Evaluación de la expresión de genes asociados con la integridad intestinal y la modulación de la respuesta inmune en pollos de engorde suplementados con propóleo
dc.contributor.advisor | Gomez Ramirez, Arlen Patricia | |
dc.contributor.advisor | Ramirez-Nieto, Gloria Consuelo | |
dc.contributor.author | Daza Leon, Camila | |
dc.contributor.orcid | 0000-0002-7221-8311 | spa |
dc.contributor.researchgate | Daza Leon, Camila | spa |
dc.contributor.researchgroup | Medicina Aviar y Producción Avícola | spa |
dc.date.accessioned | 2023-08-02T15:37:32Z | |
dc.date.available | 2023-08-02T15:37:32Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | Como alternativa a la prohibición mundial de los antibióticos utilizados como promotores del crecimiento (AGP), los aditivos nutricionales, como el propóleo, buscan mejorar la salud intestinal de los animales. Con base en lo anterior, el objetivo de este estudio fue evaluar el efecto de la suplementación con propóleo en la dieta de pollos de engorde. Se alimentaron 450 pollos de engorde Ross 308 AP con una dieta basal (BD) durante todo el periodo experimental. Las aves se distribuyeron aleatoriamente en cinco grupos en el día 14: control negativo sin antibióticos ni propóleo (AGP-), control positivo con 500 ppm de bacitracina de zinc como AGP (AGP+) y tres grupos suplementados con 150, 300 y 450 ppm de propóleo. Cada grupo incluía seis réplicas de 15 aves cada una. La concentración de propóleo se incrementó de los días 22 al 42 a 300, 600 y 900 ppm, y se incluyó un 10% de soya cruda como desafío en todos los grupos durante el mismo periodo. A los 21 y 42 días se realizó el análisis de parámetros productivos, morfometría intestinal, histología de órganos inmunes y cuantificación relativa de los genes asociados a la integridad epitelial e inmunidad mediante qPCR. Los grupos con mayor peso fueron los que consumieron dietas que incluían 150 ppm (21 d) y 900 ppm (42 d) de propóleo en comparación con todos los tratamientos. La puntuación más baja de ISI se encontró en 300 (21 d) y 600 ppm (42 d). Se observó un menor grado de lesión en el sistema digestivo con la inclusión de 300 ppm (21 d) y 900 ppm (42 d). Se detectó incremento de la expresión de zónula occludens-1 (ZO-1) en yeyuno de pollos de engorde suplementados con 150 y 300 ppm a los 21 días. También se evidenció la regulación negativa de TGF-𝛽 en íleon en todos los niveles de inclusión de propóleo a los 42 días en comparación con AGP+ y AGP-. Los efectos beneficiosos se evidenciaron a niveles de inclusión de 150 ppm en el alimento iniciador y 900 ppm en el finalizador. la inclusión de propóleos colombianos puede mejorar el rendimiento productivo, los parámetros fisiológicos e inmunes, y la expresión de genes asociados a la integridad intestinal. (Texto tomado de la fuente) | spa |
dc.description.abstract | Nutritional additives such as propolis seek to improve intestinal health as an alternative to the global ban on in-feed antibiotics used as growth promoters (AGP). The objective of this study was to evaluate the effect of propolis supplementation in diet of broilers. Four hundred and fifty straight-run Ross 308 AP broilers were fed with a basal diet (BD) throughout the whole experimental period. Birds were randomly distributed into five groups at day 14: negative control without antibiotics nor propolis (AGP-), positive control 500 ppm of Zinc Bacitracin as growth promoter (AGP+), and three groups supplemented with 150, 300, and 450 ppm of propolis. Every group included six replicates of 15 birds each. Propolis concentration was increased from day 22 to 42, in experimental groups to 300, 600, and 900 ppm of propolis, and 10% of raw soybean was included as a challenge in all groups during the same period. Analysis of productive parameters, intestinal morphometry, and relative quantification of genes associated with epithelial integrity by qPCR were performed at 21 and 42 days. The groups with the greatest weights were those that consumed diets including 150 (21 d) and 900 ppm (42 d) of propolis compared with all treatments. The lowest score of ISI was found at 300 (21 d) and 600 ppm (42 d). A lower degree of injury in the digestive system was seen with the inclusion of 300 ppm (21 d) and 900 ppm (42 d). Up-regulation of zonula occludens-1 (ZO-1) was observed in jejunum of broilers supplemented with 150 and 300 ppm at 21 d. Up-regulation of ZO-1 and TGF-𝛽 was also evidenced in the ileum at all propolis inclusion levels at 42 d-old compared to AGP+ and AGP-. The beneficial effects were evidenced at inclusion levels of 150 ppm in the starter and 900 ppm in the finisher. According to the results, the Colombian propolis inclusion can improve productive performance, physiological parameters, and the expression of genes associated with intestinal integrity. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Salud Animal o Magíster en Producción Animal | spa |
dc.description.researcharea | Microbiología e inmunología | spa |
dc.format.extent | xix, 95 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84415 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal | spa |
dc.relation.references | Galal, A., Abd El -Motaal, A. M., Ahmed, A. M. H., & Zaki, T. G. (2008). Productive Performance and Immune Response of Laying Hens as Affected by Dietary Propolis Supplementation. International Journal of Poultry Science, 7(1). | spa |
dc.relation.references | Garcia-Hernandez, V., Quiros, M., & Nusrat, A. (2017). Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 1397(1), 66-79. https://doi.org/10.1111/nyas.13360 | spa |
dc.relation.references | Ghareeb, K., Awad, W. A., Soodoi, C., Sasgary, S., Strasser, A., & Böhm, J. (2013). Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and mRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE, 8(8), e71492. https://doi.org/10.1371/journal.pone.0071492 | spa |
dc.relation.references | Gheisari, A., Shahrvand, S., & Landy, N. (2017). Effect of ethanolic extract of propolis as an alternative to antibiotics as a growth promoter on broiler performance, serum biochemistry, and immune responses. Veterinary World, 10(2), 249-254. https://doi.org/10.14202/vetworld.2017.249-254 | spa |
dc.relation.references | Gomez, A. P., Moreno, M. J., Iglesias, A., Coral, P. X., & Hernández, A. (2007). Endothelin 1, its Endothelin Type A Receptor, Connective Tissue Growth Factor, Platelet-Derived Growth Factor, and Adrenomedullin Expression in Lungs of Pulmonary Hypertensive and Nonhypertensive Chickens. Poultry Science, 86(5), 909-916. https://doi.org/10.1093/PS/86.5.909 | spa |
dc.relation.references | González-Mariscal, L., Betanzos, A., Nava, P., & Jaramillo, B. E. (2003). Tight junction proteins. Progress in Biophysics and Molecular Biology, 81(1), 1-44. https://doi.org/10.1016/S0079-6107(02)00037-8 | spa |
dc.relation.references | Haghighi, H. R., Gong, J., Gyles, C. L., Hayes, M. A., Sanei, B., Parvizi, P., Gisavi, H., Chambers, J. R., & Sharif, S. (2005). Modulation of Antibody-Mediated Immune Response by Probiotics in Chickens. Clinical and Vaccine Immunology, 12(12), 1387-1392. https://doi.org/10.1128/CDLI.12.12.1387-1392.2005 | spa |
dc.relation.references | Hassan, M. G., & Abdulla, T. A. (2011). The effect of propolis feed supplementation on hygiene and performance of broiler chickens. Iraqi Journal of Veterinary Science, 25, 77-82. | spa |
dc.relation.references | Hattori, H., Okuda, K., Murase, T., Shigetsura, Y., Narise, K., Semenza, G. L., & Nagasawa, H. (2011). Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis. Bioorganic & Medicinal Chemistry, 19(18), 5392-5401. https://doi.org/10.1016/J.BMC.2011.07.060 | spa |
dc.relation.references | Hu, F., Hepburn, H. R., Li, Y., Chen, M., Radloff, S. E., & Daya, S. (2005). Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. Journal of Ethnopharmacology, 100(3), 276-283. https://doi.org/10.1016/j.jep.2005.02.044 | spa |
dc.relation.references | Huang, S., Zhang, C.-P., Wang, K., Li, G., & Hu, F.-L. (2014). Recent Advances in the Chemical Composition of Propolis. Molecules, 19(12), 19610-19632. https://doi.org/10.3390/molecules191219610 | spa |
dc.relation.references | Humphrey, B. D., & Klasing, K. C. (2004). Modulation of nutrient metabolism and homeostasis by the immune system. World’s Poultry Science Journal, 60(1), 90-100. https://doi.org/10.1079/WPS20037 | spa |
dc.relation.references | Islam, M., Kamruzzaman, M., Rahman, M., Ferdous, K., Juli, M., & Kabir, M. (2019). Effects of age on gross and microscopic changes of bursa of Fabricius and thymus of commercial broiler chicken. Journal of Entomology and Zoology Studie, 7(1), 184-189. | spa |
dc.relation.references | Jayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205-211. https://doi.org/10.1016/j.aninu.2017.06.002 | spa |
dc.relation.references | Johansson, M., & Hansson, G. (2016). Immunological aspects of intestinal mucus and mucins. Nature reviews. Immunology, 16(10), 639. https://doi.org/10.1038/NRI.2016.88 | spa |
dc.relation.references | Jung, W. K., Choi, I., Lee, D. Y., Yea, S. S., Choi, Y. H., Kim, M. M., Park, S. G., Seo, S. K., Lee, S. W., Lee, C. M., Park, Y. M., & Choi, I. W. (2008). Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-κB pathways. The International Journal of Biochemistry & Cell Biology, 40(11), 2572-2582. https://doi.org/10.1016/J.BIOCEL.2008.05.005 | spa |
dc.relation.references | Kim, J. J., & Khan, W. I. (2013). Goblet cells and mucins: Role in innate defense in enteric infections. Pathogens, 2(1), 55-70. https://doi.org/10.3390/pathogens2010055 | spa |
dc.relation.references | Koenen, M. E., Kramer, J., van der Hulst, R., Heres, L., Jeurissen, S. H. M., & Boersma, W. J. A. (2004). Immunomodulation by probiotic lactobacilli in layer- And meat-type chickens. British Poultry Science, 45(3), 355-366. https://doi.org/10.1080/00071660410001730851 | spa |
dc.relation.references | Kogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 3(AUG), 71. https://doi.org/10.3389/fvets.2016.00071 | spa |
dc.relation.references | Kogut, M. H., & Arsenault, R. J. (2017). Immunometabolic Phenotype Alterations Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken Intestine. Frontiers in Immunology, 8(APR), 372. https://doi.org/10.3389/fimmu.2017.00372 | spa |
dc.relation.references | Kogut, M. H., Genovese, K. J., Swaggerty, C. L., He, H., & Broom, L. (2018). Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equal. En Poultry Science (Vol. 97, Número 7, pp. 2339-2346). https://doi.org/10.3382/ps/pey087 | spa |
dc.relation.references | Konkel, J. E., & Chen, W. (2011). Balancing acts: the role of TGF-β in the mucosal immune system. Trends in Molecular Medicine, 17(11), 668-676. https://doi.org/10.1016/j.molmed.2011.07.002 | spa |
dc.relation.references | Leeson, S. , & Summers, J. D. (2001). Naturally occurring toxins relevant to poultry nutrition. En Scotts nutrition of the chicken. (Universitary Books, pp. 544-586). | spa |
dc.relation.references | Li, J., & Kim, I. H. (2014). Effects of S accharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Animal Science Journal, 85(6), 698-705. https://doi.org/10.1111/asj.12195 | spa |
dc.relation.references | Li, M. O., & Flavell, R. A. (2008). TGF-β: A Master of All T Cell Trades. Cell, 134(3), 392-404. https://doi.org/10.1016/j.cell.2008.07.025 | spa |
dc.relation.references | Low, C. X., Tan, L. T.-H., Mutalib, N.-S. A., Pusparajah, P., Goh, B.-H., Chan, K.-G., Letchumanan, V., & Lee, L.-H. (2021). Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics, 10(5). https://doi.org/10.3390/ANTIBIOTICS10050578 | spa |
dc.relation.references | Lucke, A., Böhm, J., Zebeli, Q., & Metzler-Zebeli, B. U. (2018). Dietary deoxynivalenol and oral lipopolysaccharide challenge differently affect intestinal innate immune response and barrier function in broiler chickens1. Journal of Animal Science, 96(12), 5134-5143. https://doi.org/10.1093/jas/sky379 | spa |
dc.relation.references | Mahmoud, U. T., Abdel-Rahman, M. A. M., Darwish, M. H. A., Applegate, T. J., & Cheng, H. (2015). Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Applied Animal Behaviour Science, 166, 98-105. https://doi.org/10.1016/j.applanim.2015.03.003 | spa |
dc.relation.references | Mahmoud, U. T., Cheng, H. W., & Applegate, T. J. (2016). Functions of propolis as a natural feed additive in poultry. World’s Poultry Science Journal, 72(1), 37-48. https://doi.org/10.1017/S0043933915002731 | spa |
dc.relation.references | Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: Impacts on human health. En Clinical Microbiology Reviews (Vol. 24, Número 4, pp. 718-733). American Society for Microbiology (ASM). https://doi.org/10.1128/CMR.00002-11 | spa |
dc.relation.references | Martínez, Y., Altamirano, E., Ortega, V., Paz, P., & Valdivié, M. (2021). Effect of Age on the Immune and Visceral Organ Weights and Cecal Traits in Modern Broilers. Animals, 11(3), 845. https://doi.org/10.3390/ani11030845 | spa |
dc.relation.references | Mendonça, M. A. A. de, Ribeiro, A. R. S., Lima, A. K. de, Bezerra, G. B., Pinheiro, M. S., Albuquerque-Júnior, R. L. C. de, Gomes, M. Z., Padilha, F. F., Thomazzi, S. M., Novellino, E., Santini, A., Severino, P., B. Souto, E., & Cardoso, J. C. (2020). Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients, 12(10), 2951. https://doi.org/10.3390/nu12102951 | spa |
dc.relation.references | Metzler-Zebeli, B. U., Siegerstetter, S.-C., Magowan, E., Lawlor, P. G., Petri, R. M., O´Connell, N. E., & Zebeli, Q. (2019). Feed Restriction Modifies Intestinal Microbiota-Host Mucosal Networking in Chickens Divergent in Residual Feed Intake. mSystems, 4(1), e00261-18. https://doi.org/10.1128/mSystems.00261-18 | spa |
dc.relation.references | Meurer, F., Costa, M. M. da, Barros, D. A. D. De, Oliveira, S. T. L. de, & Paixão, P. S. Da. (2009). Brown propolis extract in feed as a growth promoter of Nile tilapia (Oreochromis niloticus, Linnaeus 1758) fingerlings. Aquaculture Research, 40(5), 603-608. https://doi.org/10.1111/J.1365-2109.2008.02139.X | spa |
dc.relation.references | Mora, D. P. P., Santiago, K. B., Conti, B. J., de Oliveira Cardoso, E., Conte, F. L., Oliveira, L. P. G., de Assis Golim, M., Uribe, J. F. C., Gutiérrez, R. M., Buitrago, M. R., Popova, M., Trusheva, B., Bankova, V., García, O. T., & Sforcin, J. M. (2019). The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytotherapy Research, 33(3), 591-601. https://doi.org/10.1002/ptr.6246 | spa |
dc.relation.references | Moura, S. A. L. de, Ferreira, M. A. N. D., Andrade, S. P., Reis, M. L. C., Noviello, M. de L., & Cara, D. C. (2011). Brazilian Green Propolis Inhibits Inflammatory Angiogenesis in a Murine Sponge Model. Evidence-Based Complementary and Alternative Medicine, 2011, 1-7. https://doi.org/10.1093/ecam/nep197 | spa |
dc.relation.references | Nain, S., Renema, R. A., Zuidhof, M. J., & Korver, D. R. (2012). Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poultry Science, 91(4), 888-898. https://doi.org/10.3382/ps.2011-01661 | spa |
dc.relation.references | Natarajan, K., Singh, S., Burke, T. R., GRUNBERGERt, D., & Aggarwal, B. B. (1996). Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB (tumor necrosis factor/okadaic acid/ceramide/phorbol ester/hydrogen peroxide). Immunology, 93, 9090-9095. | spa |
dc.relation.references | Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., & An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131-139. https://doi.org/10.1016/j.jtherbio.2018.08.010 | spa |
dc.relation.references | Nirala, S. K., Bhadauria, M., Shukla, S., Agrawal, O. P., Mathur, A., Li, P. Q., & Mathur, R. (2008). Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity. Fundamental & Clinical Pharmacology, 22(4), 403-415. https://doi.org/10.1111/j.1472-8206.2008.00603.x | spa |
dc.relation.references | Oakley, B. B., & Kogut, M. H. (2016). Spatial and Temporal Changes in the Broiler Chicken Cecal and Fecal Microbiomes and Correlations of Bacterial Taxa with Cytokine Gene Expression. Frontiers in Veterinary Science, 3(FEB), 11. https://doi.org/10.3389/fvets.2016.00011 | spa |
dc.relation.references | Onlen, Y., Tamer, C., Oksuz, H., Duran, N., Altug, M. E., & Yakan, S. (2007). Comparative trial of different anti-bacterial combinations with propolis and ciprofloxacin on Pseudomonas keratitis in rabbits. Microbiological Research, 162(1), 62-68. https://doi.org/10.1016/j.micres.2006.07.004 | spa |
dc.relation.references | Orsi, R. O., Funari, S. R. C., Soares, A. M. V. C., Calvi, S. A., Oliveira, S. L., Sforcin, J. M., & Bankova, V. (2000). Immunomodulatory action of propolis on macrophage activation. Journal of Venomous Animals and Toxins, 6(2), 205-219. https://doi.org/10.1590/S0104-79302000000200006 | spa |
dc.relation.references | Ouyang, W., Beckett, O., Ma, Q., & Li, M. O. (2010). Transforming Growth Factor-β Signaling Curbs Thymic Negative Selection Promoting Regulatory T Cell Development. Immunity, 32(5), 642-653. https://doi.org/10.1016/j.immuni.2010.04.012 | spa |
dc.relation.references | Ouyang, W., Oh, S. A., Ma, Q., Bivona, M. R., Zhu, J., & Li, M. O. (2013). TGF-β Cytokine Signaling Promotes CD8+ T Cell Development and Low-Affinity CD4+ T Cell Homeostasis by Regulation of Interleukin-7 Receptor α Expression. Immunity, 39(2), 335-346. https://doi.org/10.1016/j.immuni.2013.07.016 | spa |
dc.relation.references | Pan, D., & Yu, Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5(1), 108. https://doi.org/10.4161/GMIC.26945 Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 69(12), 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260 | spa |
dc.relation.references | Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 22(5), 2506. https://doi.org/10.3390/ijms22052506 | spa |
dc.relation.references | Parrish, A., Boudaud, M., Kuehn, A., Ollert, M., & Desai, M. S. (2022). Intestinal mucus barrier: a missing piece of the puzzle in food allergy. Trends in Molecular Medicine, 28(1), 36-50. https://doi.org/10.1016/j.molmed.2021.10.004 | spa |
dc.relation.references | Paulino, N., Coutinho, L. A., Coutinho, J. R., Vilela, G. C., Silva Leandro, V. P. da, & Paulino, A. S. (2015). Antiulcerogenic Effect of Brazilian Propolis Formulation in Mice. Pharmacology & Pharmacy, 06(12), 580-588. https://doi.org/10.4236/pp.2015.612060 | spa |
dc.relation.references | Pelaseyed, T., & Hansson, G. C. (2020). Membrane mucins of the intestine at a glance. Journal of Cell Science, 133(5). https://doi.org/10.1242/JCS.240929 | spa |
dc.relation.references | Pineda-Quiroga, C., Borda-Molina, D., Chaves-Moreno, D., Ruiz, R., Atxaerandio, R., Camarinha-Silva, A., & García-Rodríguez, A. (2019). Microbial and Functional Profile of the Ceca from Laying Hens Affected by Feeding Prebiotics, Probiotics, and Synbiotics. Microorganisms, 7(5), 123. https://doi.org/10.3390/microorganisms7050123 | spa |
dc.relation.references | Pluske, J. R. (2013). Feed- and feed additives-related aspects of gut health and development in weanling pigs. En Journal of Animal Science and Biotechnology (Vol. 4, Número 1, p. 1). BioMed Central. https://doi.org/10.1186/2049-1891-4-1 | spa |
dc.relation.references | Pott, J., & Hornef, M. (2012). Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO reports, 13(8), 684-698. https://doi.org/10.1038/embor.2012.96 | spa |
dc.relation.references | Pourhossein, Z., Qotbi, A. A. A., Seidavi, A., Laudadio, V., Centoducati, G., & Tufarelli, V. (2015). Effect of different levels of dietary sweet orange ( Citrus sinensis ) peel extract on humoral immune system responses in broiler chickens. Animal Science Journal, 86(1), 105-110. https://doi.org/10.1111/asj.12250 | spa |
dc.relation.references | Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., & Domacinovic, M. (2019). Intestinal Morphology in Broiler Chickens Supplemented with Propolis and Bee Pollen. Animals, 9(6), 301. https://doi.org/10.3390/ani9060301 | spa |
dc.relation.references | Puvača, N., Brkić, I., Jahić, M., Nikolić, S. R., Radović, G., Ivanišević, D., Đokić, M., Bošković, D., Ilić, D., Brkanlić, S., & Prodanović, R. (2020). The Effect of Using Natural or Biotic Dietary Supplements in Poultry Nutrition on the Effectiveness of Meat Production. Sustainability 2020, Vol. 12, Page 4373, 12(11), 4373. https://doi.org/10.3390/SU12114373 | spa |
dc.relation.references | Qaid, M. M., Al-Mufarrej, S. I., Azzam, M. M., Al-Garadi, M. A., Albaadani, H. H., Alhidary, I. A., & Aljumaah, R. S. (2021). Growth Performance, Serum Biochemical Indices, Duodenal Histomorphology, and Cecal Microbiota of Broiler Chickens Fed on Diets Supplemented with Cinnamon Bark Powder at Prestarter and Starter Phases. Animals, 11(1), 94. https://doi.org/10.3390/ani11010094 | spa |
dc.relation.references | Qu, A., Brulc, J. M., Wilson, M. K., Law, B. F., Theoret, J. R., Joens, L. A., Konkel, M. E., Angly, F., Dinsdale, E. A., Edwards, R. A., Nelson, K. E., & White, B. A. (2008). Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome. PLoS ONE, 3(8), e2945. https://doi.org/10.1371/journal.pone.0002945 | spa |
dc.relation.references | Reynolds, K. L., Cloft, S. E., & Wong, E. A. (2020). Changes with age in density of goblet cells in the small intestine of broiler chicks. Poultry Science, 99(5), 2342-2348. https://doi.org/10.1016/j.psj.2019.12.052 | spa |
dc.relation.references | Rinttilä, T., & Apajalahti, J. (2013). Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. Journal of Applied Poultry Research, 22(3), 647-658. https://doi.org/10.3382/japr.2013-00742 | spa |
dc.relation.references | Robinson, K., Deng, Z., Hou, Y., & Zhang, G. (2015). Regulation of the Intestinal Barrier Function by Host Defense Peptides. Frontiers in Veterinary Science, 2(NOV), 57. https://doi.org/10.3389/fvets.2015.00057 | spa |
dc.relation.references | Rychlik, I. (2020). Composition and function of chicken gut microbiota. En Animals (Vol. 10, Número 1, p. 103). MDPI AG. https://doi.org/10.3390/ani10010103 | spa |
dc.relation.references | Saeed, M., Xu, Y., Zhang, T., Ren, Q., & Sun, C. (2019). 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poultry Science, 98(2), 1-13. https://doi.org/10.3382/ps/pey394 | spa |
dc.relation.references | Saelao, P., Borba, R. S., Ricigliano, V., Spivak, M., & Simone-Finstrom, M. (2020). Honeybee microbiome is stabilized in the presence of propolis. Biology Letters, 16(5), 20200003. https://doi.org/10.1098/rsbl.2020.0003 | spa |
dc.relation.references | Salim, H. M., Huque, K. S., Kamaruddin, K. M., & Beg, M. A. H. (2018). Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Science Progress, 101(1), 52-75. https://doi.org/10.3184/003685018X15173975498947 | spa |
dc.relation.references | Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236 | spa |
dc.relation.references | Scalbert, A., & Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. The Journal of Nutrition, 130(8), 2073S-2085S. https://doi.org/10.1093/jn/130.8.2073S | spa |
dc.relation.references | Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. https://doi.org/10.1038/nprot.2008.73 | spa |
dc.relation.references | Semenza, G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Current Opinion in Cell Biology, 13(2), 167-171. https://doi.org/10.1016/S0955-0674(00)00194-0 | spa |
dc.relation.references | Seven, I., Aksu, T., & Seven, P. T. (2010). The Effects of Propolis on Biochemical Parameters and Activity of Antioxidant Enzymes in Broilers Exposed to Lead-Induced Oxidative Stress. Asian-Australasian Journal of Animal Sciences, 23(11), 1482-1489. https://doi.org/10.5713/ajas.2010.10009 | spa |
dc.relation.references | Seven, I., Aksu, T., & Tatli Seven, P. (2012). The effects of propolis and vitamin c supplemented feed on performance, nutrient utilization and carcass characteristics in broilers exposed to lead. Livestock Science , 148, 10-15. | spa |
dc.relation.references | Seven; Pinar Tatli, & Seven; Ismail. (2008). Effect of Dietary Turkish Propolis as Alternative to Antibiotic on Performance and Digestibility in Broilers Exposed to Heat Stress. Journal of Applied Animal Research, 34(2), 193-196. https://doi.org/10.1080/09712119.2008.9706970 | spa |
dc.relation.references | Shalman, S. K., & Shivazad, M. (2005). The Effect of Diet Propolis Supplementation on Ross Broiler Chicks Performance. International Journal of Poultry Science, 5(1), 84-88. https://doi.org/10.3923/ijps.2006.84.88 | spa |
dc.relation.references | Shalmany, S. K., & Shivazad, M. (2006). The effect of diet propolis supplementation on ross broiler chicks performance. International Journal of Poultry Science , 5, 84-88. | spa |
dc.relation.references | Shira, E. B., & Friedman, A. (2018). Innate immune functions of avian intestinal epithelial cells: Response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0200393 | spa |
dc.relation.references | Sicard, J.-F., le Bihan, G., Vogeleer, P., Jacques, M., & Harel, J. (2017). Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Frontiers in Cellular and Infection Microbiology, 7(SEP). https://doi.org/10.3389/fcimb.2017.00387 | spa |
dc.relation.references | Silva, M. A. da, Pessotti, B. M. de S., Zanini, S. F., Colnago, G. L., Rodrigues, M. R. A., Nunes, L. de C., Zanini, M. S., & Martins, I. V. F. (2009). Intestinal mucosa structure of broiler chickens infected experimentally with Eimeria tenella and treated with essential oil of oregano. Ciência Rural, 39(5), 1471-1477. https://doi.org/10.1590/S0103-84782009005000135 | spa |
dc.relation.references | Silva-Carvalho, R., Baltazar, F., & Almeida-Aguiar, C. (2015). Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evidence-Based Complementary and Alternative Medicine, 2015, 1-29. https://doi.org/10.1155/2015/206439 | spa |
dc.relation.references | Simone-Finstrom, M., Borba, R., Wilson, M., & Spivak, M. (2017). Propolis Counteracts Some Threats to Honey Bee Health. Insects, 8(2), 46. https://doi.org/10.3390/insects8020046 | spa |
dc.relation.references | Stanley, D., Geier, M. S., Denman, S. E., Haring, V. R., Crowley, T. M., Hughes, R. J., & Moore, R. J. (2013). Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 164(1-2), 85-92. https://doi.org/10.1016/j.vetmic.2013.01.030 | spa |
dc.relation.references | Steed, E., Balda, M. S., & Matter, K. (2010). Dynamics and functions of tight junctions. En Trends in Cell Biology (Vol. 20, Número 3, pp. 142-149). Elsevier. https://doi.org/10.1016/j.tcb.2009.12.002 | spa |
dc.relation.references | Suárez, G. A. P., Galindo, N. J. P., & Pardo Cuervo, O. H. (2022). Obtaining Colombian propolis extracts using modern methods: A determination of its antioxidant capacity and the identification of its bioactive compounds. The Journal of Supercritical Fluids, 182, 105538. https://doi.org/10.1016/j.supflu.2022.105538 | spa |
dc.relation.references | Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. En Animal science journal = Nihon chikusan Gakkaiho (Vol. 91, Número 1, p. e13357). NLM (Medline). https://doi.org/10.1111/asj.13357 | spa |
dc.relation.references | Suzuki, T., & Hara, H. (2009). Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells. Journal of Nutrition, 139(5), 965-974. https://doi.org/10.3945/jn.108.100867 | spa |
dc.relation.references | Suzuki, T., & Hara, H. (2011). Role of flavonoids in intestinal tight junction regulation. The Journal of Nutritional Biochemistry, 22(5), 401-408. https://doi.org/10.1016/j.jnutbio.2010.08.001 | spa |
dc.relation.references | Tang, D., Li, Z., Mahmood, T., Liu, D., Hu, Y., & Guo, Y. (2020). The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poultry Science, 99(4), 1847-1861. https://doi.org/10.1016/j.psj.2019.10.029 | spa |
dc.relation.references | Tarradas, J., Tous, N., Esteve-Garcia, E., & Brufau, J. (2020). The Control of Intestinal Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic Growth Promoters in Poultry. Microorganisms, 8(2), 148. https://doi.org/10.3390/microorganisms8020148 | spa |
dc.relation.references | Teng, H., & Chen, L. (2019). Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13), 2040-2051. https://doi.org/10.1080/10408398.2018.1437023 | spa |
dc.relation.references | Thoo, L., Noti, M., & Krebs, P. (2019). Keep calm: the intestinal barrier at the interface of peace and war. Cell Death & Disease, 10(11), 849. https://doi.org/10.1038/s41419-019-2086-z | spa |
dc.relation.references | Timbermont, L., Haesebrouck, F., Ducatelle, R., & van Immerseel, F. (2011). Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathology, 40(4), 341-347. https://doi.org/10.1080/03079457.2011.590967 Wagh, V. D. (2013). Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Advances in Pharmacological Sciences, 2013, 1-11. https://doi.org/10.1155/2013/308249 | spa |
dc.relation.references | Wagh, V. D. (2013). Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Advances in Pharmacological Sciences, 2013, 1-11. https://doi.org/10.1155/2013/308249 | spa |
dc.relation.references | Waite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 5(MAY), 223. https://doi.org/10.3389/fmicb.2014.00223 | spa |
dc.relation.references | Wang, K., Jin, X., Chen, Y., Song, Z., Jiang, X., Hu, F., Conlon, M., & Topping, D. (2016). Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling. Nutrients, 8(5), 272. https://doi.org/10.3390/nu8050272 | spa |
dc.relation.references | Wang, K., Ping, S., Huang, S., Hu, L., Xuan, H., Zhang, C., & Hu, F. (2013). Molecular Mechanisms Underlying the In Vitro Anti-Inflammatory Effects of a Flavonoid-Rich Ethanol Extract from Chinese Propolis (Poplar Type). Evidence-Based Complementary and Alternative Medicine, 2013(1), 1-11. https://doi.org/10.1155/2013/127672 | spa |
dc.relation.references | Wang, L., Yan, S., Li, J., Li, Y., Ding, X., Yin, J., Xiong, X., Yin, Y., & Yang, H. (2019). Rapid Communication: The relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets. Journal of Animal Science, 97(1), 353-358. https://doi.org/10.1093/jas/sky388 | spa |
dc.relation.references | Ward, T. L., Weber, B. P., Mendoza, K. M., Danzeisen, J. L., Llop, K., Lang, K., Clayton, J. B., Grace, E., Brannon, J., Radovic, I., Beauclaire, M., Heisel, T. J., Knights, D., Cardona, C., Kogut, M., Johnson, C., Noll, S. L., Arsenault, R., Reed, K. M., & Johnson, T. J. (2019). Antibiotics and Host-Tailored Probiotics Similarly Modulate Effects on the Developing Avian Microbiome, Mycobiome, and Host Gene Expression. mBio, 10(5). https://doi.org/10.1128/mBio.02171-19 | spa |
dc.relation.references | Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M., & Bager, F. (1999). Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus faecium Resistance to Therapeutic Antimicrobial Drugs in Europe. Emerging Infectious Diseases, 5(3), 329-335. https://doi.org/10.3201/eid0503.990303 | spa |
dc.relation.references | Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2). https://doi.org/10.3390/VACCINES10020172 | spa |
dc.relation.references | Wilkie, D. C., van Kessel, A. G., White, L. J., Laarveld, B., & Drew, M. D. (2005). Dietary amino acids affect intestinal Clostridium perfringens populations in broiler chickens. Canadian Journal of Animal Science, 85(2), 185-193. https://doi.org/10.4141/A04-070 | spa |
dc.relation.references | Willson, N.-L., Nattrass, G. S., Hughes, R. J., Moore, R. J., Stanley, D., Hynd, P. I., & Forder, R. E. A. (2018). Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Applied Microbiology and Biotechnology, 102(21), 9317-9329. https://doi.org/10.1007/s00253-018-9281-1 | spa |
dc.relation.references | Wolska, K., Gorska, A., Antoski, K., & Lugowska, K. (2019). Immunomodulatory Effects of Propolis and its Components on Basic Immune Cell Functions. Indian J Pharm Sci, 81(4), 575-588. www.ijpsonline.com | spa |
dc.relation.references | Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03160 | spa |
dc.relation.references | Wu, Z., Zhu, A., Takayama, F., Okada, R., Liu, Y., Harada, Y., Wu, S., & Nakanishi, H. (2013). Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF- κ B Activation in Microglia. Oxidative Medicine and Cellular Longevity, 2013, 1-10. https://doi.org/10.1155/2013/906726 | spa |
dc.relation.references | Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. En Journal of Animal Science and Biotechnology (Vol. 10, Número 1, p. 2). BioMed Central Ltd. https://doi.org/10.1186/s40104-018-0310-9 | spa |
dc.relation.references | Yegani, M., & Korver, D. R. (2008). Factors affecting intestinal health in poultry. En Poultry Science (Vol. 87, Número 10, pp. 2052-2063). Elsevier. https://doi.org/10.3382/ps.2008-00091 | spa |
dc.relation.references | Yu, Q., & Yang, Q. (2009). Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biology International, 33(1), 78-82. https://doi.org/10.1016/j.cellbi.2008.09.007 | spa |
dc.relation.references | Zabaiou, N., Fouache, A., Trousson, A., Baron, S., Zellagui, A., Lahouel, M., & Lobaccaro, J.-M. A. (2017). Biological properties of propolis extracts: Something new from an ancient product. Chemistry and Physics of Lipids, 207, 214-222. https://doi.org/10.1016/j.chemphyslip.2017.04.005 | spa |
dc.relation.references | Zafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 45(1), 280-284. https://doi.org/10.1080/09712119.2016.1174130 | spa |
dc.relation.references | Zhu, M.-J., Sun, X., & Du, M. (2018). AMPK in regulation of apical junctions and barrier function of intestinal epithelium. Tissue Barriers, 6(2), 1-13. https://doi.org/10.1080/21688370.2018.1487249 | spa |
dc.relation.references | Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: from simple barriers to multifunctional molecular gates. Nature Reviews Molecular Cell Biology, 17(9), 564-580. https://doi.org/10.1038/nrm.2016.80 | spa |
dc.relation.references | Zuo, L., Kuo, W. T., & Turner, J. R. (2020). Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. En CMGH (Vol. 10, Número 2, pp. 327-340). Elsevier. https://doi.org/10.1016/j.jcmgh.2020.04.001 | spa |
dc.relation.references | Abbass, A. A., El-Asely, A. M., & Kandiel, M. M. M. (2012). Effects of Dietary Propolis and Pollen on Growth Performance, Fecundity and Some Hematological Parameters of Oreochromis niloticus. Turkish Journal of Fisheries and Aquatic Sciences, 12(2012), 917-924. https://doi.org/10.4194/1303-2712-v12_4_13 | spa |
dc.relation.references | Abdel‐Moneim, A. E., Shehata, A. M., Alzahrani, S. O., Shafi, M. E., Mesalam, N. M., Taha, A. E., Swelum, A. A., Arif, M., Fayyaz, M., & Abd El‐Hack, M. E. (2020). The role of polyphenols in poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 104(6), 1851-1866. https://doi.org/10.1111/jpn.13455 | spa |
dc.relation.references | Abdel-Rahaman, M. A., & Mosaad, G. (2013). Effect of Propolis as Additive on Some Behavioural Patterns, Performance and Blood Parameters in Muscovy Broiler Ducks. Journal of Advanced Veterinary Research, 3, 64-68. | spa |
dc.relation.references | Abou-Elkhair, R., Ahmed, H. A., & Selim, S. (2014). Effects of Black Pepper (Piper Nigrum), Turmeric Powder (Curcuma Longa) and Coriander Seeds (Coriandrum Sativum) and Their Combinations as Feed Additives on Growth Performance, Carcass Traits, Some Blood Parameters and Humoral Immune Response of Broiler Chickens. Asian-Australasian Journal of Animal Sciences, 27(6), 847-854. https://doi.org/10.5713/ajas.2013.13644 | spa |
dc.relation.references | Abraham, C., & Medzhitov, R. (2011). Interactions Between the Host Innate Immune System and Microbes in Inflammatory Bowel Disease. Gastroenterology, 140(6), 1729-1737. https://doi.org/10.1053/j.gastro.2011.02.012 | spa |
dc.relation.references | Abreu, M. T., Fukata, M., & Arditi, M. (2005). TLR Signaling in the Gut in Health and Disease. The Journal of Immunology, 174(8), 4453-4460. https://doi.org/10.4049/jimmunol.174.8.4453 | spa |
dc.relation.references | Adedokun, S. A., & Olojede, O. C. (2019). Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives. Frontiers in Veterinary Science, 5(JAN), 348. https://doi.org/10.3389/fvets.2018.00348 | spa |
dc.relation.references | Adewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - A review. En Asian-Australasian Journal of Animal Sciences (Vol. 29, Número 7, pp. 909-924). Asian-Australasian Association of Animal Production Societies. https://doi.org/10.5713/ajas.15.0795 | spa |
dc.relation.references | Akhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery, 11(10), 790-811. https://doi.org/10.1038/nrd3810 | spa |
dc.relation.references | Al-Garadi, M. A., Al-Baadani, H. H., & Alqhtani, A. H. (2022). Growth Performance, Histological Changes and Functional Tests of Broiler Chickens Fed Diets Supplemented with Tribulus Terrestris Powder. Animals, 12(15), 1930. https://doi.org/10.3390/ani12151930 | spa |
dc.relation.references | Al-Hariri, M. (2019). Immune’s-boosting agent: Immunomodulation potentials of propolis. Journal of Family and Community Medicine, 26(1), 57. https://doi.org/10.4103/jfcm.JFCM_46_18 | spa |
dc.relation.references | Awad, W. A., Ghareeb, K., Abdel-Raheem, S., & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49-56. https://doi.org/10.3382/ps.2008-00244 | spa |
dc.relation.references | Awad, W. A., Hess, C., & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. En Toxins (Vol. 9, Número 2, p. 60). MDPI AG. https://doi.org/10.3390/toxins9020060 | spa |
dc.relation.references | Babinska, I., Kleczek, K., Szarek, J., & Makowski, W. (2012). Modulating effect of propolis and bee pollen on chicken breeding parameters and pathomorphology of liver and kidneys in the course of natural infection with Salmonella Enteritidis. . The Bulletin of the Veterinary Institute in Pulawy, 56, 3-8. | spa |
dc.relation.references | Barshira, E., & Friedman, A. (2006). Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Developmental & Comparative Immunology, 30(10), 930-941. https://doi.org/10.1016/j.dci.2005.12.002 | spa |
dc.relation.references | Bauché, D., & Marie, J. C. (2017). Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clinical & Translational Immunology, 6(4), e136. https://doi.org/10.1038/cti.2017.9 | spa |
dc.relation.references | Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86(6), 1070-1078. https://doi.org/10.1093/ps/86.6.1070 | spa |
dc.relation.references | Belote, B. L., Soares, I., Tujimoto-Silva, A., Sanches, A. W. D., Kraieski, A. L., & Santin, E. (2019). Applying I see inside histological methodology to evaluate gut health in broilers challenged with Eimeria. Veterinary Parasitology, 276, 100004. https://doi.org/10.1016/j.vpoa.2019.100004 | spa |
dc.relation.references | Biasato, I., Ferrocino, I., Dabbou, S., Evangelista, R., Gai, F., Gasco, L., Cocolin, L., Capucchio, M. T., & Schiavone, A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. Journal of Animal Science and Biotechnology, 11(1), 11. https://doi.org/10.1186/s40104-019-0413-y | spa |
dc.relation.references | Biavatti, M., Bellaver, M., Volpato, L., Costa, C., & Bellaver, C. (2003). Preliminary studies of alternative feed additives for broilers: Alternanthera brasiliana extract, propolis extract and linseed oil. Revista Brasileira de Ciência Avícola, 5(2), 147-151. https://doi.org/10.1590/S1516-635X2003000200009 | spa |
dc.relation.references | Bischoff, S. C. (2011). «Gut health»: a new objective in medicine? BMC Medicine, 9(1), 24. https://doi.org/10.1186/1741-7015-9-24 Bonomi, A., Bonomi, B. M., Quarantelli, A., Sabbioni, A., & Superchi, P. (2002). The use of propolis in duck feeding. Rivista di Scienza dell’Alimentazione, 31, 15-28. | spa |
dc.relation.references | Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131-139. https://doi.org/10.1016/j.csbj.2018.03.002 | spa |
dc.relation.references | Braakhuis, A. (2019). Evidence on the Health Benefits of Supplemental Propolis. Nutrients, 11(11), 2705. https://doi.org/10.3390/nu11112705 Broom, L. J. (2018). Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, 97(5), 1572-1578. https://doi.org/10.3382/ps/pey021 | spa |
dc.relation.references | Broom, L. J., & Kogut, M. H. (2018). The role of the gut microbiome in shaping the immune system of chickens. Veterinary Immunology and Immunopathology, 204, 44-51. https://doi.org/10.1016/j.vetimm.2018.10.002 | spa |
dc.relation.references | Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A.-M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012 | spa |
dc.relation.references | Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A.-M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250, 9-31. https://doi.org/10.1016/j.anifeedsci.2018.07.012 | spa |
dc.relation.references | Çetin, E., Silici, S., Çetin, N., & Güçlü, B. K. (2010). Effects of diets containing different concentrations of propolis on hematological and immunological variables in laying hens. Poultry Science, 89(8), 1703-1708. https://doi.org/10.3382/ps.2009-00546 | spa |
dc.relation.references | Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9. https://doi.org/10.1038/s12276-018-0126-x | spa |
dc.relation.references | Cheled-Shoval, S. L., Gamage, N. S. W., Amit-Romach, E., Forder, R., Marshal, J., van Kessel, A., & Uni, Z. (2014). Differences in intestinal mucin dynamics between germ-free and conventionally reared chickens after mannan-oligosaccharide supplementation. Poultry Science, 93(3), 636-644. https://doi.org/10.3382/ps.2013-03362 | spa |
dc.relation.references | Chen, J., Tellez, G., Richards, J. D., & Escobar, J. (2015). Identification of Potential Biomarkers for Gut Barrier Failure in Broiler Chickens. Frontiers in Veterinary Science, 2(MAY), 14. https://doi.org/10.3389/fvets.2015.00014 | spa |
dc.relation.references | Cheng, C. C., Chi, P. L., Shen, M. C., Shu, C. W., Wann, S. R., Liu, C. P., Tseng, C. J., & Huang, W. C. (2019). Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. International Journal of Molecular Sciences, 20(6), 1468. https://doi.org/10.3390/IJMS20061468 | spa |
dc.relation.references | Citi, S. (2020). Cell Biology: Tight Junctions as Biomolecular Condensates. Current Biology, 30(2), R83-R86. https://doi.org/10.1016/j.cub.2019.11.060 | spa |
dc.relation.references | Cormican, P., Lloyd, A. T., Downing, T., Connell, S. J., Bradley, D., & O’Farrelly, C. (2009). The avian Toll-Like receptor pathway-Subtle differences amidst general conformity. Developmental and Comparative Immunology, 33(9), 967-973. https://doi.org/10.1016/j.dci.2009.04.001 | spa |
dc.relation.references | D’Archivio, M., Filesi, C., di Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali dell’Istituto superiore di sanita, 43(4), 348-361. http://www.ncbi.nlm.nih.gov/pubmed/18209268 | spa |
dc.relation.references | Denli, M., Cankaya, S., Silici, S., Okan, F., & Uluocak, A. N. (2005). Effect of Dietary Addition of Turkish Propolis on the Growth Performance, Carcass Characteristics and Serum Variables of Quail (Coturnix coturnix japonica). Asian-Australasian Journal of Animal Sciences , 18, 848-854. | spa |
dc.relation.references | Diaz Carrasco, J. M., Casanova, N. A., & Fernández Miyakawa, M. E. (2019). Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms, 7(10), 374. https://doi.org/10.3390/microorganisms7100374 | spa |
dc.relation.references | Doiron, J. A., Leblanc, L. M., Hébert, M. J. G., Levesque, N. A., Paré, A. F., Jean-François, J., Cormier, M., Surette, M. E., & Touaibia, M. (2017). Structure–activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chemical Biology & Drug Design, 89(4), 514-528. https://doi.org/10.1111/CBDD.12874 | spa |
dc.relation.references | Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Science, 83(3), 414-420. https://doi.org/10.1093/ps/83.3.414 | spa |
dc.relation.references | Duangnum, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12(October), 1-18. https://doi.org/10.3389/fimmu.2021.745849 | spa |
dc.relation.references | Ducatelle, R., Goossens, E., de Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49(1), 43. https://doi.org/10.1186/s13567-018-0538-6 | spa |
dc.relation.references | Elmore, S. A. (2006). Enhanced Histopathology of the Thymus. Toxicologic Pathology, 34(5), 656-665. https://doi.org/10.1080/01926230600865556 | spa |
dc.relation.references | Emami, N. K., Calik, A., White, M. B., Kimminau, E. A., & Dalloul, R. A. (2020). Effect of Probiotics and Multi-Component Feed Additives on Microbiota, Gut Barrier and Immune Responses in Broiler Chickens During Subclinical Necrotic Enteritis. Frontiers in Veterinary Science, 7, 572142. https://doi.org/10.3389/fvets.2020.572142 | spa |
dc.relation.references | Eyng, C., Murakami, A. E., Santos, T. C., Silveira, T. G. v., Pedroso, R. B., & Lourenço, D. A. L. (2014). Immune Responses in Broiler Chicks Fed Propolis Extraction Residue-supplemented Diets. Asian-Australasian Journal of Animal Sciences, 28(1), 135-142. https://doi.org/10.5713/ajas.14.0066 | spa |
dc.relation.references | Fasina, Y. O., Classen, H. L., Garlich, J. D., Black, B. L., Ferket, P. R., Uni, Z., & Olkowski, A. A. (2006). Response of Turkey Poults to Soybean Lectin Levels Typically Encountered in Commercial Diets. 2. Effect on Intestinal Development and Lymphoid Organs. https://doi.org/https://doi.org/10.1093/ps/85.5.870 | spa |
dc.relation.references | Fata, G. La, Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11. https://doi.org/10.1007/S12602-017-9322-6 | spa |
dc.relation.references | Fischer, G., Paulino, N., Marcucci, M. C., Siedler, B. S., Munhoz, L. S., Finger, P. F., Vargas, G. D., Hübner, S. O., Vidor, T., & Roehe, P. M. (2010). Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines. Memórias do Instituto Oswaldo Cruz, 105(7), 908-913. https://doi.org/10.1590/S0074-02762010000700012 | spa |
dc.relation.references | Forder, R. E. A., Howarth, G. S., Tivey, D. R., & Hughes, R. J. (2007). Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry. Poultry Science, 86(11), 2396-2403. https://doi.org/10.3382/ps.2007-00222 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.lemb | Salud animal | spa |
dc.subject.lemb | Cattle - health | eng |
dc.subject.lemb | Pollos de engorde | spa |
dc.subject.lemb | Broilers (poultry) | eng |
dc.subject.proposal | Aves de corral | spa |
dc.subject.proposal | Propóleo | spa |
dc.subject.proposal | Proteínas de unión (TJ) | spa |
dc.subject.proposal | Salud intestinal | spa |
dc.title | Evaluación de la expresión de genes asociados con la integridad intestinal y la modulación de la respuesta inmune en pollos de engorde suplementados con propóleo | spa |
dc.title.translated | Evaluation of the expression of genes associated with intestinal integrity and the modulation of the immune response in broilers supplemented with propolis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026300192.2023.pdf
- Tamaño:
- 2.43 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Salud Animal
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: