Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá

dc.contributor.advisorMelo Martínez, Oscar Orlandospa
dc.contributor.authorCastro Gil, César Davidspa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionDepartamento de Cundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000583
dc.date.accessioned2023-01-20T16:55:47Z
dc.date.available2023-01-20T16:55:47Z
dc.date.issued2022-12-01
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEn el presente trabajo se ajusta un modelo espacio-temporal para el número de muertes a causa de COVID-19 en Cundinamarca y Bogotá. En los municipios más alejados de Cundinamarca lo normal es que no se presentarán muertes en mucho tiempo, por esta razón puede ser considerado un problema con exceso de ceros de espacio-tiempo. Además, se realizó un análisis exploratorio de la base de datos el cual permitió detectar la presencia de relación temporal y espacial. Por lo tanto, en una primera parte se exponen y detallan las metodologías y conceptos que pueden ayudar a manejar el exceso de ceros y posteriormente, se hace énfasis en el modelo espacio-temporal con exceso de ceros. En la búsqueda de la literatura se encontró que una buena alternativa para ajustar un modelo de este estilo es hacerlo mediante un modelo jerárquico Bayesiano usando el método de la aproximación de Laplace integrada anidada (INLA). Se realizó un análisis descriptivo de la vacunación en Colombia dejando algunos detalles que permitieron complementar el análisis del ajuste de los modelos. Finalmente, se obtuvo que el modelo que mejor se ajustó a la luz de la media del error absoluto de predicción (MAPE), el criterio de información de la devianza (DIC) y del contexto del exceso de ceros fue el modelo Poisson Cero Inflado. Asi, se puede afirmar que las muertes a causa de COVID-19 en Cundinamarca y Bogotá es un fenómeno espacio-temporal con exceso de ceros. (Texto tomado de la fuente).spa
dc.description.abstractIn the present work, a spatio-temporal model is fitted for the number of deaths due to COVID-19 in Cundinamarca department and Bogota city. In the most remote municipalities of Cundinamarca, it is normal that there will be no deaths in a long time, for this reason it can be considered a problem with of space-time excess of zeros. In addition, an exploratory analysis of the database was carried out, which allowed detecting the presence of a temporal and spatial relationship. Therefore, in the first part, the methodologies and concepts that can help to manage the excess of zeros are presented and detailed, and subsequently, emphasis is placed on the spatio-temporal model with excess of zeros. In the literature, it was found that the best alternative to fit a model of this style is usign a Bayesian hierarchical model Integrated Nested Laplace Approximation (INLA) method. A descriptive analysis of vaccination in Colombia was carried out, leaving some details that allowed complementing the analysis of model fitting. Finally, it was obtained that the best fitting model in light of the mean absolute prediction error (MAPE), the deviancy information criterion (DIC) and the context of the excess of zeros was the Zero Inflated Poisson model. Therefore, it can be affirmed that deaths due to COVID-19 in Cundinamarca and Bogotá is a spatio-temporal phenomenon with an excess of zeros.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.notesIncluye anexosspa
dc.format.extentvii, 62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83045
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAgarwal, D. K., Gelfand, A. & Citron-Pousty, S. (2002), ‘Zero-inflated models with appli- cation to spatial count data’, Environmental and Ecological Statistics 9, 341–345.spa
dc.relation.referencesArab, A. (2015), ‘Spatial and spatio-temporal models for modeling epidemiological data with excess zeros’, International Journal of Environmental Research and Publich Health 12, 10536–10548.spa
dc.relation.referencesBesag, J., York, J. & Mollie, A. (1991), ‘Bayesian image restoration, with two applications in spatial statistics’, Annals of the Institute of Statistical Mathematics 43, 1–59.spa
dc.relation.referencesBlanco, L. (2004), Probabilidad, Universidad Nacional de Colombia.spa
dc.relation.referencesBlangiardo, M., Cameletti, M., Baio, G. & Rue, H. (2013), ‘Spatial and spatio-temporal models with R-INLA’, Spatial and Spatio-Temporal Epidemiology 4, 33–49.spa
dc.relation.referencesByers, A., Allore, H., Gill, T. & Peduzzi, P. (2003), ‘Application of negative binomial modeling for discrete outcomes’, Journal of clinical epidemiology 56, 559–64.spa
dc.relation.referencesFahrmeir, L. & Echavarría, L. O. (2006), ‘Structured additive regression for overdispersed and zero-inflated count data’, Applied Stochastic Models in Bussines and Industry 22, 351–369.spa
dc.relation.referencesFuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. (2018), ‘Constructing priors that penalize the complexity of gaussian random fields’, Journal of the American Statistical Association 114.spa
dc.relation.referencesLambert, D. (1992), ‘Zero-inflated Poisson regression, with an application to defects in manufacturing’, Technometrics 34, 1–14.spa
dc.relation.referencesMullahy, J. (1986), ‘Specification and testing of some modified count data models’, Journal of Econometrics 33, 341–366.spa
dc.relation.referencesRodríguez, G. (2007), Lecture notes on generalized linear models, Technical report, Princeton University.spa
dc.relation.referencesRomo, J. E. (2019), Modelos espaciales y espacio-temporales para modelación de datos con exceso de ceros, Tesís de maestría, Centro de Investigación en Matemáticas (CIMAT).spa
dc.relation.referencesRue, H. & Held, L. (2005), Gaussian Markov Random Fields, Theory and Applications, A Chapman & Hall Book.spa
dc.relation.referencesRue, H. & Martino, S. (2007), ‘Approximate bayesian inference for hierarchical Gaussian Markov random fields’, Journal of Statistical Planning and Inference 137, 3177– 3192.spa
dc.relation.referencesRue, H. & Martino, S. (2009), Implementing approximate bayesian inference using integrated nested laplace approximation: a manual for the inla program, Technical report, Department of Mathematical Sciences, NTNU (Norway).spa
dc.relation.referencesRue, H., Martino, S. & Chopin, N. (2009), ‘Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations’, Journal of the Royal Society Series B 71, 319–392.spa
dc.relation.referencesSaavedra, P., Santana, A., Bello, L., Pachecho, J. M. & Sanjuán, E. (2021), ‘A bayesian spatio-temporal analysis of mortality rates in Spain: application to the covid-19 2020 outbreak’, Population Health Metrics 1, 19–27.spa
dc.relation.referencesSartorius, B., Lawson, A. & Pullan, R. (2021), ‘Modelling and predicting the spatiotemporal spread of covid-19, associated deaths and impact of key risk factors in England’, Scientific Reports 11, 19–27.spa
dc.relation.referencesSpiegelhalter, D., Best, N., Carlin, B. & van der Linde, A. (2002), ‘Bayesian measures of model complexity and fit’, Journal of the Royal Society Series B 64, 583–639.spa
dc.relation.referencesStroup, W. (2013), Generalized Linear Mixed Models,Modern Concepts, Methods and Applications, A Chapman & Hall Book.spa
dc.relation.referencesTorabi, M. (2017), ‘Zero-inflated spatio-temporal models for disease mapping’, Biometrical Journal 3, 430–434.spa
dc.relation.referencesWikle, C. K. & Anderson, C. J. (2003), ‘Climatological analysis of tornado report counts using a hierarchical bayesian spatiotemporal model’, Journal of Geophysical Research 108, 9005.spa
dc.relation.referencesZhu, S., Bukharin, A., Xie, L., Santillana, M., Yang, S. & Xie, Y. (2021), ‘High-resolution spatio-temporal model for county-level covid-19 activity in the U.S.’, Harvard University.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.decsCoronavirus Infections/mortalityeng
dc.subject.decsInfecciones por Coronavirus/mortalidadspa
dc.subject.proposalCOVID-19spa
dc.subject.proposalHurdle modeeng
dc.subject.proposalExceso de cerosspa
dc.subject.proposalModelos cero infladospa
dc.subject.proposalModelo de Hurdlespa
dc.subject.proposalConteospa
dc.subject.proposalEspacio-temporalspa
dc.subject.proposalZero inflated modeleng
dc.subject.proposalCounteng
dc.subject.proposalSpatio-temporaleng
dc.subject.unescoModelo matemáticospa
dc.subject.unescoMathematical modelseng
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.titleModelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotáspa
dc.title.translatedSpatio-temporal model for the deaths due to COVID-19 in Cundinamarca department and Bogota cityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072713162.2022.pdf
Tamaño:
6.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: