Evaluación de la expresión de genes asociados con la integridad intestinal y la modulación de la respuesta inmune en pollos de engorde suplementados con propóleo

dc.contributor.advisorGomez Ramirez, Arlen Patricia
dc.contributor.advisorRamirez-Nieto, Gloria Consuelo
dc.contributor.authorDaza Leon, Camila
dc.contributor.orcid0000-0002-7221-8311spa
dc.contributor.researchgateDaza Leon, Camilaspa
dc.contributor.researchgroupMedicina Aviar y Producción Avícolaspa
dc.date.accessioned2023-08-02T15:37:32Z
dc.date.available2023-08-02T15:37:32Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractComo alternativa a la prohibición mundial de los antibióticos utilizados como promotores del crecimiento (AGP), los aditivos nutricionales, como el propóleo, buscan mejorar la salud intestinal de los animales. Con base en lo anterior, el objetivo de este estudio fue evaluar el efecto de la suplementación con propóleo en la dieta de pollos de engorde. Se alimentaron 450 pollos de engorde Ross 308 AP con una dieta basal (BD) durante todo el periodo experimental. Las aves se distribuyeron aleatoriamente en cinco grupos en el día 14: control negativo sin antibióticos ni propóleo (AGP-), control positivo con 500 ppm de bacitracina de zinc como AGP (AGP+) y tres grupos suplementados con 150, 300 y 450 ppm de propóleo. Cada grupo incluía seis réplicas de 15 aves cada una. La concentración de propóleo se incrementó de los días 22 al 42 a 300, 600 y 900 ppm, y se incluyó un 10% de soya cruda como desafío en todos los grupos durante el mismo periodo. A los 21 y 42 días se realizó el análisis de parámetros productivos, morfometría intestinal, histología de órganos inmunes y cuantificación relativa de los genes asociados a la integridad epitelial e inmunidad mediante qPCR. Los grupos con mayor peso fueron los que consumieron dietas que incluían 150 ppm (21 d) y 900 ppm (42 d) de propóleo en comparación con todos los tratamientos. La puntuación más baja de ISI se encontró en 300 (21 d) y 600 ppm (42 d). Se observó un menor grado de lesión en el sistema digestivo con la inclusión de 300 ppm (21 d) y 900 ppm (42 d). Se detectó incremento de la expresión de zónula occludens-1 (ZO-1) en yeyuno de pollos de engorde suplementados con 150 y 300 ppm a los 21 días. También se evidenció la regulación negativa de TGF-𝛽 en íleon en todos los niveles de inclusión de propóleo a los 42 días en comparación con AGP+ y AGP-. Los efectos beneficiosos se evidenciaron a niveles de inclusión de 150 ppm en el alimento iniciador y 900 ppm en el finalizador. la inclusión de propóleos colombianos puede mejorar el rendimiento productivo, los parámetros fisiológicos e inmunes, y la expresión de genes asociados a la integridad intestinal. (Texto tomado de la fuente)spa
dc.description.abstractNutritional additives such as propolis seek to improve intestinal health as an alternative to the global ban on in-feed antibiotics used as growth promoters (AGP). The objective of this study was to evaluate the effect of propolis supplementation in diet of broilers. Four hundred and fifty straight-run Ross 308 AP broilers were fed with a basal diet (BD) throughout the whole experimental period. Birds were randomly distributed into five groups at day 14: negative control without antibiotics nor propolis (AGP-), positive control 500 ppm of Zinc Bacitracin as growth promoter (AGP+), and three groups supplemented with 150, 300, and 450 ppm of propolis. Every group included six replicates of 15 birds each. Propolis concentration was increased from day 22 to 42, in experimental groups to 300, 600, and 900 ppm of propolis, and 10% of raw soybean was included as a challenge in all groups during the same period. Analysis of productive parameters, intestinal morphometry, and relative quantification of genes associated with epithelial integrity by qPCR were performed at 21 and 42 days. The groups with the greatest weights were those that consumed diets including 150 (21 d) and 900 ppm (42 d) of propolis compared with all treatments. The lowest score of ISI was found at 300 (21 d) and 600 ppm (42 d). A lower degree of injury in the digestive system was seen with the inclusion of 300 ppm (21 d) and 900 ppm (42 d). Up-regulation of zonula occludens-1 (ZO-1) was observed in jejunum of broilers supplemented with 150 and 300 ppm at 21 d. Up-regulation of ZO-1 and TGF-𝛽 was also evidenced in the ileum at all propolis inclusion levels at 42 d-old compared to AGP+ and AGP-. The beneficial effects were evidenced at inclusion levels of 150 ppm in the starter and 900 ppm in the finisher. According to the results, the Colombian propolis inclusion can improve productive performance, physiological parameters, and the expression of genes associated with intestinal integrity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaMicrobiología e inmunologíaspa
dc.format.extentxix, 95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84415
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesGalal, A., Abd El -Motaal, A. M., Ahmed, A. M. H., & Zaki, T. G. (2008). Productive Performance and Immune Response of Laying Hens as Affected by Dietary Propolis Supplementation. International Journal of Poultry Science, 7(1).spa
dc.relation.referencesGarcia-Hernandez, V., Quiros, M., & Nusrat, A. (2017). Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 1397(1), 66-79. https://doi.org/10.1111/nyas.13360spa
dc.relation.referencesGhareeb, K., Awad, W. A., Soodoi, C., Sasgary, S., Strasser, A., & Böhm, J. (2013). Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE, 8(8), e71492. https://doi.org/10.1371/journal.pone.0071492spa
dc.relation.referencesGheisari, A., Shahrvand, S., & Landy, N. (2017). Effect of ethanolic extract of propolis as an alternative to antibiotics as a growth promoter on broiler performance, serum biochemistry, and immune responses. Veterinary World, 10(2), 249-254. https://doi.org/10.14202/vetworld.2017.249-254spa
dc.relation.referencesGomez, A. P., Moreno, M. J., Iglesias, A., Coral, P. X., & Hernández, A. (2007). Endothelin 1, its Endothelin Type A Receptor, Connective Tissue Growth Factor, Platelet-Derived Growth Factor, and Adrenomedullin Expression in Lungs of Pulmonary Hypertensive and Nonhypertensive Chickens. Poultry Science, 86(5), 909-916. https://doi.org/10.1093/PS/86.5.909spa
dc.relation.referencesGonzález-Mariscal, L., Betanzos, A., Nava, P., & Jaramillo, B. E. (2003). Tight junction proteins. Progress in Biophysics and Molecular Biology, 81(1), 1-44. https://doi.org/10.1016/S0079-6107(02)00037-8spa
dc.relation.referencesHaghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of Antibody-Mediated Immune Response by Probiotics in Chickens. Clinical and Vaccine Immunology, 12(12), 1387-1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005spa
dc.relation.referencesHassan, M. G., & Abdulla, T. A. (2011). The effect of propolis feed supplementation on hygiene and performance of broiler chickens. Iraqi Journal of Veterinary Science, 25, 77-82.spa
dc.relation.referencesHattori, H., Okuda, K., Murase, T., Shigetsura, Y., Narise, K., Semenza, G. L., & Nagasawa, H. (2011). Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis. Bioorganic & Medicinal Chemistry, 19(18), 5392-5401. https://doi.org/10.1016/J.BMC.2011.07.060spa
dc.relation.referencesHu, F., Hepburn, H. R., Li, Y., Chen, M., Radloff, S. E., & Daya, S. (2005). Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. Journal of Ethnopharmacology, 100(3), 276-283. https://doi.org/10.1016/j.jep.2005.02.044spa
dc.relation.referencesHuang, S., Zhang, C.-P., Wang, K., Li, G., & Hu, F.-L. (2014). Recent Advances in the Chemical Composition of Propolis. Molecules, 19(12), 19610-19632. https://doi.org/10.3390/molecules191219610spa
dc.relation.referencesHumphrey, B. D., & Klasing, K. C. (2004). Modulation of nutrient metabolism and homeostasis by the immune system. World’s Poultry Science Journal, 60(1), 90-100. https://doi.org/10.1079/WPS20037spa
dc.relation.referencesIslam, M., Kamruzzaman, M., Rahman, M., Ferdous, K., Juli, M., & Kabir, M. (2019). Effects of age on gross and microscopic changes of bursa of Fabricius and thymus of commercial broiler chicken. Journal of Entomology and Zoology Studie, 7(1), 184-189.spa
dc.relation.referencesJayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002spa
dc.relation.referencesJohansson, M., & Hansson, G. (2016). Immunological aspects of intestinal mucus and mucins. Nature reviews. Immunology, 16(10), 639. https://doi.org/10.1038/NRI.2016.88spa
dc.relation.referencesJung, W. K., Choi, I., Lee, D. Y., Yea, S. S., Choi, Y. H., Kim, M. M., Park, S. G., Seo, S. K., Lee, S. W., Lee, C. M., Park, Y. M., & Choi, I. W. (2008). Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-κB pathways. The International Journal of Biochemistry & Cell Biology, 40(11), 2572-2582. https://doi.org/10.1016/J.BIOCEL.2008.05.005spa
dc.relation.referencesKim, J. J., & Khan, W. I. (2013). Goblet cells and mucins: Role in innate defense in enteric infections. Pathogens, 2(1), 55-70. https://doi.org/10.3390/pathogens2010055spa
dc.relation.referencesKoenen, M. E., Kramer, J., van der Hulst, R., Heres, L., Jeurissen, S. H. M., & Boersma, W. J. A. (2004). Immunomodulation by probiotic lactobacilli in layer- And meat-type chickens. British Poultry Science, 45(3), 355-366. https://doi.org/10.1080/00071660410001730851spa
dc.relation.referencesKogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 3(AUG), 71. https://doi.org/10.3389/fvets.2016.00071spa
dc.relation.referencesKogut, M. H., & Arsenault, R. J. (2017). Immunometabolic Phenotype Alterations Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken Intestine. Frontiers in Immunology, 8(APR), 372. https://doi.org/10.3389/fimmu.2017.00372spa
dc.relation.referencesKogut, M. H., Genovese, K. J., Swaggerty, C. L., He, H., & Broom, L. (2018). Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equal. En Poultry Science (Vol. 97, Número 7, pp. 2339-2346). https://doi.org/10.3382/ps/pey087spa
dc.relation.referencesKonkel, J. E., & Chen, W. (2011). Balancing acts: the role of TGF-β in the mucosal immune system. Trends in Molecular Medicine, 17(11), 668-676. https://doi.org/10.1016/j.molmed.2011.07.002spa
dc.relation.referencesLeeson, S. , & Summers, J. D. (2001). Naturally occurring toxins relevant to poultry nutrition. En Scotts nutrition of the chicken. (Universitary Books, pp. 544-586).spa
dc.relation.referencesLi, J., & Kim, I. H. (2014). Effects of S accharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Animal Science Journal, 85(6), 698-705. https://doi.org/10.1111/asj.12195spa
dc.relation.referencesLi, M. O., & Flavell, R. A. (2008). TGF-β: A Master of All T Cell Trades. Cell, 134(3), 392-404. https://doi.org/10.1016/j.cell.2008.07.025spa
dc.relation.referencesLow, C. X., Tan, L. T.-H., Mutalib, N.-S. A., Pusparajah, P., Goh, B.-H., Chan, K.-G., Letchumanan, V., & Lee, L.-H. (2021). Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics, 10(5). https://doi.org/10.3390/ANTIBIOTICS10050578spa
dc.relation.referencesLucke, A., Böhm, J., Zebeli, Q., & Metzler-Zebeli, B. U. (2018). Dietary deoxynivalenol and oral lipopolysaccharide challenge differently affect intestinal innate immune response and barrier function in broiler chickens1. Journal of Animal Science, 96(12), 5134-5143. https://doi.org/10.1093/jas/sky379spa
dc.relation.referencesMahmoud, U. T., Abdel-Rahman, M. A. M., Darwish, M. H. A., Applegate, T. J., & Cheng, H. (2015). Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Applied Animal Behaviour Science, 166, 98-105. https://doi.org/10.1016/j.applanim.2015.03.003spa
dc.relation.referencesMahmoud, U. T., Cheng, H. W., & Applegate, T. J. (2016). Functions of propolis as a natural feed additive in poultry. World’s Poultry Science Journal, 72(1), 37-48. https://doi.org/10.1017/S0043933915002731spa
dc.relation.referencesMarshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: Impacts on human health. En Clinical Microbiology Reviews (Vol. 24, Número 4, pp. 718-733). American Society for Microbiology (ASM). https://doi.org/10.1128/CMR.00002-11spa
dc.relation.referencesMartínez, Y., Altamirano, E., Ortega, V., Paz, P., & Valdivié, M. (2021). Effect of Age on the Immune and Visceral Organ Weights and Cecal Traits in Modern Broilers. Animals, 11(3), 845. https://doi.org/10.3390/ani11030845spa
dc.relation.referencesMendonça, M. A. A. de, Ribeiro, A. R. S., Lima, A. K. de, Bezerra, G. B., Pinheiro, M. S., Albuquerque-Júnior, R. L. C. de, Gomes, M. Z., Padilha, F. F., Thomazzi, S. M., Novellino, E., Santini, A., Severino, P., B. Souto, E., & Cardoso, J. C. (2020). Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients, 12(10), 2951. https://doi.org/10.3390/nu12102951spa
dc.relation.referencesMetzler-Zebeli, B. U., Siegerstetter, S.-C., Magowan, E., Lawlor, P. G., Petri, R. M., O´Connell, N. E., & Zebeli, Q. (2019). Feed Restriction Modifies Intestinal Microbiota-Host Mucosal Networking in Chickens Divergent in Residual Feed Intake. mSystems, 4(1), e00261-18. https://doi.org/10.1128/mSystems.00261-18spa
dc.relation.referencesMeurer, F., Costa, M. M. da, Barros, D. A. D. De, Oliveira, S. T. L. de, & Paixão, P. S. Da. (2009). Brown propolis extract in feed as a growth promoter of Nile tilapia (Oreochromis niloticus, Linnaeus 1758) fingerlings. Aquaculture Research, 40(5), 603-608. https://doi.org/10.1111/J.1365-2109.2008.02139.Xspa
dc.relation.referencesMora, D. P. P., Santiago, K. B., Conti, B. J., de Oliveira Cardoso, E., Conte, F. L., Oliveira, L. P. G., de Assis Golim, M., Uribe, J. F. C., Gutiérrez, R. M., Buitrago, M. R., Popova, M., Trusheva, B., Bankova, V., García, O. T., & Sforcin, J. M. (2019). The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytotherapy Research, 33(3), 591-601. https://doi.org/10.1002/ptr.6246spa
dc.relation.referencesMoura, S. A. L. de, Ferreira, M. A. N. D., Andrade, S. P., Reis, M. L. C., Noviello, M. de L., & Cara, D. C. (2011). Brazilian Green Propolis Inhibits Inflammatory Angiogenesis in a Murine Sponge Model. Evidence-Based Complementary and Alternative Medicine, 2011, 1-7. https://doi.org/10.1093/ecam/nep197spa
dc.relation.referencesNain, S., Renema, R. A., Zuidhof, M. J., & Korver, D. R. (2012). Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poultry Science, 91(4), 888-898. https://doi.org/10.3382/ps.2011-01661spa
dc.relation.referencesNatarajan, K., Singh, S., Burke, T. R., GRUNBERGERt, D., & Aggarwal, B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB (tumor necrosis factor/okadaic acid/ceramide/phorbol ester/hydrogen peroxide). Immunology, 93, 9090-9095.spa
dc.relation.referencesNawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., & An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131-139. https://doi.org/10.1016/j.jtherbio.2018.08.010spa
dc.relation.referencesNirala, S. K., Bhadauria, M., Shukla, S., Agrawal, O. P., Mathur, A., Li, P. Q., & Mathur, R. (2008). Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity. Fundamental & Clinical Pharmacology, 22(4), 403-415. https://doi.org/10.1111/j.1472-8206.2008.00603.xspa
dc.relation.referencesOakley, B. B., & Kogut, M. H. (2016). Spatial and Temporal Changes in the Broiler Chicken Cecal and Fecal Microbiomes and Correlations of Bacterial Taxa with Cytokine Gene Expression. Frontiers in Veterinary Science, 3(FEB), 11. https://doi.org/10.3389/fvets.2016.00011spa
dc.relation.referencesOnlen, Y., Tamer, C., Oksuz, H., Duran, N., Altug, M. E., & Yakan, S. (2007). Comparative trial of different anti-bacterial combinations with propolis and ciprofloxacin on Pseudomonas keratitis in rabbits. Microbiological Research, 162(1), 62-68. https://doi.org/10.1016/j.micres.2006.07.004spa
dc.relation.referencesOrsi, R. O., Funari, S. R. C., Soares, A. M. V. C., Calvi, S. A., Oliveira, S. L., Sforcin, J. M., & Bankova, V. (2000). Immunomodulatory action of propolis on macrophage activation. Journal of Venomous Animals and Toxins, 6(2), 205-219. https://doi.org/10.1590/S0104-79302000000200006spa
dc.relation.referencesOuyang, W., Beckett, O., Ma, Q., & Li, M. O. (2010). Transforming Growth Factor-β Signaling Curbs Thymic Negative Selection Promoting Regulatory T Cell Development. Immunity, 32(5), 642-653. https://doi.org/10.1016/j.immuni.2010.04.012spa
dc.relation.referencesOuyang, W., Oh, S. A., Ma, Q., Bivona, M. R., Zhu, J., & Li, M. O. (2013). TGF-β Cytokine Signaling Promotes CD8+ T Cell Development and Low-Affinity CD4+ T Cell Homeostasis by Regulation of Interleukin-7 Receptor α Expression. Immunity, 39(2), 335-346. https://doi.org/10.1016/j.immuni.2013.07.016spa
dc.relation.referencesPan, D., & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5(1), 108. https://doi.org/10.4161/GMIC.26945 Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 69(12), 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260spa
dc.relation.referencesParadis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 22(5), 2506. https://doi.org/10.3390/ijms22052506spa
dc.relation.referencesParrish, A., Boudaud, M., Kuehn, A., Ollert, M., & Desai, M. S. (2022). Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends in Molecular Medicine, 28(1), 36-50. https://doi.org/10.1016/j.molmed.2021.10.004spa
dc.relation.referencesPaulino, N., Coutinho, L. A., Coutinho, J. R., Vilela, G. C., Silva Leandro, V. P. da, & Paulino, A. S. (2015). Antiulcerogenic Effect of Brazilian Propolis Formulation in Mice. Pharmacology & Pharmacy, 06(12), 580-588. https://doi.org/10.4236/pp.2015.612060spa
dc.relation.referencesPelaseyed, T., & Hansson, G. C. (2020). Membrane mucins of the intestine at a glance. Journal of Cell Science, 133(5). https://doi.org/10.1242/JCS.240929spa
dc.relation.referencesPineda-Quiroga, C., Borda-Molina, D., Chaves-Moreno, D., Ruiz, R., Atxaerandio, R., Camarinha-Silva, A., & García-Rodríguez, A. (2019). Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms, 7(5), 123. https://doi.org/10.3390/microorganisms7050123spa
dc.relation.referencesPluske, J. R. (2013). Feed- and feed additives-related aspects of gut health and development in weanling pigs. En Journal of Animal Science and Biotechnology (Vol. 4, Número 1, p. 1). BioMed Central. https://doi.org/10.1186/2049-1891-4-1spa
dc.relation.referencesPott, J., & Hornef, M. (2012). Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO reports, 13(8), 684-698. https://doi.org/10.1038/embor.2012.96spa
dc.relation.referencesPourhossein, Z., Qotbi, A. A. A., Seidavi, A., Laudadio, V., Centoducati, G., & Tufarelli, V. (2015). Effect of different levels of dietary sweet orange ( Citrus sinensis ) peel extract on humoral immune system responses in broiler chickens. Animal Science Journal, 86(1), 105-110. https://doi.org/10.1111/asj.12250spa
dc.relation.referencesPrakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., & Domacinovic, M. (2019). Intestinal Morphology in Broiler Chickens Supplemented with Propolis and Bee Pollen. Animals, 9(6), 301. https://doi.org/10.3390/ani9060301spa
dc.relation.referencesPuvača, N., Brkić, I., Jahić, M., Nikolić, S. R., Radović, G., Ivanišević, D., Đokić, M., Bošković, D., Ilić, D., Brkanlić, S., & Prodanović, R. (2020). The Effect of Using Natural or Biotic Dietary Supplements in Poultry Nutrition on the Effectiveness of Meat Production. Sustainability 2020, Vol. 12, Page 4373, 12(11), 4373. https://doi.org/10.3390/SU12114373spa
dc.relation.referencesQaid, M. M., Al-Mufarrej, S. I., Azzam, M. M., Al-Garadi, M. A., Albaadani, H. H., Alhidary, I. A., & Aljumaah, R. S. (2021). Growth Performance, Serum Biochemical Indices, Duodenal Histomorphology, and Cecal Microbiota of Broiler Chickens Fed on Diets Supplemented with Cinnamon Bark Powder at Prestarter and Starter Phases. Animals, 11(1), 94. https://doi.org/10.3390/ani11010094spa
dc.relation.referencesQu, A., Brulc, J. M., Wilson, M. K., Law, B. F., Theoret, J. R., Joens, L. A., Konkel, M. E., Angly, F., Dinsdale, E. A., Edwards, R. A., Nelson, K. E., & White, B. A. (2008). Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome. PLoS ONE, 3(8), e2945. https://doi.org/10.1371/journal.pone.0002945spa
dc.relation.referencesReynolds, K. L., Cloft, S. E., & Wong, E. A. (2020). Changes with age in density of goblet cells in the small intestine of broiler chicks. Poultry Science, 99(5), 2342-2348. https://doi.org/10.1016/j.psj.2019.12.052spa
dc.relation.referencesRinttilä, T., & Apajalahti, J. (2013). Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. Journal of Applied Poultry Research, 22(3), 647-658. https://doi.org/10.3382/japr.2013-00742spa
dc.relation.referencesRobinson, K., Deng, Z., Hou, Y., & Zhang, G. (2015). Regulation of the Intestinal Barrier Function by Host Defense Peptides. Frontiers in Veterinary Science, 2(NOV), 57. https://doi.org/10.3389/fvets.2015.00057spa
dc.relation.referencesRychlik, I. (2020). Composition and function of chicken gut microbiota. En Animals (Vol. 10, Número 1, p. 103). MDPI AG. https://doi.org/10.3390/ani10010103spa
dc.relation.referencesSaeed, M., Xu, Y., Zhang, T., Ren, Q., & Sun, C. (2019). 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poultry Science, 98(2), 1-13. https://doi.org/10.3382/ps/pey394spa
dc.relation.referencesSaelao, P., Borba, R. S., Ricigliano, V., Spivak, M., & Simone-Finstrom, M. (2020). Honeybee microbiome is stabilized in the presence of propolis. Biology Letters, 16(5), 20200003. https://doi.org/10.1098/rsbl.2020.0003spa
dc.relation.referencesSalim, H. M., Huque, K. S., Kamaruddin, K. M., & Beg, M. A. H. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science Progress, 101(1), 52-75. https://doi.org/10.3184/003685018X15173975498947spa
dc.relation.referencesSanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236spa
dc.relation.referencesScalbert, A., & Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. The Journal of Nutrition, 130(8), 2073S-2085S. https://doi.org/10.1093/jn/130.8.2073Sspa
dc.relation.referencesSchmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. https://doi.org/10.1038/nprot.2008.73spa
dc.relation.referencesSemenza, G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology, 13(2), 167-171. https://doi.org/10.1016/S0955-0674(00)00194-0spa
dc.relation.referencesSeven, I., Aksu, T., & Seven, P. T. (2010). The Effects of Propolis on Biochemical Parameters and Activity of Antioxidant Enzymes in Broilers Exposed to Lead-Induced Oxidative Stress. Asian-Australasian Journal of Animal Sciences, 23(11), 1482-1489. https://doi.org/10.5713/ajas.2010.10009spa
dc.relation.referencesSeven, I., Aksu, T., & Tatli Seven, P. (2012). The effects of propolis and vitamin c supplemented feed on performance, nutrient utilization and carcass characteristics in broilers exposed to lead. Livestock Science , 148, 10-15.spa
dc.relation.referencesSeven; Pinar Tatli, & Seven; Ismail. (2008). Effect of Dietary Turkish Propolis as Alternative to Antibiotic on Performance and Digestibility in Broilers Exposed to Heat Stress. Journal of Applied Animal Research, 34(2), 193-196. https://doi.org/10.1080/09712119.2008.9706970spa
dc.relation.referencesShalman, S. K., & Shivazad, M. (2005). The Effect of Diet Propolis Supplementation on Ross Broiler Chicks Performance. International Journal of Poultry Science, 5(1), 84-88. https://doi.org/10.3923/ijps.2006.84.88spa
dc.relation.referencesShalmany, S. K., & Shivazad, M. (2006). The effect of diet propolis supplementation on ross broiler chicks performance. International Journal of Poultry Science , 5, 84-88.spa
dc.relation.referencesShira, E. B., & Friedman, A. (2018). Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0200393spa
dc.relation.referencesSicard, J.-F., le Bihan, G., Vogeleer, P., Jacques, M., & Harel, J. (2017). Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Frontiers in Cellular and Infection Microbiology, 7(SEP). https://doi.org/10.3389/fcimb.2017.00387spa
dc.relation.referencesSilva, M. A. da, Pessotti, B. M. de S., Zanini, S. F., Colnago, G. L., Rodrigues, M. R. A., Nunes, L. de C., Zanini, M. S., & Martins, I. V. F. (2009). Intestinal mucosa structure of broiler chickens infected experimentally with Eimeria tenella and treated with essential oil of oregano. Ciência Rural, 39(5), 1471-1477. https://doi.org/10.1590/S0103-84782009005000135spa
dc.relation.referencesSilva-Carvalho, R., Baltazar, F., & Almeida-Aguiar, C. (2015). Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evidence-Based Complementary and Alternative Medicine, 2015, 1-29. https://doi.org/10.1155/2015/206439spa
dc.relation.referencesSimone-Finstrom, M., Borba, R., Wilson, M., & Spivak, M. (2017). Propolis Counteracts Some Threats to Honey Bee Health. Insects, 8(2), 46. https://doi.org/10.3390/insects8020046spa
dc.relation.referencesStanley, D., Geier, M. S., Denman, S. E., Haring, V. R., Crowley, T. M., Hughes, R. J., & Moore, R. J. (2013). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 164(1-2), 85-92. https://doi.org/10.1016/j.vetmic.2013.01.030spa
dc.relation.referencesSteed, E., Balda, M. S., & Matter, K. (2010). Dynamics and functions of tight junctions. En Trends in Cell Biology (Vol. 20, Número 3, pp. 142-149). Elsevier. https://doi.org/10.1016/j.tcb.2009.12.002spa
dc.relation.referencesSuárez, G. A. P., Galindo, N. J. P., & Pardo Cuervo, O. H. (2022). Obtaining Colombian propolis extracts using modern methods: A determination of its antioxidant capacity and the identification of its bioactive compounds. The Journal of Supercritical Fluids, 182, 105538. https://doi.org/10.1016/j.supflu.2022.105538spa
dc.relation.referencesSuzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. En Animal science journal = Nihon chikusan Gakkaiho (Vol. 91, Número 1, p. e13357). NLM (Medline). https://doi.org/10.1111/asj.13357spa
dc.relation.referencesSuzuki, T., & Hara, H. (2009). Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells. Journal of Nutrition, 139(5), 965-974. https://doi.org/10.3945/jn.108.100867spa
dc.relation.referencesSuzuki, T., & Hara, H. (2011). Role of flavonoids in intestinal tight junction regulation. The Journal of Nutritional Biochemistry, 22(5), 401-408. https://doi.org/10.1016/j.jnutbio.2010.08.001spa
dc.relation.referencesTang, D., Li, Z., Mahmood, T., Liu, D., Hu, Y., & Guo, Y. (2020). The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poultry Science, 99(4), 1847-1861. https://doi.org/10.1016/j.psj.2019.10.029spa
dc.relation.referencesTarradas, J., Tous, N., Esteve-Garcia, E., & Brufau, J. (2020). The Control of Intestinal Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic Growth Promoters in Poultry. Microorganisms, 8(2), 148. https://doi.org/10.3390/microorganisms8020148spa
dc.relation.referencesTeng, H., & Chen, L. (2019). Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13), 2040-2051. https://doi.org/10.1080/10408398.2018.1437023spa
dc.relation.referencesThoo, L., Noti, M., & Krebs, P. (2019). Keep calm: the intestinal barrier at the interface of peace and war. Cell Death & Disease, 10(11), 849. https://doi.org/10.1038/s41419-019-2086-zspa
dc.relation.referencesTimbermont, L., Haesebrouck, F., Ducatelle, R., & van Immerseel, F. (2011). Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathology, 40(4), 341-347. https://doi.org/10.1080/03079457.2011.590967 Wagh, V. D. (2013). Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Advances in Pharmacological Sciences, 2013, 1-11. https://doi.org/10.1155/2013/308249spa
dc.relation.referencesWagh, V. D. (2013). Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Advances in Pharmacological Sciences, 2013, 1-11. https://doi.org/10.1155/2013/308249spa
dc.relation.referencesWaite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 5(MAY), 223. https://doi.org/10.3389/fmicb.2014.00223spa
dc.relation.referencesWang, K., Jin, X., Chen, Y., Song, Z., Jiang, X., Hu, F., Conlon, M., & Topping, D. (2016). Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling. Nutrients, 8(5), 272. https://doi.org/10.3390/nu8050272spa
dc.relation.referencesWang, K., Ping, S., Huang, S., Hu, L., Xuan, H., Zhang, C., & Hu, F. (2013). Molecular Mechanisms Underlying the In Vitro Anti-Inflammatory Effects of a Flavonoid-Rich Ethanol Extract from Chinese Propolis (Poplar Type). Evidence-Based Complementary and Alternative Medicine, 2013(1), 1-11. https://doi.org/10.1155/2013/127672spa
dc.relation.referencesWang, L., Yan, S., Li, J., Li, Y., Ding, X., Yin, J., Xiong, X., Yin, Y., & Yang, H. (2019). Rapid Communication: The relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets. Journal of Animal Science, 97(1), 353-358. https://doi.org/10.1093/jas/sky388spa
dc.relation.referencesWard, T. L., Weber, B. P., Mendoza, K. M., Danzeisen, J. L., Llop, K., Lang, K., Clayton, J. B., Grace, E., Brannon, J., Radovic, I., Beauclaire, M., Heisel, T. J., Knights, D., Cardona, C., Kogut, M., Johnson, C., Noll, S. L., Arsenault, R., Reed, K. M., & Johnson, T. J. (2019). Antibiotics and Host-Tailored Probiotics Similarly Modulate Effects on the Developing Avian Microbiome, Mycobiome, and Host Gene Expression. mBio, 10(5). https://doi.org/10.1128/mBio.02171-19spa
dc.relation.referencesWegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M., & Bager, F. (1999). Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus faecium Resistance to Therapeutic Antimicrobial Drugs in Europe. Emerging Infectious Diseases, 5(3), 329-335. https://doi.org/10.3201/eid0503.990303spa
dc.relation.referencesWickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2). https://doi.org/10.3390/VACCINES10020172spa
dc.relation.referencesWilkie, D. C., van Kessel, A. G., White, L. J., Laarveld, B., & Drew, M. D. (2005). Dietary amino acids affect intestinal Clostridium perfringens populations in broiler chickens. Canadian Journal of Animal Science, 85(2), 185-193. https://doi.org/10.4141/A04-070spa
dc.relation.referencesWillson, N.-L., Nattrass, G. S., Hughes, R. J., Moore, R. J., Stanley, D., Hynd, P. I., & Forder, R. E. A. (2018). Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Applied Microbiology and Biotechnology, 102(21), 9317-9329. https://doi.org/10.1007/s00253-018-9281-1spa
dc.relation.referencesWolska, K., Gorska, A., Antoski, K., & Lugowska, K. (2019). Immunomodulatory Effects of Propolis and its Components on Basic Immune Cell Functions. Indian J Pharm Sci, 81(4), 575-588. www.ijpsonline.comspa
dc.relation.referencesWu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03160spa
dc.relation.referencesWu, Z., Zhu, A., Takayama, F., Okada, R., Liu, Y., Harada, Y., Wu, S., & Nakanishi, H. (2013). Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF- κ B Activation in Microglia. Oxidative Medicine and Cellular Longevity, 2013, 1-10. https://doi.org/10.1155/2013/906726spa
dc.relation.referencesYadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. En Journal of Animal Science and Biotechnology (Vol. 10, Número 1, p. 2). BioMed Central Ltd. https://doi.org/10.1186/s40104-018-0310-9spa
dc.relation.referencesYegani, M., & Korver, D. R. (2008). Factors affecting intestinal health in poultry. En Poultry Science (Vol. 87, Número 10, pp. 2052-2063). Elsevier. https://doi.org/10.3382/ps.2008-00091spa
dc.relation.referencesYu, Q., & Yang, Q. (2009). Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biology International, 33(1), 78-82. https://doi.org/10.1016/j.cellbi.2008.09.007spa
dc.relation.referencesZabaiou, N., Fouache, A., Trousson, A., Baron, S., Zellagui, A., Lahouel, M., & Lobaccaro, J.-M. A. (2017). Biological properties of propolis extracts: Something new from an ancient product. Chemistry and Physics of Lipids, 207, 214-222. https://doi.org/10.1016/j.chemphyslip.2017.04.005spa
dc.relation.referencesZafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 45(1), 280-284. https://doi.org/10.1080/09712119.2016.1174130spa
dc.relation.referencesZhu, M.-J., Sun, X., & Du, M. (2018). AMPK in regulation of apical junctions and barrier function of intestinal epithelium. Tissue Barriers, 6(2), 1-13. https://doi.org/10.1080/21688370.2018.1487249spa
dc.relation.referencesZihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: from simple barriers to multifunctional molecular gates. Nature Reviews Molecular Cell Biology, 17(9), 564-580. https://doi.org/10.1038/nrm.2016.80spa
dc.relation.referencesZuo, L., Kuo, W. T., & Turner, J. R. (2020). Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. En CMGH (Vol. 10, Número 2, pp. 327-340). Elsevier. https://doi.org/10.1016/j.jcmgh.2020.04.001spa
dc.relation.referencesAbbass, A. A., El-Asely, A. M., & Kandiel, M. M. M. (2012). Effects of Dietary Propolis and Pollen on Growth Performance, Fecundity and Some Hematological Parameters of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 12(2012), 917-924. https://doi.org/10.4194/1303-2712-v12_4_13spa
dc.relation.referencesAbdel‐Moneim, A. E., Shehata, A. M., Alzahrani, S. O., Shafi, M. E., Mesalam, N. M., Taha, A. E., Swelum, A. A., Arif, M., Fayyaz, M., & Abd El‐Hack, M. E. (2020). The role of polyphenols in poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 104(6), 1851-1866. https://doi.org/10.1111/jpn.13455spa
dc.relation.referencesAbdel-Rahaman, M. A., & Mosaad, G. (2013). Effect of Propolis as Additive on Some Behavioural Patterns, Performance and Blood Parameters in Muscovy Broiler Ducks. Journal of Advanced Veterinary Research, 3, 64-68.spa
dc.relation.referencesAbou-Elkhair, R., Ahmed, H. A., & Selim, S. (2014). Effects of Black Pepper (Piper Nigrum), Turmeric Powder (Curcuma Longa) and Coriander Seeds (Coriandrum Sativum) and Their Combinations as Feed Additives on Growth Performance, Carcass Traits, Some Blood Parameters and Humoral Immune Response of Broiler Chickens. Asian-Australasian Journal of Animal Sciences, 27(6), 847-854. https://doi.org/10.5713/ajas.2013.13644spa
dc.relation.referencesAbraham, C., & Medzhitov, R. (2011). Interactions Between the Host Innate Immune System and Microbes in Inflammatory Bowel Disease. Gastroenterology, 140(6), 1729-1737. https://doi.org/10.1053/j.gastro.2011.02.012spa
dc.relation.referencesAbreu, M. T., Fukata, M., & Arditi, M. (2005). TLR Signaling in the Gut in Health and Disease. The Journal of Immunology, 174(8), 4453-4460. https://doi.org/10.4049/jimmunol.174.8.4453spa
dc.relation.referencesAdedokun, S. A., & Olojede, O. C. (2019). Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives. Frontiers in Veterinary Science, 5(JAN), 348. https://doi.org/10.3389/fvets.2018.00348spa
dc.relation.referencesAdewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - A review. En Asian-Australasian Journal of Animal Sciences (Vol. 29, Número 7, pp. 909-924). Asian-Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.15.0795spa
dc.relation.referencesAkhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery, 11(10), 790-811. https://doi.org/10.1038/nrd3810spa
dc.relation.referencesAl-Garadi, M. A., Al-Baadani, H. H., & Alqhtani, A. H. (2022). Growth Performance, Histological Changes and Functional Tests of Broiler Chickens Fed Diets Supplemented with Tribulus Terrestris Powder. Animals, 12(15), 1930. https://doi.org/10.3390/ani12151930spa
dc.relation.referencesAl-Hariri, M. (2019). Immune’s-boosting agent: Immunomodulation potentials of propolis. Journal of Family and Community Medicine, 26(1), 57. https://doi.org/10.4103/jfcm.JFCM_46_18spa
dc.relation.referencesAwad, W. A., Ghareeb, K., Abdel-Raheem, S., & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49-56. https://doi.org/10.3382/ps.2008-00244spa
dc.relation.referencesAwad, W. A., Hess, C., & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. En Toxins (Vol. 9, Número 2, p. 60). MDPI AG. https://doi.org/10.3390/toxins9020060spa
dc.relation.referencesBabinska, I., Kleczek, K., Szarek, J., & Makowski, W. (2012). Modulating effect of propolis and bee pollen on chicken breeding parameters and pathomorphology of liver and kidneys in the course of natural infection with Salmonella Enteritidis. . The Bulletin of the Veterinary Institute in Pulawy, 56, 3-8.spa
dc.relation.referencesBarshira, E., & Friedman, A. (2006). Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Developmental & Comparative Immunology, 30(10), 930-941. https://doi.org/10.1016/j.dci.2005.12.002spa
dc.relation.referencesBauché, D., & Marie, J. C. (2017). Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clinical & Translational Immunology, 6(4), e136. https://doi.org/10.1038/cti.2017.9spa
dc.relation.referencesBaurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86(6), 1070-1078. https://doi.org/10.1093/ps/86.6.1070spa
dc.relation.referencesBelote, B. L., Soares, I., Tujimoto-Silva, A., Sanches, A. W. D., Kraieski, A. L., & Santin, E. (2019). Applying I see inside histological methodology to evaluate gut health in broilers challenged with Eimeria. Veterinary Parasitology, 276, 100004. https://doi.org/10.1016/j.vpoa.2019.100004spa
dc.relation.referencesBiasato, I., Ferrocino, I., Dabbou, S., Evangelista, R., Gai, F., Gasco, L., Cocolin, L., Capucchio, M. T., & Schiavone, A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. Journal of Animal Science and Biotechnology, 11(1), 11. https://doi.org/10.1186/s40104-019-0413-yspa
dc.relation.referencesBiavatti, M., Bellaver, M., Volpato, L., Costa, C., & Bellaver, C. (2003). Preliminary studies of alternative feed additives for broilers: Alternanthera brasiliana extract, propolis extract and linseed oil. Revista Brasileira de Ciência Avícola, 5(2), 147-151. https://doi.org/10.1590/S1516-635X2003000200009spa
dc.relation.referencesBischoff, S. C. (2011). «Gut health»: a new objective in medicine? BMC Medicine, 9(1), 24. https://doi.org/10.1186/1741-7015-9-24 Bonomi, A., Bonomi, B. M., Quarantelli, A., Sabbioni, A., & Superchi, P. (2002). The use of propolis in duck feeding. Rivista di Scienza dell’Alimentazione, 31, 15-28.spa
dc.relation.referencesBorda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131-139. https://doi.org/10.1016/j.csbj.2018.03.002spa
dc.relation.referencesBraakhuis, A. (2019). Evidence on the Health Benefits of Supplemental Propolis. Nutrients, 11(11), 2705. https://doi.org/10.3390/nu11112705 Broom, L. J. (2018). Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, 97(5), 1572-1578. https://doi.org/10.3382/ps/pey021spa
dc.relation.referencesBroom, L. J., & Kogut, M. H. (2018). The role of the gut microbiome in shaping the immune system of chickens. Veterinary Immunology and Immunopathology, 204, 44-51. https://doi.org/10.1016/j.vetimm.2018.10.002spa
dc.relation.referencesCeli, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A.-M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012spa
dc.relation.referencesCeli, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A.-M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250, 9-31. https://doi.org/10.1016/j.anifeedsci.2018.07.012spa
dc.relation.referencesÇetin, E., Silici, S., Çetin, N., & Güçlü, B. K. (2010). Effects of diets containing different concentrations of propolis on hematological and immunological variables in laying hens. Poultry Science, 89(8), 1703-1708. https://doi.org/10.3382/ps.2009-00546spa
dc.relation.referencesChelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9. https://doi.org/10.1038/s12276-018-0126-xspa
dc.relation.referencesCheled-Shoval, S. L., Gamage, N. S. W., Amit-Romach, E., Forder, R., Marshal, J., van Kessel, A., & Uni, Z. (2014). Differences in intestinal mucin dynamics between germ-free and conventionally reared chickens after mannan-oligosaccharide supplementation. Poultry Science, 93(3), 636-644. https://doi.org/10.3382/ps.2013-03362spa
dc.relation.referencesChen, J., Tellez, G., Richards, J. D., & Escobar, J. (2015). Identification of Potential Biomarkers for Gut Barrier Failure in Broiler Chickens. Frontiers in Veterinary Science, 2(MAY), 14. https://doi.org/10.3389/fvets.2015.00014spa
dc.relation.referencesCheng, C. C., Chi, P. L., Shen, M. C., Shu, C. W., Wann, S. R., Liu, C. P., Tseng, C. J., & Huang, W. C. (2019). Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. International Journal of Molecular Sciences, 20(6), 1468. https://doi.org/10.3390/IJMS20061468spa
dc.relation.referencesCiti, S. (2020). Cell Biology: Tight Junctions as Biomolecular Condensates. Current Biology, 30(2), R83-R86. https://doi.org/10.1016/j.cub.2019.11.060spa
dc.relation.referencesCormican, P., Lloyd, A. T., Downing, T., Connell, S. J., Bradley, D., & O’Farrelly, C. (2009). The avian Toll-Like receptor pathway-Subtle differences amidst general conformity. Developmental and Comparative Immunology, 33(9), 967-973. https://doi.org/10.1016/j.dci.2009.04.001spa
dc.relation.referencesD’Archivio, M., Filesi, C., di Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali dell’Istituto superiore di sanita, 43(4), 348-361. http://www.ncbi.nlm.nih.gov/pubmed/18209268spa
dc.relation.referencesDenli, M., Cankaya, S., Silici, S., Okan, F., & Uluocak, A. N. (2005). Effect of Dietary Addition of Turkish Propolis on the Growth Performance, Carcass Characteristics and Serum Variables of Quail (Coturnix coturnix japonica). Asian-Australasian Journal of Animal Sciences , 18, 848-854.spa
dc.relation.referencesDiaz Carrasco, J. M., Casanova, N. A., & Fernández Miyakawa, M. E. (2019). Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms, 7(10), 374. https://doi.org/10.3390/microorganisms7100374spa
dc.relation.referencesDoiron, J. A., Leblanc, L. M., Hébert, M. J. G., Levesque, N. A., Paré, A. F., Jean-François, J., Cormier, M., Surette, M. E., & Touaibia, M. (2017). Structure–activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chemical Biology & Drug Design, 89(4), 514-528. https://doi.org/10.1111/CBDD.12874spa
dc.relation.referencesDrew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Science, 83(3), 414-420. https://doi.org/10.1093/ps/83.3.414spa
dc.relation.referencesDuangnum, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12(October), 1-18. https://doi.org/10.3389/fimmu.2021.745849spa
dc.relation.referencesDucatelle, R., Goossens, E., de Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(1), 43. https://doi.org/10.1186/s13567-018-0538-6spa
dc.relation.referencesElmore, S. A. (2006). Enhanced Histopathology of the Thymus. Toxicologic Pathology, 34(5), 656-665. https://doi.org/10.1080/01926230600865556spa
dc.relation.referencesEmami, N. K., Calik, A., White, M. B., Kimminau, E. A., & Dalloul, R. A. (2020). Effect of Probiotics and Multi-Component Feed Additives on Microbiota, Gut Barrier and Immune Responses in Broiler Chickens During Subclinical Necrotic Enteritis. Frontiers in Veterinary Science, 7, 572142. https://doi.org/10.3389/fvets.2020.572142spa
dc.relation.referencesEyng, C., Murakami, A. E., Santos, T. C., Silveira, T. G. v., Pedroso, R. B., & Lourenço, D. A. L. (2014). Immune Responses in Broiler Chicks Fed Propolis Extraction Residue-supplemented Diets. Asian-Australasian Journal of Animal Sciences, 28(1), 135-142. https://doi.org/10.5713/ajas.14.0066spa
dc.relation.referencesFasina, Y. O., Classen, H. L., Garlich, J. D., Black, B. L., Ferket, P. R., Uni, Z., & Olkowski, A. A. (2006). Response of Turkey Poults to Soybean Lectin Levels Typically Encountered in Commercial Diets. 2. Effect on Intestinal Development and Lymphoid Organs. https://doi.org/https://doi.org/10.1093/ps/85.5.870spa
dc.relation.referencesFata, G. La, Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11. https://doi.org/10.1007/S12602-017-9322-6spa
dc.relation.referencesFischer, G., Paulino, N., Marcucci, M. C., Siedler, B. S., Munhoz, L. S., Finger, P. F., Vargas, G. D., Hübner, S. O., Vidor, T., & Roehe, P. M. (2010). Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines. Memórias do Instituto Oswaldo Cruz, 105(7), 908-913. https://doi.org/10.1590/S0074-02762010000700012spa
dc.relation.referencesForder, R. E. A., Howarth, G. S., Tivey, D. R., & Hughes, R. J. (2007). Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poultry Science, 86(11), 2396-2403. https://doi.org/10.3382/ps.2007-00222spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.lembSalud animalspa
dc.subject.lembCattle - healtheng
dc.subject.lembPollos de engordespa
dc.subject.lembBroilers (poultry)eng
dc.subject.proposalAves de corralspa
dc.subject.proposalPropóleospa
dc.subject.proposalProteínas de unión (TJ)spa
dc.subject.proposalSalud intestinalspa
dc.titleEvaluación de la expresión de genes asociados con la integridad intestinal y la modulación de la respuesta inmune en pollos de engorde suplementados con propóleospa
dc.title.translatedEvaluation of the expression of genes associated with intestinal integrity and the modulation of the immune response in broilers supplemented with propoliseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026300192.2023.pdf
Tamaño:
2.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud Animal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: