol [Internet]. 2009 febr.;60(2):289- 98. Disponible en: https://pubmed.ncbi.nlm.nih. gov/19027989/ doi: 10.1016/j.jaad.2008.09.056spa
dc.relation.references(56) Kantaputra PN, Matangkasombut O, Sripathomsawat W. Split hand-split foot-ectodermal dysplasia and amelogenesis imperfecta with a tp63 mutation. Am J Med Genet Part A [Internet]. 2012 en. [citado 2022 nov. 20];158A(1):188-92. Disponible en: https://pubmed.ncbi. nlm.nih.gov/22065540/ doi: 10.1002/ajmg.a.34356spa
dc.relation.references(57) Laugel-Haushalter V, Langer A, Marrie J, Fraulob V, Schuhbaur B, Koch-Phillips M, et al. From the transcription of genes involved in ectodermal dysplasias to the understanding of associated dental anomalies. Mol Syndromol [Internet]. 2012 oct. [citado 2022 nov. 20];3(4):158-68. Disponible en: https://www.karger. com/Article/FullText/342833 doi: 10.1159/000342833spa
dc.relation.references(58) Lee SK, Lee ZH, Lee SJ, Ahn BD, Kim YJ, Lee SH, et al. dlx3 mutation in a new family and its phenotypic variations. J Dent Res [Internet]. 2008 abr. [citado 2022 nov. 20];87(4):354-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/18362318/ doi: 10.1177/154405910808700402spa
dc.relation.references(59) Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, et al. dlx3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs [Internet]. 2011 jun. [citado 2022 nov. 20];194(1):49-59. Disponible en: https://www.karger.com/Article/FullText/322561 doi: 10.1159/000322561spa
dc.relation.references(60) Spangler GS, Hall KI, Kula K, Hart TC, Wright JT. Enamel structure and composition in the tricho-dento osseous syndrome. Connect Tissue Res [Internet]. 1998 [citado 2022 nov. 20];39(1-3):165-75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11062998/ doi: 10.3109/03008209809023923spa
dc.relation.references(61) Jagtap R, Alansari R, Ruprecht A, Kashtwari D. Trichodentoosseous syndrome: a case report and review of literature. BJR Case Rep [Internet]. 2019 dic. [citado 2022 nov. 20];5(4):20190039. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/31938567 doi: 10.1259/bjrcr.20190039spa
dc.relation.references(62) Polizzi A, Santonocito S, Patini R, Quinzi V, Mummolo S, Leonardi R, et al. Oral alterations in heritable epidermolysis bullosa: a clinical study and literature review. BioMed Res Int [Internet]. 2022 my. [citado 2022 nov. 20];2022:6493156. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC9173894/ doi: 10.1155/2022/6493156spa
dc.relation.references(63) Seow WK. Developmental defects of enamel and dentine: challenges for basic science research and clinical management. Aust Dent J [Internet]. 2014 jun. [citado 2022 nov. 20];59(Supl. 1):143-54. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24164394/ doi: 10.1111/adj.12104spa
dc.relation.references(64) Wright JT. Oral manifestations in the epidermolysis bullosa spectrum. Dermatol Clin [Internet]. 2010 en. [citado 2022 nov. 20];28(1):159-64. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2787479/ doi: 10.1016/j.det.2009.10.022spa
dc.relation.references(65) Chavez MB, Kramer K, Chu EY, Thumbigere-Math V, Foster BL. Insights into dental mineralization from three heritable mineralization disorders. J Struct Biol. 2020 oct. 1;212(1):107597. doi: 10.1016/j.jsb.2020.107597spa
dc.relation.references(66) Foster BL, Nociti FH, Somerman MJ. The rachitic tooth. Endocr Rev [Internet]. 2013 dic. 4 [citado 2022 nov. 20];35(1):1-34. Disponible en: https://europepmc.org/ articles/PMC3895863 doi: 10.1210/er.2013-1009spa
dc.relation.references(67) Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis [Internet]. 2007 sept. [citado 2022 nov. 20];13(5):482-9. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/17714351/ doi: 10.1111/j.1601- 0825.2006.01326.xspa
dc.relation.references(68) Souza MA, Soares LAV, Santos MA Dos, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (Sao Paulo) [Internet]. 2010 nov. [citado 2022 nov. 20];65(10):1023-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21120305/ doi: 10.1590/S1807-59322010001000017spa
dc.relation.references(69) De Boeck K, Vermeulen F, Dupont L. The diagnosis of cystic fibrosis. Presse Med. 2017 jun.;46(6 Pt. 2):e97-e108. doi: 10.1016/j.lpm.2017.04.010spa
dc.relation.references(70) Azevedo TDPL, Feijó GCS, Bezerra ACB. Presence of developmental defects of enamel in cystic fibrosis patients. J Dent Child (Chic). 2006;73(3):159-63. pmid: 17367033.spa
dc.relation.references(71) Narang A, Maguire A, Nunn JH, Bush A. Oral health and related factors in cystic fibrosis and other chronic respiratory disorders. Arch Dis Child [Internet]. 2003 ag. [citado 2022 nov. 20];88(8):702-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/12876168/ doi: 10.1136/ adc.88.8.702spa
dc.relation.references(72) Ferrazzano GF, Sangianantoni G, Cantile T, Amato I, Orlando S, Ingenito A. Dental enamel defects in Italian children with cystic fibrosis: an observational study. Community Dent Health. 2012 mzo.;29(1):106-9. pmid: 22482260spa
dc.relation.references(73) Nordgarden H, Lima K, Skogedal N, Følling I, Storhaug K, Abrahamsen TG. Dental developmental disturbances in 50 individuals with the 22q11.2 deletion syndrome; relation to medical conditions? Acta Odontol Scand [Internet]. 2012 my. [citado 2022 nov. 20];70(3):194- 201. Disponible en: https://pubmed.ncbi.nlm.nih. gov/22070626/ doi: 10.3109/00016357.2011.629624spa
dc.relation.references(74) Wong DH, Rajan S, Hallett KB, Manton DJ. Medical and dental characteristics of children with chromosome 22q11.2 deletion syndrome at the Royal Children’s Hospital, Melbourne. Int J Paediatr Dent [Internet]. 2021 nov. 1 [citado 2022 nov. 20];31(6):682-90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33222329/ doi: 10.1111/ipd.12755spa
dc.relation.references(75) Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, et al. Mutations in cnnm4 cause Jalili syndrome, consisting of autosomal-recessive cone rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009 feb.;84(2):266-73. doi: 10.1016/j. ajhg.2009.01.009spa
dc.relation.references(76) Luder HU, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet DF. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the cnnm4 gene. PLoS one [Internet]. 2013 oct. 23 [citado 2022 nov. 20];8(10):e78529. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC3806830/ doi: 10.1371/journal.pone.0078529spa
dc.relation.references(77) Collins SM, Dominguez M, Ilmarinen T, Costigan C, Irvine AD. Dermatological manifestations of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Br J Dermatol. 2006 jun.;154(6):1088-93. doi: 10.1111/j.1365-2133.2006.07166.xspa
dc.relation.references(78) Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (apeced) in a series of 68 patients. N Engl J Med [Internet]. 1990 jun. 28 [citado 2022 nov. 20];322(26):1829-36. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2348835/ doi: 10.1056/ NEJM199006283222601spa
dc.relation.references(79) Hoff M, van Grunsven MF, Jongebloed WL, ’s-Gravenmade EJ. Enamel defects associated with tuberous sclerosis: a clinical and scanning-electron-microscope study. Oral Surg Oral Med Oral Pathol. 1975 ag.;40(2):261-9. doi: 10.1016/0030-4220(75)90158-9spa
dc.relation.references(80) Sampson JR, Attwood D, Mughery ASA, Reid JS. Pitted enamel hypoplasia in tuberous sclerosis. Clin Genet. 1992 jul.;42(1):50-2. doi: 10.1111/j.1399-0004.1992.tb03137.xspa
dc.relation.references(81) Martelli H, Lima LS, Bonan PRF, Coletta RD. Oral manifestations leading to the diagnosis of familial tuberous sclerosis. Indian J Dent Res. 2010 en. 1;21(1):138- 40spa
dc.relation.references(82) Flanagan N, O’Connor WJ, McCartan B, Miller S, McMenamin J, Watson R. Developmental enamel defects in tuberous sclerosis: a clinical genetic marker? J Med Genet [Internet]. 1997 ag. [citado 2022 nov. 20];34(8):637-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/9279754/ doi: 10.1136/jmg.34.8.637spa
dc.relation.references(83) Sparling JD, Hong CH, Brahim JS, Moss J, Darling TN. Oral findings in 58 adults with tuberous sclerosis complex. J Am Acad Dermatol [Internet]. 2007 my. [citado 2022 nov. 20];56(5):786-90. Disponible en: https://pubmed.ncbi. nlm.nih.gov/17239986/ doi: 10.1016/j.jaad.2006.11.019spa
dc.relation.references(84) Goodwin AF, Tidyman WE, Jheon AH, Sharir A, Zheng X, Charles C, et al. Abnormal Ras signaling in Costello syndrome (cs) negatively regulates enamel formation. Hum Mol Genet [Internet]. 2014 febr. [citado 2022 nov. 20];23(3):682-92. Disponible en: https://pubmed.ncbi. nlm.nih.gov/24057668/ doi: 10.1093/hmg/ddt455spa
dc.relation.references(85) Tidyman WE, Rauen KA. The rasopathies: developmental syndromes of Ras/mapk pathway dysregulation. Curr Opin Genet Dev. 2009 jun.;19(3):230-6. doi: 10.1016/j. gde.2009.04.001spa
dc.relation.references(86) Roomaney IA, Kabbashi S, Chetty M. Enamel renal syndrome: protocol for a scoping review. jmir Res Protoc [Internet]. 2021 nov. 30 [citado 2022 nov. 20];10(11). Disponible en: https://pubmed.ncbi.nlm. nih.gov/34851300/ doi: 10.2196/29702spa
dc.relation.references(87) Farias MLM, Ornela GO, de Andrade RS, Martelli DRB, Dias VO, Júnior HM. Enamel renal syndrome: a systematic review. Indian J Nephrol [Internet]. 2021 en. [citado 2022 nov. 20];31(1):1-8. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/33994680 doi: 10.4103/ijn.IJN_27_19spa
dc.relation.references(88) Dourado MR, dos Santos CRR, Dumitriu S, Iancu D, Albanyan S, Kleta R, et al. Enamel renal syndrome: a novel homozygous fam20A founder mutation in 5 new Brazilian families. Eur J Med Genet [Internet]. 2019 nov. [citado 2022 nov. 20];62(11):103561. doi: 10.1016/j. ejmg.2018.10.013spa
dc.relation.references(89) Fatturi AL, Wambier LM, Chibinski AC, Assunção LR da S, Brancher JA, Reis A, et al. A systematic review and meta-analysis of systemic exposure associated with molar incisor hypomineralization. Community Dent Oral Epidemiol [Internet]. 2019 oct. [citado 2022 nov. 22];47(5):407-15. Disponible en: https://pubmed.ncbi. nlm.nih.gov/31111554/ doi: 10.1111/cdoe.12467spa
dc.relation.references(90) Lopes-Fatturi A, Menezes JVNB, Fraiz FC, Assunção LR da S, de Souza JF. Systemic exposures associated with hypomineralized primary second molars. Pediatr Dent. 2019 Sept. 15;41(5):364-70.spa
dc.relation.references(91) Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Invest [Internet]. 2021 dic. 1 [citado 2022 nov. 20];25(12):6501-16. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/34414520 doi: 10.1007/s00784-021-04146-6spa
dc.relation.references(92) Mariam S, Goyal A, Dhareula A, Gauba K, Bhatia SK, Kapur A. A case-controlled investigation of risk factors associated with molar incisor hypomineralization (MIH) in 8-12 year-old children living in Chandigarh, India. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 dic. 5];23(1):97-107. Disponible en: https://pubmed.ncbi.nlm. nih.gov/34725798/ doi: 10.1007/s40368-021-00665-8spa
dc.relation.references(93) Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics. 3.ª ed. Canadá: Mosby, Elsevier; 2013. Cap. 3, Early stages of development; p. 66-91.spa
dc.relation.references(94) Limeira FIR, Yamauti M, Moreira AN, Galdino TM, de Magalhães CS, Abreu LG. Dental caries and developmental defects of enamel in individuals with chronic kidney disease: systematic review and meta analysis. Oral Dis [Internet]. 2019 sept. [citado 2022 nov. 22];25(6):1446-64. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30338628/ doi: 10.1111/odi.12993spa
dc.relation.references(95) Sezer B, Kaya R, Kodaman Dokumacıgil N, Sıddıkoğlu D, Güven S, Yıldız N, et al. Assessment of the oral health status of children with chronic kidney disease. Pediatr Nephrol [Internet]. 2022 abr. 30 [citado 2022 nov. 22];38:269-77. Disponible en: https://europepmc. org/article/med/35499576 doi: 10.1007/s00467-022- 05590-6spa
dc.relation.references(96) Harrison M, Cameron A, Kilpatrick N. Syndromes and diseases associated with developmental defects of enamel. En: Drummond BK, Kilpatrick N, editores. Planning and care for children and adolescents with dental enamel defects. Berlín: Springer-Verlag Berlin Heidelberg; 2015. p. 45-58. doi: 10.1007/978-3-662- 44800-7_4spa
dc.relation.references(97) Venkatesh Babu NS, Patel PB. Oral health status of children suffering from thyroid disorders. J Indian Soc Pedod Prev Dent [Internet]. 2016 abr. [citado 2022 nov. 22];34(2):139-44. Disponible en: https://pubmed.ncbi. nlm.nih.gov/27080964/ doi: 10.4103/0970-4388.180443spa
dc.relation.references(98) Fagrell TG, Lingström P, Olsson S, Steiniger F, Norén JG. Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2008 sept. [citado 2022 nov. 6];18(5):333- 40. Disponible en: https://pubmed.ncbi.nlm.nih. gov/18328044/ doi: 10.1111/j.1365-263X.2007.00908.xspa
dc.relation.references(99) Souto-Souza D, da Consolação Soares ME, Rezende VS, de Lacerda Dantas PC, Galvão EL, Falci SGM. Association between developmental defects of enamel and celiac disease: a meta-analysis. Arch Oral Biol [Internet]. 2018 mzo. [citado 2022 nov. 22];87:180-90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29306074/ doi: 10.1016/j.archoralbio.2017.12.025spa
dc.relation.references(100) Macho VMP, de Barros Menéres Manso MCA, E Silva DMV, de Andrade DJC. The difference in symmetry of the enamel defects in celiac disease versus non-celiac pediatric population. J Dent Sci [Internet]. 2020 sept. [citado 2022 nov. 22];15(3):345-50. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32952893/ doi: 10.1016/j. jds.2020.02.006spa
dc.relation.references(101) Tolomeu JSO, Soares MEC, Mourão PS, Ramos-Jorge ML. Is gestational diabetes mellitus associated with developmental defects of enamel in children? A systematic review with meta-analysis. Arch Oral Biol [Internet]. 2022 sept. [citado 2022 nov. 22];141:105488. Disponible en: https://pubmed.ncbi.nlm.nih. gov/35802995/ doi: 10.1016/j.archoralbio.2022.105488spa
dc.relation.references(102) Pascon T, Barbosa AMP, Cordeiro RCL, Bussaneli DG, Prudencio CB, Nunes SK, et al. Prenatal exposure to gestational diabetes mellitus increases developmental defects in the enamel of offspring. PLoS one. 2019 febr.;14(2):e0211771. doi: 10.1371/journal.pone.0211771spa
dc.relation.references(103) Neto MBC, Silva-Souza KP da, Maranhão VF, Botelho KVG, Heimer MV, Dos Santos-Junior VE. Enamel defects in deciduous dentition and their association with the occurrence of adverse effects from pregnancy to early childhood. Oral Health Prev Dent [Internet]. 2020 sept. 4 [citado 2022 nov. 22];18(1):741-6. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32895657/ doi: 10.3290/j. ohpd.a45077spa
dc.relation.references(104) Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev [Internet]. 2013 febr. [citado 2022 nov. 22];34(1):33-83. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23169676/ doi: 10.1210/er.2012-1012spa
dc.relation.references(105) Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc [Internet]. 2006 mzo. [citado 2023 en. 11];81(3):353-73. Disponible en: http://www.mayoclinicproceedings.org/article/ S0025619611614651/fulltext doi: 10.4065/81.3.353spa
dc.relation.references(106) Elger W, Illge C, Kiess W, Körner A, Kratzsch J, Schrock A, et al. Relationship between deciduous molar hypomineralisation and parameters of bone metabolism in preschool children. Int Dent J [Internet]. 2020 ag. [citado 2022 nov. 22];70(4):303-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32043580/ doi: 10.1111/idj.12550spa
dc.relation.references(107) Beckett DM, Broadbent JM, Loch C, Mahoney EK, Drummond BK, Wheeler BJ. Dental consequences of vitamin D deficiency during pregnancy and early infancy–An observational study. Int J Environ Res Public Health [Internet]. 2022 febr. 9 [citado 2022 nov. 22];19(4):1932. Disponible en: https://pubmed.ncbi.nlm. nih.gov/35206117/ doi: 10.3390/ijerph19041932spa
dc.relation.references(108) Reed SG, Voronca D, Wingate JS, Murali M, Lawson AB, Hulsey TC, et al. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: a pilot study. Pediatr Dent J [Internet]. 2017 abr. [citado 2022 nov. 22];27(1):21-8. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30100673/ doi: 10.1016/j.pdj.2016.08.001spa
dc.relation.references(109) Zerofsky M, Ryder M, Bhatia S, Stephensen CB, King J, Fung EB. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity. Matern Child Nutr [Internet]. 2016 oct. [citado 2022 nov. 22];12(4):898-907. Disponible en: https://pubmed.ncbi. nlm.nih.gov/25850574/ doi: 10.1111/mcn.12187spa
dc.relation.references(110) Mariam S, Goyal A, Dhareula A, Gauba K, Bhatia SK, Kapur A. A case-controlled investigation of risk factors associated with molar incisor hypomineralization (mih) in 8-12 year-old children living in Chandigarh, India. Eur Arch Paediatr Dent [Internet]. 2022 febr. [citado 2022 nov. 22];23(1):97-107. Disponible en: https://pubmed. ncbi.nlm.nih.gov/34725798/ doi: 10.1007/s40368-021- 00665-8spa
dc.relation.references(111) Bucci P, Carile F, Sangianantoni A, D’Angiò F, Santarelli A, Lo Muzio L. Oral aphthous ulcers and dental enamel defects in children with coeliac disease. Acta Paediatr Int J Paediatr. 2006 febr.;95(2):203-7. doi: 10.1111/j.1651- 2227.2006.tb02208.xspa
dc.relation.references(112) Masterson EE, Fitzpatrick AL, Enquobahrie DA, Mancl LA, Conde E, Hujoel PP. Malnutrition-related early childhood exposures and enamel defects in the permanent dentition: a longitudinal study from the Bolivian Amazon. Am J Phys Anthropol [Internet]. 2017 oct. [citado 2022 nov. 22];164(2):416-23. Disponible en: https://pubmed. ncbi.nlm.nih.gov/28752513/ doi: 10.1002/ajpa.23283spa
dc.relation.references(113) Bensi C, Costacurta M, Belli S, Paradiso D, Docimo R. Relationship between preterm birth and developmental defects of enamel: a systematic review and meta analysis. Int J Paediatr Dent [Internet]. 2020 nov. [citado 2022 nov. 22];30(6):676-86. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32243004/ doi: 10.1111/ ipd.12646spa
dc.relation.references(114) Mohamed RN, Basha S, Virupaxi SG, Eregowda NI, Parameshwarappa P. Hypomineralized primary teeth in preterm low birth weight children and its association with molar incisor hypomineralization-a 3-year-prospective study. Children (Basel, Switzerland) [Internet]. 2021 dic. 2 [citado 2022 nov. 22];8(12):1111. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/34943307/ doi: 10.3390/ children8121111spa
dc.relation.references(115) Ruschel HC, Vargas-Ferreira F, Tovo MF, Kramer PF, Feldens CA. Developmental defects of enamel in primary teeth: highly prevalent, unevenly distributed in the oral cavity and not associated with birth weight. Eur Arch Paediatr Dent [Internet]. 2019 jun. 1 [citado 2022 nov. 22];20(3):241-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30888582/ doi: 10.1007/s40368-018- 0402-4spa
dc.relation.references(116) Costa FS, Silveira ER, Pinto GS, Nascimento GG, Thomson WM, Demarco FF. Developmental defects of enamel and dental caries in the primary dentition: a systematic review and meta-analysis. J Dent [Internet]. 2017 my. 1 [citado 2022 nov. 11];60:1-7. Disponible en: https:// europepmc.org/article/med/28347809 doi: 10.1016/j. jdent.2017.03.006spa
dc.relation.references(117) Nirmala SVSG, Quadar MA, Veluru S, Tharay N, Kolli NK, Minor Babu MS. Apgar index as a probable risk indicator for enamel defects in primary dentition: a cross sectional study. J Indian Soc Pedod Prev Dent [Internet]. 2015 jul. 1 [citado 2022 nov. 22];33(3):229-33. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26156278/spa
dc.relation.references(118) Wilhoit LF, Scott DA, Simecka BA. Fetal alcohol spectrum disorders: characteristics, complications, and treatment. Community Ment Health J. 2017 ag.;53(6):711-8. doi: 10.1007/s10597-017-0104-0spa
dc.relation.references(119) Blanck-Lubarsch M, Dirksen D, Feldmann R, Sauerland C, Hohoff A. Tooth malformations, dmft index, speech impairment and oral habits in patients with fetal alcohol syndrome. Int J Environ Res Public Health [Internet]. 2019 nov. 11 [citado 2022 nov. 22];16(22):4401. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31717945/ doi: 10.3390/ijerph16224401spa
dc.relation.references(120) Costello A, Dua T, Duran P, Gülmezoglu M, Oladapo OT, Perea W, et al. Defining the syndrome associated with congenital Zika virus infection: Vol. 94, Bulletin of the World Health Organization. Bull World Health Organ. 2016;94:406-406A. doi: 10.2471/BLT.16.176990spa
dc.relation.references(121) de Oliveira AMM, de Melo EGM, Mendes MLT, dos Santos Oliveira SJG, Tavares CSS, Vaez AC, et al. Oral and maxillofacial conditions, dietary aspects, and nutritional status of children with congenital Zika syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2020 jul. [citado 2022 nov. 29];130(1):71-7. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/32493680/ doi: 10.1016/j. oooo.2020.02.019spa
dc.relation.references(122) Gusmão TP de L, Santos de Faria AB, Leão Filho JC, Carvalho A de AT, Gueiros LAM, Leão JC. Dental changes in children with congenital Zika syndrome. Oral Dis. 2020 mzo. 1;26(2):457-64. doi: 10.1111/odi.13238spa
dc.relation.references(123) Silva MCPM da, Arnaud M de A, Lyra MCA, Alencar Filho AV de, Rocha MÂW, Ferreira Ramos RC, et al. Dental development in children born to Zikv-infected mothers: a case-based study. Arch Oral Biol [Internet]. 2020 febr. [citado 2022 nov. 29];110:104598. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31775105/ doi: 10.1016/j.archoralbio.2019.104598spa
dc.relation.references(124) Lima LJS, Ramos-Jorge ML, Soares MEC. Prenatal, perinatal and postnatal events associated with hypomineralized second primary molar: a systematic review with meta-analysis. Clin Oral Invest [Internet]. 2021 dic. 1 [citado 2022 nov. 22];25(12):6501-16. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/34414520 doi: 10.1007/s00784-021-04146-6spa
dc.relation.references(125) Fagrell TG, Ludvigsson J, Ullbro C, Lundin S-A, Koch G. Aetiology of severe demarcated enamel opacities--an evaluation based on prospective medical and social data from 17,000 children. Swed Dent J. 2011;35(2):57- 67. pmid: 21827015.spa
dc.relation.references(126) Modrić VE, Verzak Ž, Karlović Z. Developmental defects of enamel in children with intellectual disability. Acta Stomatol Croat [Internet]. 2016 [citado 2022 nov. 29];50(1):65-71. Disponible en: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC5017281/ doi: 10.15644/ asc50/1/9spa
dc.relation.references(127) Nissanka-Jayasuriya EH, Odell EW, Phillips C. Dental stigmata of congenital syphilis: a historic review with present day relevance. Head Neck Pathol [Internet]. 2016 sept. [citado 2022 nov. 22];10(3):327-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4972761/ doi: 10.1007/s12105-016-0703-zspa
dc.relation.references(128) Leão JC, Gueiros LA, Porter SR. Oral manifestations of syphilis. Clinics (Sao Paulo) [Internet]. 2006 abr. [citado 2022 nov. 22];61(2):161-6. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/16680334/ doi: 10.1590/ S1807-59322006000200012spa
dc.relation.references(129) Putkonen T. Dental changes in congenital syphilis: relationship to other syphilitic stigmata. Acta Derm Venereol. 1962;42:44-62. pmid: 14489299.spa
dc.relation.references(130) Serna C, Vicente A, Finke C, Ortiz AJ. Drugs related to the etiology of molar incisor hypomineralization: a systematic review. J Am Dent Assoc [Internet]. 2016 febr. [citado 2022 nov. 29];147(2):120-30. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26552335/ doi: 10.1016/j.adaj.2015.08.011spa
dc.relation.references(131) Mastora A, Vadiakas G, Agouropoulos A, Gartagani Panagiotopoulou P, Gemou Engesaeth V. Developmental defects of enamel in first permanent molars associated with use of asthma drugs in preschool aged children: a retrospective case-control study. Eur Arch Paediatr Dent [Internet]. 2017 abr. [citado 2022 nov. 29];18(2):105- 11. Disponible en: https://pubmed.ncbi.nlm.nih. gov/28255932/ doi: 10.1007/s40368-017-0280-1spa
dc.relation.references(132) Serna Muñoz C, Ortiz Ruiz AJ, Pérez Silva A, Bravo González LA, Vicente A. Second primary molar hypomineralisation and drugs used during pregnancy and infancy: a systematic review. Clin Oral Invest [Internet]. 2020 mzo. [citado 2022 nov. 29];24(3):1287- 97. Disponible en: https://pubmed.ncbi.nlm.nih. gov/31312969/ doi: 10.1007/s00784-019-03007-7spa
dc.relation.references(133) Faustino-Silva DD, Rocha AF, da Rocha BS, Stein C. Use of antibiotics in early childhood and dental enamel defects in 6- to 12-year-old children in primary health care. Acta Odontol Latinoam. 2020 abr.;33(1):6-13. doi: 10.54589/aol.33/1/006spa
dc.relation.references(134) Goho C. Chemoradiation therapy: effect on dental development. Pediatr Dent. 1993;15(1):6-12. pmid: 8233995.spa
dc.relation.references(135) Atif M, Mathur VP, Tewari N, Bansal K, Rahul M, Bakhshi S. Long-term effect of anticancer therapy on dentition in childhood cancer survivors: an observational, cross sectional study. Indian J Pediatr [Internet]. 2022 abr. [citado 2022 nov. 29];89(4):327-32. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/34106443/ doi: 10.1007/ s12098-021-03818-1spa
dc.relation.references(136) Peyam S, Bansal D. Anticancer therapy and dentition: an overlooked late adverse effect in childhood cancer survivors. Indian J Pediatr. 2022 abr.;89(4):319-20. doi: 10.1007/s12098-021-04071-2spa
dc.relation.references(137) Guagnano R, Romano F, Berger M, Fagioli F, Vallone V, Bello L, et al. Long-term effect of anticancer therapy on dentition of Italian children in remission from malignant disease: a cross-sectional study. Eur J Paediatr Dent [Internet]. 2022 jun. [citado 2022 nov. 29];23(2):131-6. Disponible en: https://pubmed.ncbi.nlm. nih.gov/35722839/ doi: 10.23804/ejpd.2022.23.02.11spa
dc.relation.references(138) Halperson E, Matalon V, Goldstein G, Saieg Spilberg S, Herzog K, Fux-Noy A, et al. The prevalence of dental developmental anomalies among childhood cancer survivors according to types of anticancer treatment. Sci Rep. 2022 dic.;12:4485. doi: 10.1038/s41598-022- 08266-1spa
dc.relation.references(139) Avşar A, Elli M, Darka Ö, Pinarli G. Long-term effects of chemotherapy on caries formation, dental development, and salivary factors in childhood cancer survivors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2007 dic. [citado 2022 nov. 29];104(6):781-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17618135/ doi: 10.1016/j.tripleo.2007.02.029spa
dc.relation.references(140) Krasuska-Sławińska E, Dembowska-Bagińska B, Brożyna A, Olczak-Kowalczyk D, Czarnowska E, Sowińska A. Changes in the chemical composition of mineralised teeth in children after antineoplastic treatment. Contemp Oncol (Poznan, Poland) [Internet]. 2018 [citado 2022 nov. 29];22(1):37-41. Disponible en: https://pubmed.ncbi.nlm. nih.gov/29692662/ doi: 10.5114/wo.2018.74392spa
dc.relation.references(141) Kim I-H, Kang C-M, Song JS, Lee J-H. Dental complications associated with neonatal intubation in preterm infants. J Dent Anesth Pain Med [Internet]. 2019 oct. [citado 2022 nov. 29];19(5):245-52. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/31723664/ doi: 10.17245/ jdapm.2019.19.5.245spa
dc.relation.references(142) Cortines AA de O, Corrêa-Faria P, Paulsson L, Costa PS, Costa LR. Developmental defects of enamel in the deciduous incisors of infants born preterm: prospective cohort. Oral Dis [Internet]. 2019 mzo. 1 [citado 2022 nov. 29];25(2):543-9. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30537164/ doi: 10.1111/odi.13011spa
dc.relation.references(143) de Oliveira Melo NSF, da Silva RPGVC, de Lima AAS. The neonatal intubation causes defects in primary teeth of premature infants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub [Internet]. 2014 dic. [citado 2022 nov. 29];158(4):605-12. Disponible en: https://pubmed. ncbi.nlm.nih.gov/23446261/ doi: 10.5507/bp.2013.004spa
dc.relation.references(144) Seow WK, Brown JP, Tudehope DI, O’Callaghan M. Developmental defects in the primary dentition of low birth-weight infants: adverse effects of laryngoscopy and prolonged endotracheal intubation. Pediatr Dent [Internet]. 1984 mar. [citado 2022 nov. 29];6(1):28- 31. Disponible en: https://pubmed.ncbi.nlm.nih. gov/6592545/ pmid: 6592545.spa
dc.relation.references(145) Skinner MF, Hung JTW. Social and biological correlates of localized enamel hypoplasia of the human deciduous canine tooth. Am J Phys Anthropol. 1989 jun.;79(2):159- 75. doi: 10.1002/ajpa.1330790204spa
dc.relation.references(146) Seow WK. Clinical diagnosis of enamel defects: pitfalls and practical guidelines. Int Dent J [Internet]. 1997 jun. [citado 2022 nov. 6];47(3):173-82. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/9448804/ doi: 10.1002/j.1875- 595X.1997.tb00783.xspa
dc.relation.references(147) Caeiro-Villasenín L, Serna-Muñoz C, Pérez-Silva A, Vicente-Hernández A, Poza-Pascual A, Ortiz-Ruiz AJ. Developmental dental defects in permanent teeth resulting from trauma in primary dentition: a systematic review. Int J Environ Res Public Health [Internet]. 2022 en. 10 [citado 2022 nov. 29];19(2):754. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/35055575/ doi: 10.3390/ ijerph19020754spa
dc.relation.references(148) Williamson JJ. Trauma during exodontia: an aetiologic factor in hypoplastic premolars. Br Dent J [Internet]. 1966 sept. 20 [citado 2022 nov. 29];121(6):284-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/5222639/spa
dc.relation.references(149) Kleine-Hakala M, Hukki J, Hurmerinta K. Effect of mandibular distraction osteogenesis on developing molars. Orthod Craniofac Res [Internet]. 2007 nov. [citado 2022 nov. 29];10(4):196-202. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/17973686/ doi: 10.1111/j.1601- 6343.2007.00400.xspa
dc.relation.references(150) Dinur N, Becker T, Levin A, Zadik Y, Itzhak J Ben, Azizi H, et al. Long-term dental implications of infant oral mutilation: a case series. Br Dent J [Internet]. 2021 sept. 24 [citado 2022 nov. 29];231(6):335-40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34561584/ doi: 10.1038/s41415-021-3456-3spa
dc.relation.references(151) Alexander WN. Composite dysplasia of a single tooth as a result of electric burn damage: report of case. J Am Dent Assoc [Internet]. 1964 nov. [citado 2022 nov. 29];69(5):589-91. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/14201501/ doi: 10.14219/ jada.archive.1964.0330spa
dc.relation.references(152) Neiburger EJ. Tooth stain due to electric burn. Oral Surg Oral Med Oral Pathol. 1978 febr.;45(2):178. doi: 10.1016/0030-4220(78)90082-8spa
dc.relation.references(153) Weraarchakul W, Weraarchakul W, Weraarchakul S, Siritapetawee M. Prevalence of developmental enamel defects in children with cleft lip and palate: a systematic review. J Med Assoc Thai [Internet]. 2018 my. 1 [citado 2022 nov. 29];101(Supl. 5):S239-S245. Disponible en: http://www.jmatonline.com/index.php/jmat/article/ view/9876spa
dc.relation.references(154) Shen CA, Guo R, Li W. Enamel defects in permanent teeth of patients with cleft lip and palate: a cross-sectional study. J Int Med Res [Internet]. 2019 my. [citado 2022 nov. 29];47(5):2084-96. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30913937/ doi: 10.1177/0300060519832165spa
dc.relation.references(155) Korolenkova MV, Starikova NV, Udalova NV. The role of external aetiological factors in dental anomalies in non-syndromic cleft lip and palate patients. Eur Arch Paediatr Dent [Internet]. 2019 abr. 1 [citado 2022 nov. 29];20(2):105-11. Disponible en: https://pubmed.ncbi. nlm.nih.gov/30511277/ doi: 10.1007/s40368-018-0397-xspa
dc.relation.references(156) Dixon DA. Defects of structure and formation of the teeth in persons with cleft palate and the effect of reparative surgery on the dental tissues. Oral Surg Oral Med Oral Pathol [Internet]. 1968 mar. [citado 2022 nov. 29];25(3):435-46. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/5245201/ doi: 10.1016/0030- 4220(68)90019-4spa
dc.relation.references(157) Lavor JR, Lacerda RHW, Modesto A, Vieira AR. Maxillary incisor enamel defects in individuals born with cleft lip/palate. PLoS one. 2020 dic. 28;15(12):e0244506. doi: 10.1371/journal.pone.0244506spa
dc.relation.references(158) Turner J. Effects of abscess arising from temporary teeth. Br J Dent Sci. 1906;49:562-4.spa
dc.relation.references(159) McCormick J, Filostrat DJ. Injury to the teeth of succession by abscess of the temporary teeth. J Dent Child [Internet]. 1967 nov. [citado 2022 nov. 29];34(6):501-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4864183/ pmid: 4864183.spa
dc.relation.references(160) Broadbent JM, Thomson WM, Williams SM. Does caries in primary teeth predict enamel defects in permanent teeth? A longitudinal study. J Dent Res [Internet]. 2005 mzo. [citado 2022 nov. 29];84(3):260-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15723867/ doi: 10.1177/154405910508400310spa
dc.relation.references(161) Míšová E, Žižka R, Vágnerová B, Morozova Y, Langr O, Voborná I. Prospective longitudinal study of early childhood caries and developmental defects of enamel on permanent successors in children in the Czech Republic. Eur J Paediatr Dent [Internet]. 2021 [citado 2022 nov. 29];22(1):41-6. Disponible en: https://pubmed.ncbi. nlm.nih.gov/33719482/ doi: 10.23804/ejpd.2021.22.01.08spa
dc.relation.references(162) Rodriguez Cordeiro MM, De Carvalho Rocha MJ. The effects of periradicular inflamation and infection on a primary tooth and permanent successor. J Clin Pediatr Dent [Internet]. 2005 en. 1 [citado 2022 nov. 29];29(3):193- 200. Disponible en: https://europepmc.org/article/ med/15926433 doi: 10.17796/jcpd.29.3.5238p10v21r2j162spa
dc.relation.references(163) Lo ECM, Zheng CG, King NM. Relationship between the presence of demarcated opacities and hypoplasia in permanent teeth and caries in their primary predecessors. Caries Res. 2003 nov.;37(6):456-61. doi: 10.1159/000073400spa
dc.relation.references(164) Chalakkal P, De Souza N, De Ataide I De, Akkara F, Chandran R. The resistance of succedaneous teeth to periapical infection: a series of seven cases. Contemp Clin Dent [Internet]. 2021 en. [citado 2022 nov. 29];12(1):88- 93. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8092089/ doi: 10.4103/ccd.ccd_68_20spa
dc.relation.references(165) Kimoto S, Suga H, Yamaguchi M, Uchimura N, Ikeda M, Kakizawa T. Hypoplasia of primary and permanent teeth following osteitis and the implications of delayed diagnosis of a neonatal maxillary primary molar. Int J Paediatr Dent [Internet]. 2003 en. 22 [citado 2022 nov. 29];13(1):35-40. Disponible en: https://pubmed. ncbi.nlm.nih.gov/12542622/ doi: 10.1046/j.1365- 263X.2003.00418.xspa
dc.relation.references(166) Hujoel PP, Zina LG, Moimaz SAS, Cunha-Cruz J. Infant formula and enamel fluorosis: a systematic review. J Am Dent Assoc [Internet]. 2009 jul. [citado 2022 nov. 30];140(7):841-54. Disponible en: https://www.ncbi. nlm.nih.gov/books/NBK77904/ doi: 10.14219/jada. archive.2009.0278spa
dc.relation.references(167) O’Mullane DM, Baez RJ, Jones S, Lennon MA, Petersen PE, Rugg-Gunn AJ, et al. Fluoride and oral health. Community Dent Health [Internet]. 2016 jun. [citado 2022 nov. 30];33(2):69-99. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/27352462/ doi: 10.1922/ CDH_3707O’Mullane31spa
dc.relation.references(168) Petersen PE, Phantumvanit P. Perspectives in the effective use of fluoride in Asia. J Dent Res. 2012 febr.;91(2):119-21. doi: 10.1177/0022034511429347spa
dc.relation.references(169) Ganta S, Yousuf A, Nagaraj A, Pareek S, Sidiq M, Singh K, et al. Evaluation of fluoride retention due to most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh as a contributing factor to dental fluorosis: a cross-sectional study. J Clin Diagn Res [Internet]. 2015 jun. [citado 2022 nov. 30];9(6):ZC11-ZC15. Disponible en: https://www. ncbi.nlm.nih.gov/pmc/articles/PMC4525598/ doi: 10.7860/JCDR/2015/12271.6035spa
dc.relation.references(170) Heilman JR, Kiritsy MC, Levy SM, Wefel JS. Assessing fluoride levels of carbonated soft drinks. J Am Dent Assoc [Internet]. 1999 nov. [citado 2022 nov. 30];130(11):1593- 9. Disponible en: https://pubmed.ncbi.nlm.nih. gov/10573939/ doi: 10.14219/jada.archive.1999.0098spa
dc.relation.references(171) Pattaravisitsate N, Phetrak A, Denpetkul T, Kittipongvises S, Kuroda K. Effects of brewing conditions on infusible fluoride levels in tea and herbal products and probabilistic health risk assessment. Sci Reports [Internet]. 2021 jul. 8 [citado 2022 nov. 30];11(1):14115. Disponible en: https:// www.nature.com/articles/s41598-021-93548-3 doi: 10.1038/s41598-021-93548-3spa
dc.relation.references(172) Fujimaki Hayacibara M, Queiroz CS, Machado Tabchoury CP, Aparecido Cury J. Fluoride and aluminum in teas and tea-based beverages. Rev Saude Publica [Internet]. 2004 febr. [citado 2022 nov. 30];38(1):100-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14963548/ doi: 10.1590/S0034-89102004000100014spa
dc.relation.references(173) Das S, de Oliveira LM, da Silva E, Liu Y, Ma LQ. Fluoride concentrations in traditional and herbal teas: health risk assessment. Environ Pollut. 2017 dic.;231(Pt. 1):779-84. doi: 10.1016/j.envpol.2017.08.083spa
dc.relation.references(174) Malinowska E, Inkielewicz I, Czarnowski W, Szefer P. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. Food Chem Toxicol [Internet]. 2008 mzo. [citado 2022 nov. 30];46(3):1055-61. Disponible en: https://pubmed.ncbi. nlm.nih.gov/18078704/ doi: 10.1016/j.fct.2007.10.039spa
dc.relation.references(175) Wong MCM, Clarkson J, Glenny A-M, Lo ECM, Marinho VCC, Tsang BWK, et al. Cochrane reviews on the benefits/ risks of fluoride toothpastes. J Dent Res [Internet]. 2011 my. [citado 2022 nov. 30];90(5):573-9. Disponible en: https://www.researchgate.net/publication/49768198_ Cochrane_Reviews_on_the_BenefitsRisks_of_Fluoride_ Toothpastes doi: 10.1177/0022034510393346spa
dc.relation.references(176) Levy SM, Kiritsy MC, Warren JJ. Sources of fluoride intake in children. J Public Health Dent. 1995 en.;55(1):39-52. doi: 10.1111/j.1752-7325.1995.tb02330.xspa
dc.relation.references(177) Whitford GM. Determinants and mechanisms of enamel fluorosis. En: Chadwick DJ, Cardew G, editores. ciba Foundation Symposium 205 - Dental enamel 1997. Chichester, Sussex (Reino Unido): John Wiley & Sons; 1997 [citado 2022 dic. 1]. p. 226-45. Novartis Foundation Symposia Book Series. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470515303.ch16 doi: 10.1002/9780470515303.ch16spa
dc.relation.references(178) Cury JA, Del Fiol FS, Tenuta LMA, Rosalen PL. Low-fluoride dentifrice and gastrointestinal fluoride absorption after meals. J Dent Res [Internet]. 2005 dic. [citado 2022 dic. 1];84(12):1133-7. Disponible en: https://pubmed.ncbi.nlm. nih.gov/16304442/ doi: 10.1177/154405910508401208spa
dc.relation.references(179) Ekstrand J, Spak C-J, Vogel G. Pharmacokinetics of fluoride in man and its clinical relevance. J Dent Res. 1990 febr.;69(Supl. 2):550-5. doi: 10.1177/00220345900690S109spa
dc.relation.references(180) Irigoyen-Camacho ME, García Pérez A, Mejía González A, Huizar Alvarez R. Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Sci Total Environ [Internet]. 2016 en. 15 [citado 2022 dic. 1];541:512-9. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/26426374/ doi: 10.1016/j. scitotenv.2015.09.085spa
dc.relation.references(181) Jedeon K, De La Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol [Internet]. 2013 jul. [citado 2022 dic. 5];183(1):108-18. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23764278/ doi: 10.1016/j.ajpath.2013.04.004spa
dc.relation.references(182) Organización Mundial de la Salud [Sitio virtual]. Las dioxinas y sus efectos en la salud humana [Internet]. Ginebra (Suiza): Organización Mundial de la Salud; [Actualizado 2023 nov. 29; citado 2023 en. 11]. Disponible en: https://www.who.int/es/news-room/fact-sheets/ detail/dioxins-and-their-effects-on-human-healthspa
dc.relation.references(183) Al-Azri K, Melita LN, Strange AP, Festy F, Al-Jawad M, Cook R, et al. Optical coherence tomography use in the diagnosis of enamel defects. J Biomed Opt. 2016 mzo.;21(3):036004. doi: 10.1117/1.JBO.21.3.036004spa
dc.relation.references(184) Kobayashi TY, Vitor LLR, Carrara CFC, Silva TC, Rios D, Machado MAAM, et al. Dental enamel defect diagnosis through different technology-based devices. Int Dent J. 2018 jun.;68(3):138-43. doi: 10.1111/idj.12350spa
dc.relation.references(185) Marouane O, Manton DJ. The use of transillumination in mapping demarcated enamel opacities in anterior teeth: a cross-sectional study. Int J Paediatr Dent. 2022 en.;32(1):49-55. doi: 10.1111/ipd.12790spa
dc.relation.references(186) Popescu M, Scrieciu M, Osiac E, Bătăiosu M, Vlăduțu D, Pascu RM, et al. Applications of Optical Coherence Tomography in the Diagnosis of Enamel Defects. Diagnostics (Basilea, Suiza) [Internet]. 2022 mzo. 5 [citado 2023 en. 12];12(3):636. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/35328189/ doi: 10.3390/ diagnostics12030636spa
dc.relation.references(187) Jälevik B, Szigyarto-Matei A, Robertson A. Difficulties in identifying developmental defects of the enamel: a bita study. Eur Arch Paediatr Dent [Internet]. 2019 mzo. 18 [citado 2022 nov. 11];20(5):481-8. Disponible en: https://europepmc.org/article/med/30887463 doi: 10.1007/s40368-019-00431-xspa
dc.relation.references(188) Yehia AM, Abdelaziz AM, Badran A. “Knowledge, clinical experience, and perceived need for training regarding molar-incisor hypomineralization among a group of Egyptian dental students: a cross-sectional study.” bmc Oral Health. 2022 ag. 2;22(323). doi: 10.1186/s12903- 022-02356-2spa
dc.relation.references(189) Aguilar Gálvez D, Noal FC, Arriola-Guillén LE, Hugo FN, Leal SC, Borba de Araujo F. Virtual learning object for developing knowledge about the diagnosis and management of molar incisor hypomineralization. Int J Paediatr Dent [Internet]. 2022 jul. [citado 2022 nov. 6];32(4):458-63. Disponible en: https://pubmed.ncbi. nlm.nih.gov/34564920/ doi: 10.1111/ipd.12925spa
dc.relation.references(190) Amarante BC, Arima LY, Pinheiro E, Carvalho P, Michel Crosato E, Bönecker M. Diagnosis training and calibration for epidemiological studies on primary and permanent teeth with hypomineralization. Eur Arch Paediatr Dent. 2022 febr.;23(1):169-77. doi: 10.1007/s40368-021-00686-3spa
dc.relation.references(191) A review of the developmental defects of enamel index (dde Index): Commission on Oral Health, Research & Epidemiology: Report of an fdi Working Group. Int Dent J [Internet]. 1992 dic. 1 [citado 2022 nov. 6];42(6):411- 26. Disponible en: https://pubmed.ncbi.nlm.nih. gov/1286924/ pmid: 1286924.spa
dc.relation.references(192) Naranjo Sierra MC. Terminología, clasificación y medición de los defectos en el desarrollo del esmalte. Revisión de literatura/Terminology, classification and measuring of the developmental defects of enamel. Literature review. Univ Odontol [Internet]. 2013 jun. 30 [citado 2022 nov. 6];32(68):33-44. Disponible en: https://revistas.javeriana. edu.co/index.php/revUnivOdontologica/article/view/ SICI%3A%202027-3444%28201301%2932%3 A68%3C33 %3ATCMDDE%3E2.0.CO%3B2-Kspa
dc.relation.references(193) Almuallem Z, Busuttil-Naudi A. Molar incisor hypomineralisation (mih) - an overview. Br Dent J [Internet]. 2018 oct. 5 [citado 2022 nov. 6];225(7):601-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30287963/ doi: 10.1038/sj.bdj.2018.814spa
dc.relation.references(194) Weerheijm KL. Molar incisor hypomineralisation (mih). Eur J Paediatr Dent. 2003 sept.;4(3):114-20. pmid: 14529330.spa
dc.relation.references(195) Lygidakis NA, Wong F, Jälevik B, Vierrou A-M, Alaluusua S, Espelid I. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor hypomineralisation (mih): an eapd policy document. Eur Arch Paediatr Dent. 2010 abr.;11(2):75-81. doi: 10.1007/ BF03262716spa
dc.relation.references(196) Ghanim A, Elfrink M, Weerheijm K, Mariño R, Manton D. A practical method for use in epidemiological studies on enamel hypomineralisation. Eur Arch Paediatr Dent [Internet]. 2015 jun. 18 [citado 2022 nov. 6];16(3):235-46. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4469791/ doi: 10.1007/s40368-015-0178-8spa
dc.relation.references(197) Saldarriaga A, Rojas-Gualdrón DF, Restrepo M, Bussaneli DG, Fragelli C, de Cássia Loiola Cordeiro R, et al. Clinical changes in the severity of dental fluorosis: a longitudinal evaluation. bmc Oral Health [Internet]. 2021 jul. 22 [citado 2022 dic. 6];21(366):1-9. Disponible en: https:// bmcoralhealth.biomedcentral.com/articles/10.1186/ s12903-021-01729-3 doi: 10.1186/s12903-021-01729-3spa
dc.relation.references(198) Thylstrup A, Fejerskov O. Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dent Oral Epidemiol [Internet]. 1978 dic. [citado 2022 Dic. 6];6(6):315-28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/282114/ doi: 10.1111/j.1600-0528.1978.tb01173.xspa
dc.relation.references(199) Farah R, Drummond B, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralisation to its mineral density. Int J Paediatr Dent. 2010 sept.;20(5):353-60. doi: 10.1111/j.1365-263X.2010.01061.xspa
dc.relation.references(200) Mathu-Muju K, Wright JT. Diagnosis and treatment of molar incisor hypomineralization. Compend Contin Educ Dent. 2006 nov.;27(11):604-10; quiz 611. pmid: 17133930.spa
dc.relation.references(201) Wong DL, Baker CM. Pain in children: comparison of assessment scales. Pediatr Nurs. 1988 Jan-Feb;14(1):9-17. PMID: 3344163.spa
dc.relation.references(202) Steffen R, Krämer N, Bekes K. The Würzburg mih concept: the MIH treatment need index (mih tni): a new index to assess and plan treatment in patients with molar incisior hypomineralisation (mih). Eur Arch Paediatr Dent. 2017 oct.;18(5):355-61. doi: 10.1007/ s40368-017-0301-0spa
dc.relation.references(203) Jeremías F, Scarel-Carminga RM, Bussaneli DG, Dos Santos-Pinto L. Factores genéticos y abordaje familiar. En: Santos-Pinto L, Fragelli C, Imparato JC, editores. Hipomineralización de molares y de incisivos. 1.ª ed. Brasil: Napoleao editora, Quintessence publishing Brasil; 2022. p. 113-26.spa
dc.relation.references(204) Thylstrup A, Fejerskov O, Mosha HJ. A polarized light and microradiographic study of enamel in human primary teeth from a high fluoride area. Arch Oral Biol. 1978;23(5):373-80. doi: 10.1016/0003-9969(78)90095-Xspa
dc.relation.references(205) Thylstrup A. Distribution of dental fluorosis in the primary dentition. Community Dent Oral Epidemiol. 1978;6(6):329-37. doi: 10.1111/j.1600-0528.1978.tb01174.xspa
dc.relation.references(206) Gedalia I, Shapira L. Effect of prenatal and postnatal fluoride on the human deciduous dentition: a litera ture review. Adv Dent Res. 1989 sept.;3(2):168-76. doi: 10.1177/08959374890030021601spa
dc.relation.references(207) Seow WK. Clinical diagnosis and management strategies of amelogenesis imperfectavariants. Pediatr Dent. 1993;15(6):384-93. pmid: 8152999.spa
dc.relation.references(208) de Farias AL, Rojas-Gualdrón DF, Girotto Bussaneli D, Santos-Pinto L, Mejía JD, Restrepo M. Does molar-incisor hypomineralization (mih) affect only permanent first molars and incisors? New observations on permanent second molars. Int J Paediatr Dent. 2022 en.;32(1):1-10. doi: 10.1111/ipd.12780spa
dc.relation.references(209) Warren JJ, Kanellis MJ, Levy SM. Fluorosis of the primary dentition: what does it mean for permanent teeth? J Am Dent Assoc. 1999 mzo.;130(3):347-56. doi: 10.14219/ jada.archive.1999.0204spa
dc.relation.references(210) Sabokseir A, Golkari A, Sheiham A. Distinguishing between enamel fluorosis and other enamel defects in permanent teeth of children. Peer J [Internet]. 2016 febr. 25 [citado 2022 nov. 6];4(2):e1745. Disponible en: https:// pubmed.ncbi.nlm.nih.gov/26966672/ doi: 10.7717/ peerj.1745spa
dc.relation.references(211) Castro MJ, Mendes JJ, Vinga S, de Andrade DC. Differential diagnosis of developmental defects of enamel: a review. Ann Med [Internet]. 2021 sept. 28 [citado 2022 dic. 14];53(Supl. 1):S49-S50. Disponible en: https://www. tandfonline.com/doi/abs/10.1080/07853890.2021.18 97305 doi: 10.1080/07853890.2021.1897305spa
dc.relation.references(212) Cutress TW, Suckling GW. Differential diagnosis of dental fluorosis. J Dent Res. 1990 febr.;69(Supl. 2):714- 20. doi: 10.1177/00220345900690S138spa
dc.relation.references(213) Ministerio de Salud y Protección Social. iv Estudio Nacional de Salud Bucal (ensab iv). Bogotá, Colombia: Ministerio de Salud y Protección Social (minsalud); 2014. p. 59-68.spa
dc.relation.references(214) Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental fluorosis: the risk of misdiagnosis-a review. Biol Trace Elem Res [Internet]. 2021 my. 1 [citado 2022 nov. 6];199(5):1762-70. Disponible en: https://pubmed. ncbi.nlm.nih.gov/32705431/ doi: 10.1007/s12011-020- 02296-4spa
dc.relation.references(215) Rigo L, Lodi L, Garbin RR. Differential diagnosis of den tal fluorosis made by undergraduate dental students. Einstein (São Paulo) [Internet]. 2015 oct. [citado 2023 en. 13];13(4):547-54. Disponible en: http://www.scielo.br/j/ eins/a/z6mLBM5wQGs3BB7G654hJrq/?lang=en&for mat=html doi: 10.1590/S1679-45082015AO3472spa
dc.relation.references(216) Rao S, Witkop CJ. Inherited defects in tooth structure. Birth Defects Orig Artic Ser. 1971 jun.;7(7):153-84. pmid: 4375507.spa
dc.relation.references(217) Naranjo Sierra MC. Terminología, clasificación y me dición de los defectos en el desarrollo del esmalte. Revisión de literatura/Terminology, classification and measuring of the developmental defects of enamel. Literature review. Univ Odontol. 2013 jun. 30;32(68): 33-44. Disponible en: https://revistas.javeriana.edu.co/index. php/revUnivOdontologica/article/view/SICI%3A%20 2027-3444%28201301%2932%3A68%3C33%3ATCMD DE%3E2.0.CO%3B2-Kspa
dc.relation.references(218) Pitts N. “icdas”-an international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management. Community Dent Health. 2004 sept.;21(3):193-8. pmid: 15470828.spa
dc.relation.references(219) Watts A, Addy M. Tooth discolouration and staining: a review of the literature. Br Dent J. 2001 mzo. 24;190(6):309- 16. doi: 10.1038/sj.bdj.4800959spa
dc.relation.references(220) Brodbelt RHW, O’brien WJ, Fan PL, Frazer-Dib JG, Yu R. Translucency of human dental enamel. J Dent Res [Internet]. 1981 oct. [citado 2022 dic. 6];60(10):1749-53. Dis ponible en: https://pubmed.ncbi.nlm.nih.gov/6944339/ doi: 10.1177/00220345810600100401spa
dc.relation.references(221) Gevert MV, Soares R, Wambier LM, Ribeiro AE, Avais LS, de Souza JF, et al. How is the quality of the available evidence on molar-incisor hypomineralization treatment? An overview of systematic reviews. Clin Oral Invest. 2022 oct.;26(10):5989-6002. doi: 10.1007/ s00784-022-04612-9spa
dc.relation.references(222) Martins CC, Riva JJ, Firmino RT, Schünemann HJ. Formulations of desensitizing toothpastes for dentin hypersensitivity: a scoping review. J Appl Oral Sci. 2022;30:e20210410. doi: 10.1590/1678-7757-2021-0410spa
dc.relation.references(223) Martins CC, Firmino RT, Riva JJ, Ge L, Carrasco-Labra A, Brignardello-Petersen R, et al. Desensitizing toothpastes for dentin hypersensitivity: a network meta-analysis. J Dent Res. 2020 my.;99(5):514-22. doi: 10.1177/0022034520903036spa
dc.relation.references(224) Pasini M, Giuca MR, Scatena M, Gatto R, Caruso S. Molar incisor hypomineralization treatment with casein phosphopeptide and amorphous calcium phosphate in children. Minerva Stomatol. 2018 febr.;67(1):20-5. doi: 10.23736/S0026-4970.17.04086-9spa
dc.relation.references(225) Elhennawy K, Schwendicke F. Managing molar-incisor hypomineralization: a systematic review. J Dent [Internet]. 2016 dic. [citado 2022 nov. 11];55:16-24. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27693779/ doi: 10.1016/j.jdent.2016.09.012spa
dc.relation.references(226) Bekes K, Heinzelmann K, Lettner S, Schaller H-G. Efficacy of desensitizing products containing 8% arginine and calcium carbonate for hypersensitivity relief in mih-affected molars: an 8-week clinical study. Clin Oral Invest. 2017 sept.;21(7):2311-7. doi: 10.1007/s00784-016- 2024-8spa
dc.relation.references(227) Bekes K, Amend S, Priller J, Zamek C, Stamm T, Krämer N. Hypersensitivity relief of mih-affected molars using two sealing techniques: a 12-week follow-up. Clin Oral Invest [Internet]. 2022 febr. [citado 2023 febr. 12];26(2):1879-88. Disponible en: https://link.springer. com/article/10.1007/s00784-021-04163-5 doi: 10.1007/ s00784-021-04163-5spa
dc.relation.references(228) de Farias AL, Rojas-Gualdrón DF, Mejía JD, Bussaneli DG, Santos-Pinto L, Restrepo M. Survival of stainless-steel crowns and composite resin restorations in molars affected by molar-incisor hypomineralization (mih). Int J Paediatr Dent. 2022 mzo.;32(2):240-50. doi: 10.1111/ ipd.12849spa
dc.relation.references(229) American Academy of Pediatric Dentistry. Policy on the use of dental bleaching for child and adolescent patients [Internet]. Chicago (Illinois): American Academy of Pediatric Dentistry (aapd); 2023 [citado 2023 feb. 12]. p. 128-32. Disponible en: https://www.aapd.org/ research/oral-health-policies--recommendations/ use-of-dental-bleaching-for-child-and-adolescent-patients/spa
dc.relation.references(230) Lopes-Fatturi A, Wambier L, Rolim TZC, Reis A, de Souza JF. Restorative techniques for permanent first molars affected by hypomineralization: a systematic review. Pediatr Dent. 2022 en. 15;44(1):17-24. pmid: 35232531.spa
dc.relation.references(231) Wong-Baker faces Foundation (2022). Wong-Baker faces® Pain Rating Scale. Originally published in Whaley & Wong’s Nursing Care of Infants and Children. Elsevier Inc.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaspa
dc.subject.decsDefectos del desarrollo del esmalte -- Diagnósticospa
dc.subject.decsDefectos del desarrollo del esmalte -- Etiologíaspa
dc.subject.decsDefectos del desarrollo del esmalte -- Fisiopatologíaspa
dc.subject.decsAmelogénesisspa
dc.subject.decsHipomineralización del esmalte dentalspa
dc.subject.decsDesmineralización dentalspa
dc.subject.decsFluorosis dentalspa
dc.subject.decsHipomineralización molarspa
dc.subject.decsAmeloblastosspa
dc.subject.decsHipoplasia del esmalte dentalspa
dc.subject.decsHipoplasia del esmalte dental -- Psicologíaspa
dc.subject.decsCaries dentalspa
dc.subject.decsCalidad de vidaspa
dc.subject.decsDevelopmental Defects of Enamel -- Diagnosiseng
dc.subject.decsDevelopmental Defects of Enamel -- Etiologyeng
dc.subject.decsDevelopmental Defects of Enamel -- Physiopathologyeng
dc.subject.decsAmelogenesiseng
dc.subject.decsDental Enamel Hypomineralizationeng
dc.subject.decsTooth Demineralizationeng
dc.subject.decsFluorosis, Dentaleng
dc.subject.decsMolar Hypomineralizationeng
dc.subject.decsAmeloblastseng
dc.subject.decsDental Enamel Hypoplasiaeng
dc.subject.decsDental Enamel Hypoplasia -- Psychologyeng
dc.subject.decsDental Carieseng
dc.subject.decsQuality of lifeeng
dc.subject.decsDefectos del desarrollo del esmalte -– Psicologíaspa
dc.subject.decsDevelopmental Defects of Enamel -- Psychologyeng
dc.subject.lembHipoplasia del esmalte dentariospa
dc.subject.proposalFisiopatologíaspa
dc.subject.proposalDefectos del desarrollo del esmaltespa
dc.subject.proposalDiagnósticospa
dc.subject.proposalHipomineralización incisivo-molarspa
dc.subject.proposalFluorosis dentalspa
dc.titleManual diagnóstico de defectos de desarrollo del esmaltespa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ManualDiagnosticoDefectosEsmalte.pdf
Tamaño:
5.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro completo_Manual diagnóstico de defectos de desarrollo del esmalte

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
NaranjoEsmalteLicenciaRepositorio.pdf
Tamaño:
380.46 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia para publicación de obras en el Repositorio Institucional UNAL_Manual diagnóstico de defectos de desarrollo del esmalte