Desarrollo de una lámina activa preservante para el empaque de frutos de arándano (Vaccinium corymbosum) en fresco

dc.contributor.advisorCastellanos Espinosa, Diego Alberto
dc.contributor.authorCastellanos González, Sofía
dc.coverage.countryColombiaspa
dc.date.accessioned2025-09-04T20:24:53Z
dc.date.available2025-09-04T20:24:53Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractLos arándanos son frutos apetecidos por sus beneficios nutricionales y para la salud, sin embargo, son susceptibles al ataque y proliferación de hongos durante su manejo poscosecha y almacenamiento. En este trabajo se desarrolló una lámina activa compuesta biodegradable con características preservantes para el empaque de frutos de arándano en fresco y se evaluó el efecto de esta lámina en la vida útil y calidad de los frutos. Para esto se inició con la evaluación de diferentes formulaciones a base de almidón de yuca, celulosa microcristalina y β-ciclodextrina, además de aditivos y plastificantes para la obtención de láminas biodegradables mediante procesos de extrusión. Se determinó el porcentaje máximo de inclusión de celulosa y β-ciclodextrina que condujo a un flujo continuo de material moldeado durante la extrusión y a una lámina homogénea. Se evaluaron algunas propiedades físicas y mecánicas de las láminas como color, esfuerzo máximo, módulo de elasticidad y adsorción de agua, y adicionalmente se evaluó la inclusión de dos sustancias preservantes, mentol y d-limoneno, determinando la capacidad de adsorción de estas sustancias en las láminas. La formulación con 10 % de celulosa y 10 % de β-ciclodextrina (p/p) presentó la mejor combinación de propiedades mecánicas y cantidad de sustancia activa adsorbida y fue seleccionada para su evaluación como elemento activo preservante en el empaque de arándanos. Para la evaluación inicial de la capacidad preservante se empacaron arándanos en canastillas de tereftalato de polietileno (PET) macroperforadas (empaque comercial) y microperforadas (atmósfera modificada con oxígeno restringido) con diferentes cantidades de lámina activa incluida dentro del empaque y a dos temperaturas (4 y 20 °C). Dentro de los frutos empacados se colocaron dos unidades inoculadas con microorganismos causantes de deterioro que habían sido previamente aislados de frutos con daño e identificados mediante sus características morfológicas. Durante el tiempo de almacenamiento se realizó un seguimiento de la calidad general de los frutos y los tiempos de vida útil. A partir de los resultados obtenidos se seleccionaron los tratamientos con cantidades de sustancia activa que mostraron mejor desempeño en la preservación de los frutos. Finalmente, se hizo un ensayo de aplicación, en el cual se evaluó el efecto de la inclusión de la lámina con diferentes concentraciones de sustancia activa sobre la vida útil y calidad general de frutos de arándano almacenados a temperaturas de 20 y 4 °C. En este caso se empacaron frutos frescos sin inocular en las mismas dos configuraciones de canastillas perforadas de PET. Se realizó el seguimiento de propiedades fisicoquímicas de los frutos como sólidos solubles totales (SST), acidez total titulable (ATT), pH, firmeza y color, y aceptabilidad sensorial y microbiológica. Se determinó que, para la lámina con mentol adsorbido a una concentración de 0,07 g g-1 en el empaque microperforado de PET, se obtuvieron hasta 23 días de preservación a 20°C y hasta 47 días de preservación a 4 °C respecto a los 14 días a 20 °C y 24 días a 4 °C que se obtuvieron para canastillas macroperforadas sin láminas activas. Los resultados muestran el potencial de un empaque activo combinado integrando atmósferas modificadas y las láminas activas desarrolladas para la preservación de este tipo de frutos durante su comercialización sin requerir cambios mayores en la configuración de los empaques empleados. (Texto tomado de la fuente)spa
dc.description.abstractBlueberries are desired fruits because of their nutritional and health benefits; however, they are susceptible to fungal attack and proliferation during postharvest handling and storage. In this work, a biodegradable composite active film with preservative properties was developed for fresh blueberry fruit packaging, and its effect on shelf life and fruit quality was evaluated. It started with assessing different formulations based on cassava starch, microcrystalline cellulose, and β-cyclodextrin and with additives and plasticizers to obtain biodegradable films through extrusion processes. The maximum inclusion percentage of cellulose and β-cyclodextrin that allowed obtaining a continuous flow of molded material during extrusion and a homogeneous film were determined. Some physical and mechanical properties of the films were evaluated, such as color, máximum tensile stress, modulus of elasticity, and water uptake; in addition, the inclusion of two preservative substances, menthol and d-limonene, was evaluated by determining this substance's adsorption capacity by the films. The formulation with 10% cellulose and 10% β-cyclodextrin (w/w) had the best combination of mechanical properties and amount of active substance adsorbed and was selected for its assessment as an active preservative element for fresh blueberry fruit packaging. For the initial assessment of the preserving capacity, blueberries were packed in polyethylene terephthalate (PET) macroperforated (commercial packaging) and microperforated (modified atmosphere with restricted oxygen) baskets with different amounts of the active film included inside the packaging and at two temperatures (4 and 20 °C). Among the packed fruits, there were two units inoculated with spoilage microorganisms that had been previously isolated from damaged fruits and identified by their morphological characteristics. During the storage time, the general quality and shelf life of the fruits were monitored. From the results obtained, the treatments with active substances that showed the best performance in fruit preservation were selected for the last part of this work. Finally, an application test was performed, in which the effect of the inclusion of a film with different concentrations of active substance on the shelf life and general quality of blueberry fruits stored at temperatures of 20 and 4 °C was evaluated. In this case, non-inoculated fresh fruits were packed in the same configuration of perforated PET baskets. Physicochemical properties of the fruits, such as total soluble solids (TSS), total titratable acidity (TTA), pH, firmness and color, and sensory and microbiological acceptability were monitored. It was determined that, for the menthol-saturated film with a concentration of 0,07 g g-1 at PET microperforated packaging, 23 preservation days at 20 °C and up to 47 preservation days at 4 °C were obtained, compared to 14 days at 20 °C and 24 days at 4 °C obtained for the macroperforated baskets without active film. The results show the potential of an active packaging integrating modified atmospheres with the active films developed for the preservation of this type of fruit during their commercialization without requiring major changes in the configuration of the packaging used.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaCalidad y empaques para alimentos
dc.format.extent122 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88617
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.relation.referencesAbarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968-975. https://doi.org/10.1016/j.foodchem.2015.10.023
dc.relation.referencesAbdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science, 160, 012003. https://doi.org/10.1088/1755-1315/160/1/012003
dc.relation.referencesAbdullah, A. H. D., Putri, O. D., Fikriyyah, A. K., Nissa, R. C., & Intadiana, S. (2020). Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polymer-Plastics Technology and Materials, 59(12), 1250-1258. https://doi.org/10.1080/25740881.2020.1738465
dc.relation.referencesAhari, H., Golestan, L., Anvar, S. A. A., Cacciotti, I., Garavand, F., Rezaei, A., Sani, M. A., & Jafari, S. M. (2022). Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Advances in Colloid and Interface Science, 310, 102806. https://doi.org/10.1016/j.cis.2022.102806
dc.relation.referencesAktaruzzaman, Md., Afroz, T., Kim, B.-S., & Lee, Y.-G. (2017). Occurrence of postharvest gray mold rot of sweet cherry due to Botrytis cinerea in Korea. Journal of Plant Diseases and Protection, 124(1), 93-96. https://doi.org/10.1007/s41348-016-0049-5
dc.relation.referencesAl-Bayati, F. A. (2009). Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq. Annals of Clinical Microbiology and Antimicrobials, 8(1), 20. https://doi.org/10.1186/1476-0711-8-20
dc.relation.referencesAlmenar, E., Samsudin, H., Auras, R., Harte, B., & Rubino, M. (2008). Postharvest shelf life extension of blueberries using a biodegradable package. Food Chemistry, 110(1), 120-127. https://doi.org/10.1016/j.foodchem.2008.01.066
dc.relation.referencesAlmenar, E., Samsudin, H., Auras, R., & Harte, J. (2010). Consumer acceptance of fresh blueberries in bio-based packages. Journal of the Science of Food and Agriculture, 90(7), 1121-1128. https://doi.org/10.1002/jsfa.3922
dc.relation.referencesAmiri, A., Sourestani, M. M., Mortazavi, S. M. H., Kiasat, A. R., & Ramezani, Z. (2022). Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits. Journal of Food Measurement and Characterization, 16(1), 66-75. https://doi.org/10.1007/s11694-021-01133-z
dc.relation.referencesAouay, M., Magnin, A., Lancelon-Pin, C., Putaux, J.-L., & Boufi, S. (2024). Mitigating the water sensitivity of PBAT/TPS blends through the incorporation of lignin-containing cellulose nanofibrils for application in biodegradable films. ACS Sustainable Chemistry & Engineering, 12(29), 10805-10819. https://doi.org/10.1021/acssuschemeng.4c02245
dc.relation.referencesAraya, J., Esquivel, M., Jimenez, G., Navia, D., & Poveda, L. (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film & Sheeting, 38(1), 46-71. https://doi.org/10.1177/87560879211023882
dc.relation.referencesAsgher, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137, 109625. https://doi.org/10.1016/j.foodres.2020.109625
dc.relation.referencesAzevedo, D. M. Q., Martins, S. D. S., Guterres, D. C., Martins, M. D., Araújo, L., Guimarães, L. M. S., Alfenas, A. C., & Furtado, G. Q. (2020). Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biology, 124(11), 940-957. https://doi.org/10.1016/j.funbio.2020.08.002
dc.relation.referencesAzevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. https://doi.org/10.1016/j.carbpol.2016.10.046
dc.relation.referencesAzevedo, V. M., Carvalho, R. A., Borges, S. V., Claro, P. I. C., Hasegawa, F. K., Yoshida, M. I., & Marconcini, J. M. (2019). Thermoplastic starch/whey protein isolate/rosemary essential oil nanocomposites obtained by extrusion process: Antioxidant polymers. Journal of Applied Polymer Science, 136(23), 47619. https://doi.org/10.1002/app.47619
dc.relation.referencesBanerjee, S., Nayik, G. A., Kour, J. & Nazir, N. (2020). Blueberries. En Nayik, G. A., & Gull, A. (Eds.), Antioxidants in Fruits: Properties and Health Benefits (pp. 593-614). Springer. https://doi.org/10.1007/978-981-15-7285-2
dc.relation.referencesBasavegowda, N., & Baek, K.-H. (2021). Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules, 11(9), 1267. https://doi.org/10.3390/biom11091267
dc.relation.referencesBasumatary, I. B., Mukherjee, A., Katiyar, V., & Kumar, S. (2022). Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 62(7), 1912-1935. https://doi.org/10.1080/10408398.2020.1848789
dc.relation.referencesBell, S. R., Hernández Montiel, L. G., González Estrada, R. R., & Gutiérrez Martínez, P. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. LWT, 149, 112046. https://doi.org/10.1016/j.lwt.2021.112046
dc.relation.referencesBeltrán Sanahuja, A., & Valdés García, A. (2021). New trends in the use of volatile compounds in food packaging. Polymers, 13(7), 1053. https://doi.org/10.3390/polym13071053
dc.relation.referencesBensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., De Jesús Yáñez-Morales, M., & Crous, P. W. (2015). Common but different: The expanding realm of Cladosporium. Studies in Mycology, 82(1), 23-74. https://doi.org/10.1016/j.simyco.2015.10.001
dc.relation.referencesBodirlau, R., Teaca, C.-A., & Spiridon, I. (2013). Influence of natural fillers on the properties of starch-based biocomposite films. Composites Part B: Engineering, 44(1), 575-583. https://doi.org/10.1016/j.compositesb.2012.02.039
dc.relation.referencesBof, M. J., Laurent, F. E., Massolo, F., Locaso, D. E., Versino, F., & García, M. A. (2021). Bio-packaging material impact on blueberries quality attributes under transport and marketing conditions. Polymers, 13(4), 481. https://doi.org/10.3390/polym13040481
dc.relation.referencesBora, H., Kamle, M., Mahato, D. K., Tiwari, P., & Kumar, P. (2020). Citrus essential oils (Ceos) and their applications in food: An overview. Plants, 9(3), 357. https://doi.org/10.3390/plants9030357
dc.relation.referencesBorges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry, 58(7), 3901-3909. https://doi.org/10.1021/jf902263n
dc.relation.referencesBugatti, V., Cefola, M., Montemurro, N., Palumbo, M., Quintieri, L., Pace, B., & Gorrasi, G. (2020). Combined effect of active packaging of polyethylene filled with a nano-carrier of salicylate and modified atmosphere to improve the shelf life of fresh blueberries. Nanomaterials, 10(12), 2513. https://doi.org/10.3390/nano10122513
dc.relation.referencesBurt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
dc.relation.referencesCampos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36. https://doi.org/10.1016/j.postharvbio.2017.03.005
dc.relation.referencesCameron, A. C., Beaudry, R. M., Banks, N. H., & Yelanich, M. V. (1994). Modified-atmosphere packaging of blueberry fruit: Modeling respiration and package oxygen partial pressures as a function of temperature. Journal of the American Society for Horticultural Science, 119(3), 534-539. https://doi.org/10.21273/JASHS.119.3.534
dc.relation.referencesCantín, C. M., Minas, I. S., Goulas, V., Jiménez, M., Manganaris, G. A., Michailides, T. J., & Crisosto, C. H. (2012). Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology, 67, 84-91. https://doi.org/10.1016/j.postharvbio.2011.12.006
dc.relation.referencesCasalini, S., & Giacinti Baschetti, M. (2023). The use of essential oils in chitosan or cellulose‐based materials for the production of active food packaging solutions: A review. Journal of the Science of Food and Agriculture, 103(3), 1021-1041. https://doi.org/10.1002/jsfa.11918
dc.relation.referencesChen, J., Long, Z., Dou, C., Wang, X., & Meng, Y. (2021). Processing and characterization of thermoplastic corn starch‐based film/paper composites containing microcrystalline cellulose. Journal of the Science of Food and Agriculture, 101(15), 6443-6451. https://doi.org/10.1002/jsfa.11315
dc.relation.referencesChen, J., Wang, X., Long, Z., Wang, S., Zhang, J., & Wang, L. (2020). Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. International Journal of Biological Macromolecules, 165, 2295-2302. https://doi.org/10.1016/j.ijbiomac.2020.10.117
dc.relation.referencesChen, Q., Shi, Y., Chen, G., & Cai, M. (2020). Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (Microcrystalline cellulose)/NCC (Nanocellulose) as strength agent. International Journal of Biological Macromolecules, 142, 846-854. https://doi.org/10.1016/j.ijbiomac.2019.10.024
dc.relation.referencesCiobanu, A., Mallard, I., Landy, D., Brabie, G., Nistor, D., & Fourmentin, S. (2013). Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chemistry, 138(1), 291-297. https://doi.org/10.1016/j.foodchem.2012.10.106
dc.relation.referencesCombrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33(2), 344-349. https://doi.org/10.1016/j.indcrop.2010.11.011
dc.relation.referencesConcha-Meyer, A., Eifert, J. D., Williams, R. C., Marcy, J. E., & Welbaum, G. E. (2015). Shelf life determination of fresh blueberries (vaccinium corymbosum) stored under controlled atmosphere and ozone. International Journal of Food Science, 1-9. https://doi.org/10.1155/2015/164143
dc.relation.referencesCortés, L. A., Herrera, A. O., & Castellanos, D. A. (2022). Natural plant‐based compounds applied in antimicrobial active packaging and storage of berries. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16995
dc.relation.referencesDefilippi, B., Robledo, P. & Becerra, C. (2017). Cosecha y poscosecha. En Manual de manejo agronómico de arándano (pp. 89-97). Instituto de Desarrollo Agropecuario – Instituto de Investigaciones Agropecuarias.
dc.relation.referencesDeng, J., Shi, Z., Li, X., & Liu, H. (2014). Effects of cold storage and 1-methylcyclopropene treatments on ripening and cell wall degrading in rabbiteye blueberry (vaccinium ashei) fruit. Food Science and Technology International, 20(4), 287-298. https://doi.org/10.1177/1082013213483611
dc.relation.referencesDias, M. V., Sousa, M. M., Lara, B. R. B., De Azevedo, V. M., De Fátima Ferreira Soares, N., Borges, S. V., & Queiroz, F. (2018). Thermal and morphological properties and kinetics of diffusion of antimicrobial films on food and a simulant. Food Packaging and Shelf Life, 16, 15-22. https://doi.org/10.1016/j.fpsl.2018.01.007
dc.relation.referencesDuan, Y., Tarafdar, A., Chaurasia, D., Singh, A., Bhargava, P. C., Yang, J., Li, Z., Ni, X., Tian, Y., Li, H., & Awasthi, M. K. (2022). Blueberry fruit valorization and valuable constituents: A review. International Journal of Food Microbiology, 381, 109890. https://doi.org/10.1016/j.ijfoodmicro.2022.109890
dc.relation.referencesLi Destri NicosiaEspina, L., Gelaw, T. K., De Lamo-Castellví, S., Pagán, R., & García-Gonzalo, D. (2013). Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE, 8(2), e56769. https://doi.org/10.1371/journal.pone.0056769
dc.relation.referencesFalagán, N., Miclo, T., & Terry, L. A. (2020). Graduated controlled atmosphere: A novel approach to increase “duke” blueberry storage life. Frontiers in Plant Science, 11, 221. https://doi.org/10.3389/fpls.2020.00221
dc.relation.referencesFerdousi, J., Hussain, M. I., Saha, S. R., Rob, M., Afroz, T., Pramanik, S., Islam, M. R., & Nath, D. D. (2024). Postharvest physiology of fruits and vegetables and their management technology: A review. The Journal of Animal and Plant Sciences, 34(2), 291-303. https://doi.org/10.36899/JAPS.2024.2.0717
dc.relation.referencesFirmanda, A., Fahma, F., Warsiki, E., Syamsu, K., Arnata, I. W., Sartika, D., Suryanegara, L., Qanytah, & Suyanto, A. (2023). Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control, 147, 109617. https://doi.org/10.1016/j.foodcont.2023.109617
dc.relation.referencesForero, A. C., Garavito, J., & Castellanos, D. A. (2023). Evaluation and modeling of acrylonitrile migration from polypropylene for food packaging. Journal of Food Science, 88(12), 4928-4941. https://doi.org/10.1111/1750-3841.16819
dc.relation.referencesGaravito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314, 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761
dc.relation.referencesGaray, E., Cruz, S., Fernández, S. P., Rodríguez, G. & Gómez, N. (2021). Pathogenic Microorganisms Infecting Berries in Mexico. International Journal of Agriculture and Biology, 25(05), 1007-1015. https://doi.org/10.17957/IJAB/15.1758
dc.relation.referencesGarrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. https://doi.org/10.1016/j.lwt.2018.08.046
dc.relation.referencesGazula, H., Quansah, J., Allen, R., Scherm, H., Li, C., Takeda, F., & Chen, J. (2019). Microbial loads on selected fresh blueberry packing lines. Food Control, 100, 315-320. https://doi.org/10.1016/j.foodcont.2019.01.032
dc.relation.referencesGhanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442-447. https://doi.org/10.1016/j.ijbiomac.2018.02.007
dc.relation.referencesGhrab, S., Eloussaief, M., Lambert, S., Bouaziz, S., & Benzina, M. (2017). Adsorption of terpenic compounds onto organo-palygorskite. Environmental Science and Pollution Research, 25(19), 18251-18262. https://doi.org/10.1007/s11356-017-9122-2
dc.relation.referencesGiacalone, G & Chiabrando, V. (2012). Problems and Methods to Improve the Market-Life of Berry Fruit en Tuberoso, C (Ed.), Berries: Properties, Consumption and Nutrition (pp. 179-169). ISBN 978-1-61470-257-3
dc.relation.referencesGiuggioli, N., Girgenti, V., & Peano, C. (2017). Qualitative performance and consumer acceptability of starch films for the blueberry modified atmosphere packaging storage. Polish Journal of Food and Nutrition Sciences, 67(2), 129-136. https://doi.org/10.1515/pjfns-2016-0023
dc.relation.referencesGonzález-Reza, R. M., Hernández-Sánchez, H., Zambrano-Zaragoza, M. L., Gutiérrez-López, G. F., Del-Real, A., Quintanar-Guerrero, D., & Velasco-Bejarano, B. (2020). Influence of stabilizing and encapsulating polymers on antioxidant capacity, stability, and kinetic release of thyme essential oil nanocapsules. Foods, 9(12), 1884. https://doi.org/10.3390/foods9121884
dc.relation.referencesGomes, M. H., Beaudry, R. M., Almeida, D. P. F., & Xavier Malcata, F. (2010). Modelling respiration of packaged fresh-cut ‘Rocha’ pear as affected by oxygen concentration and temperature. Journal of Food Engineering, 96(1), 74-79. https://doi.org/10.1016/j.jfoodeng.2009.06.043
dc.relation.referencesGupta, E., & Mishra, P. (2021). Functional food with some health benefits, so called superfood: A review. Current Nutrition & Food Science, 17(2), 144-166. https://doi.org/10.2174/1573401316999200717171048
dc.relation.referencesHerrera, A. O., Castellanos, D. A., Mendoza, R., & Patiño, L. S. (2020). Design of perforated packages to preserve fresh produce considering temperature, gas concentrations and moisture loss. Acta Horticulturae, 1275, 185-192. https://doi.org/10.17660/ActaHortic.2020.1275.26
dc.relation.referencesHietala, M., Mathew, A. P., & Oksman, K. (2013). Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, 49(4), 950-956. https://doi.org/10.1016/j.eurpolymj.2012.10.016
dc.relation.referencesHoudkova, M., & Kokoska, L. (2020). Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Medica, 86(12), 822-857. https://doi.org/10.1055/a-1158-4529
dc.relation.referencesHuynh, N. K., Wilson, M. D., Eyles, A., & Stanley, R. A. (2019). Recent advances in postharvest technologies to extend the shelf life of blueberries (vaccinium sp.), raspberries (rubus idaeus l.)and blackberries (rubus sp.). Journal of Berry Research, 9(4), 687-707. https://doi.org/10.3233/JBR-190421
dc.relation.referencesHwang, H., Kim, Y.-J., & Shin, Y. (2020). Assessment of physicochemical quality, antioxidant content and activity, and inhibition of cholinesterase between unripe and ripe blueberry fruit. Foods, 9(6), 690. https://doi.org/10.3390/foods9060690
dc.relation.referencesJackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonca, A., Cooper, B., Thomas-Popo, E., Gordon, K., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86(2), 100025. https://doi.org/10.1016/j.jfp.2022.100025
dc.relation.referencesJohar, M., Zarkasi, K. Z., Zaini, N. A. M., & Rusli, A. (2023). Enhancement of mechanical, rheological and antifungal properties of polylactic acid/ethylene–vinyl-acetate blend by triacetin plasticizer. Journal of Polymer Research, 30(7), 259. https://doi.org/10.1007/s10965-023-03630-9
dc.relation.referencesJahdkaran, E., Hosseini, S. E., Mohammadi Nafchi, A., & Nouri, L. (2021). The effects of methylcellulose coating containing carvacrol or menthol on the physicochemical, mechanical, and antimicrobial activity of polyethylene films. Food Science & Nutrition, 9(5), 2768-2778. https://doi.org/10.1002/fsn3.2240
dc.relation.referencesJohnston, S. (1959). Essentials of Blueberry Culture. Michigan State University, Agricultura State University.
dc.relation.referencesJu, J., Chen, X., Xie, Y., Yu, H., Cheng, Y., Qian, H., & Yao, W. (2019). Simple microencapsulation of plant essential oil in porous starch granules: Adsorption kinetics and antibacterial activity evaluation. Journal of Food Processing and Preservation, 43(10). https://doi.org/10.1111/jfpp.14156
dc.relation.referencesKamatou, G. P. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 96, 15-25. https://doi.org/10.1016/j.phytochem.2013.08.005
dc.relation.referencesKaram, H. J., Al-Qassimi, M., Al-Wadi, M. H., Al-Rowaih, A. A., Al-Hazza’A, A. S., & Al-Salem, S. M. (2020). Compounding and processing hydro-biodegradable plastic films for plastic waste reduction. Part i: Processing conditions and environmental performance against plastic solid waste. WIT Transactions on Ecology and the Environment, 247, 93–102. https://doi.org/10.2495/WM200091
dc.relation.referencesKarnwal, A., & Malik, T. (2024). Exploring the untapped potential of naturally occurring antimicrobial compounds: Novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8, 1307210. https://doi.org/10.3389/fsufs.2024.1307210
dc.relation.referencesKhan, B., Bilal Khan Niazi, M., Samin, G., & Jahan, Z. (2016). Thermoplastic starch: A possible biodegradable food packaging material—a review. Journal of Food Process Engineering, 40(3), e12447. https://doi.org/10.1111/jfpe.12447
dc.relation.referencesKłapeć, T., Wójcik-Fatla, A., Farian, E., Kowalczyk, K., Cholewa, G., Cholewa, A., & Dutkiewicz, J. (2022). Mycobiota of berry fruits – levels of filamentous fungi and mycotoxins, composition of fungi, and analysis of potential health risk for consumers. Annals of Agricultural and Environmental Medicine, 29(1), 28-37. https://doi.org/10.26444/aaem/147297
dc.relation.referencesKlinmalai, P., Srisa, A., Laorenza, Y., Katekhong, W., & Harnkarnsujarit, N. (2021). Antifungal and plasticization effects of carvacrol in biodegradable poly(Lactic acid) and poly(Butylene adipate terephthalate) blend films for bakery packaging. LWT, 152, 112356. https://doi.org/10.1016/j.lwt.2021.112356
dc.relation.referencesKnobloch, K., Pauli, A., Iberl, B., Weigand, H., & Weis, N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1(3), 119-128. https://doi.org/10.1080/10412905.1989.9697767
dc.relation.referencesLan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y., & Qin, W. (2019). Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material. Molecules, 24(4), 767. https://doi.org/10.3390/molecules24040767
dc.relation.referencesLan, W., Wang, S., Chen, M., Sameen, D. E., Lee, K., & Liu, Y. (2019). Developing poly(Vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules, 145, 722-732. https://doi.org/10.1016/j.ijbiomac.2019.12.230
dc.relation.referencesLi Destri Nicosia, M. G., Pangallo, S., Raphael, G., Romeo, F. V., Strano, M. C., Rapisarda, P., Droby, S., & Schena, L. (2016). Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biology and Technology, 114, 54-61. https://doi.org/10.1016/j.postharvbio.2015.11.012
dc.relation.referencesLi, Y., Sun, S., Du, C., Xu, C., Zhang, J., Duan, C., & Zhu, Z. (2016). A new disease of mung bean caused by Botrytis cinerea. Crop Protection, 85, 52-56. https://doi.org/10.1016/j.cropro.2016.03.020
dc.relation.referencesLi, Y., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., & Tian, J. (2022). Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry, 382, 132312. https://doi.org/10.1016/j.foodchem.2022.132312
dc.relation.referencesLin, Y., Huang, G., Zhang, Q., Wang, Y., Dia, V. P., & Meng, X. (2020). Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biology and Technology, 162, 111097. https://doi.org/10.1016/j.postharvbio.2019.111097
dc.relation.referencesLiu, B., Wang, K., Shu, X., Liang, J., Fan, X., & Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae, 246, 557-562. https://doi.org/10.1016/j.scienta.2018.11.042
dc.relation.referencesLiu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., & Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 157, 842-849. https://doi.org/10.1016/j.carbpol.2016.10.067
dc.relation.referencesLiu, H., Fu, Y., Li, D., & Xu, W. (2017). Investigation of active map film with menthol on sugar orange preservation. En P. Zhao, Y. Ouyang, M. Xu, L. Yang, & Y. Ouyang (Eds.), Advanced Graphic Communications and Media Technologies (Vol. 417, pp. 643-650). Springer Singapore. https://doi.org/10.1007/978-981-10-3530-2_80
dc.relation.referencesLiu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348-1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001
dc.relation.referencesLópez-de-Dicastillo, C., Gallur, M., Catalá, R., Gavara, R., & Hernandez-Muñoz, P. (2010). Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 353(1-2), 184-191. https://doi.org/10.1016/j.memsci.2010.02.049
dc.relation.referencesLuby, J. J., Ballington, J. R., Draper, A. D., Pliszka, K., & Austin, M. E. (1991). Blueberries and cranberries (Vaccinium). Acta Horticulturae, 290, 393-458. https://doi.org/10.17660/ActaHortic.1991.290.9
dc.relation.referencesMa, M., De Silva, D. D., & Taylor, P. W. J. (2020). Black mould of post-harvest tomato (Solanum lycopersicum) caused by Cladosporium cladosporioides in Australia. Australasian Plant Disease Notes, 15(1), 25. https://doi.org/10.1007/s13314-020-00395-8
dc.relation.referencesMadrid, M., & Beaudry, R. (2020). Small fruits: Raspberries, blackberries, blueberries. En Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce (pp. 335-346). Elsevier. https://doi.org/10.1016/B978-0-12-804599-2.00020-X
dc.relation.referencesMahecha-Rubiano, Y. R., Garavito, J., & Castellanos, D. A. (2024). Configuration of a combined active packaging system with modified atmospheres and antimicrobial control to preserve fresh strawberry fruits. Food Packaging and Shelf Life, 46, 101390. https://doi.org/10.1016/j.fpsl.2024.101390
dc.relation.referencesMedina-Jaramillo, C., Estevez-Areco, S., Goyanes, S., & López-Córdoba, A. (2019). Characterization of starches isolated from colombian native potatoes and their application as novel edible coatings for wild andean blueberries(Vaccinium meridionale Swartz). Polymers, 11(12), 1937. https://doi.org/10.3390/polym11121937
dc.relation.referencesMehra, L. K., MacLean, D. D., Savelle, A. T., & Scherm, H. (2013). Postharvest disease development on southern highbush blueberry fruit in relation to berry flesh type and harvest method. Plant Disease, 97(2), 213-221. https://doi.org/10.1094/PDIS-03-12-0307-RE
dc.relation.referencesMichalska, A., & Łysiak, G. (2015). Bioactive compounds of blueberries: Post-harvest factors influencing the nutritional value of products. International Journal of Molecular Sciences, 16(8), 18642-18663. https://doi.org/10.3390/ijms160818642
dc.relation.referencesMirzaei, S., Goltapeh, E. M., Shams‐Bakhsh, M., & Safaie, N. (2008). Identification of botrytis spp. on plants grown in Iran. Journal of Phytopathology, 156(1), 21-28. https://doi.org/10.1111/j.1439-0434.2007.01317.x
dc.relation.referencesMohamad Haafiz, M. K., Eichhorn, S. J., Hassan, A., & Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers, 93(2), 628-634. https://doi.org/10.1016/j.carbpol.2013.01.035
dc.relation.referencesMoleyar, V., & Narasimham, P. (1986). Antifungal activity of some essential oil components. Food Microbiology, 3(4), 331-336. https://doi.org/10.1016/0740-0020(86)90017-1
dc.relation.referencesMonroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795-804. https://doi.org/10.1016/j.ultsonch.2017.12.048
dc.relation.referencesMontero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2017). Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 157, 1094-1104. https://doi.org/10.1016/j.carbpol.2016.10.073
dc.relation.referencesMorales, C. G. (2017). Requerimientos de suelo y clima. En Manual de manejo agronómico de arándano (pp. 20-22). Instituto de Desarrollo Agropecuario – Instituto de Investigaciones Agropecuarias.
dc.relation.referencesMohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1-2), 61-72. https://doi.org/10.1002/star.201200201
dc.relation.referencesNile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134-144. https://doi.org/10.1016/j.nut.2013.04.007
dc.relation.referencesNunez-Barrios, A., Nesmith, D. S., Chinnan, M., & Prussia, S. E. (2005). Dynamics of rabbiteye blueberry fruit quality in response to harvest method and postharvest handling temperature. Small Fruits Review, 4(2), 73-81. https://doi.org/10.1300/J301v04n02_08
dc.relation.referencesOnyeaka, H., Obileke, K., Makaka, G., & Nwokolo, N. (2022). Current research and applications of starch-based biodegradable films for food packaging. Polymers, 14(6), 1126. https://doi.org/10.3390/polym14061126
dc.relation.referencesOthman, S. H., Majid, N. A., Tawakkal, I. S. M. A., Basha, R. K., Nordin, N., & Shapi’I, R. A. (2019). Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Science and Technology, 39(3), 605-612. https://doi.org/10.1590/fst.36017
dc.relation.referencesPaniagua, A. C., East, A. R., Hindmarsh, J. P., & Heyes, J. A. (2013). Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biology and Technology, 79, 13-19. https://doi.org/10.1016/j.postharvbio.2012.12.016
dc.relation.referencesPark, S.-I., Stan, S. D., Daeschel, M. A., & Zhao, Y. (2005). Antifungal coatings on fresh strawberries (Fragaria × ananassa) to control mold growth during cold storage. Journal of Food Science, 70(4), M202-M207. https://doi.org/10.1111/j.1365-2621.2005.tb07189.x
dc.relation.referencesPaulussen, C., Hallsworth, J. E., Álvarez‐Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H., & Lievens, B. (2017). Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial Biotechnology, 10(2), 296-322. https://doi.org/10.1111/1751-7915.12367
dc.relation.referencesPayasi, A., & Sanwal, G. G. (2010). Ripening of climacteric fruits and their control: Control of ripening in fruits. Journal of Food Biochemistry, 34(4), 679-710. https://doi.org/10.1111/j.1745-4514.2009.00307.x
dc.relation.referencesPérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). Strategies for microbial decontamination of fresh blueberries and derived products. Foods, 9(11), 1558. https://doi.org/10.3390/foods9111558
dc.relation.referencesPolat, İ., Baysal, Ö., Mercati, F., Gümrükcü, E., Sülü, G., Kitapcı, A., Araniti, F., & Carimi, F. (2018). Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. Infection, Genetics and Evolution, 60, 151-159. https://doi.org/10.1016/j.meegid.2018.02.019
dc.relation.referencesPushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch - Stärke, 60(10), 527-538. https://doi.org/10.1002/star.200800713
dc.relation.referencesPushpadass, H. A., Marx, D. B., Wehling, R. L., & Hanna, M. A. (2009). Extrusion and characterization of starch films. Cereal Chemistry, 86(1), 44-51. https://doi.org/10.1094/CCHEM-86-1-0044
dc.relation.referencesRashidinejad, A. (2020). Blueberries. En Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 467-482). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00029-5
dc.relation.referencesReis, M. O., Olivato, J. B., Zanela, J., Yamashita, F., & Grossmann, M. V. E. (2017). Influence of microcrystalline cellulose in thermoplastic starch/polyester blown films. Polímeros, 27(2), 129-135. https://doi.org/10.1590/0104-1428.2338
dc.relation.referencesRen, M., Cai, Z., Chen, L., Wahia, H., Zhang, L., Wang, Y., Yu, X., & Zhou, C. (2022). Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation. International Journal of Biological Macromolecules, 223, 1054-1066. https://doi.org/10.1016/j.ijbiomac.2022.11.090
dc.relation.referencesRezaeinia, H., Ghorani, B., Emadzadeh, B., & Mohebbi, M. (2020). Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. Materials Science and Engineering: C, 115, 111115. https://doi.org/10.1016/j.msec.2020.111115
dc.relation.referencesRhim, J.-W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433. https://doi.org/10.1080/10408390600846366
dc.relation.referencesRodriguez, J., & Zoffoli, J. P. (2016). Effect of sulfur dioxide and modified atmosphere packaging on blueberry postharvest quality. Postharvest Biology and Technology, 117, 230-238. https://doi.org/10.1016/j.postharvbio.2016.03.008
dc.relation.referencesRodrigues, R., Patil, S., Dhakane‐Lad, J., Nadanathangam, V., & Mahapatra, A. (2022). Effect of green tea extract, ginger essential oil and nanofibrillated cellulose reinforcements in starch films on the keeping quality of strawberries. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16109
dc.relation.referencesRoy, S., & Rhim, J.-W. (2021). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127220. https://doi.org/10.1016/j.colsurfa.2021.127220
dc.relation.referencesRozenblit, B., Tenenbaum, G., Shagan, A., Corem Salkmon, E., Shabtay-Orbach, A., & Mizrahi, B. (2018). A new volatile antimicrobial agent-releasing patch for preserving fresh foods. Food Packaging and Shelf Life, 18, 184-190. https://doi.org/10.1016/j.fpsl.2018.11.003
dc.relation.referencesRuiz, M. L., Pichardo, S., Maisanaba, S., Puerto, M., Prieto, A. I., Gutiérrez-Praena, D., Jos, A., & Cameán, A. M. (2015). In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food and Chemical Toxicology, 81, 9-27. https://doi.org/10.1016/j.fct.2015.03.030
dc.relation.referencesSaffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ingredients and their cyclodextrin inclusion complexes. Food and Bioprocess Technology, 12(7), 1157-1173. https://doi.org/10.1007/s11947-019-02285-z
dc.relation.referencesSamad, N. B., Debnath, T., Ye, M., Hasnat, Md. A., & Lim, B. O. (2014). In vitro antioxidant and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pacific Journal of Tropical Biomedicine, 4(10), 807-815. https://doi.org/10.12980/APJTB.4.2014C1008
dc.relation.referencesSha, H., Yuan, C., Cui, B., Zhao, M., & Wang, J. (2022). Pre-gelatinized cassava starch orally disintegrating films: Influence of β-Cyclodextrin. Food Hydrocolloids, 123, 107196. https://doi.org/10.1016/j.foodhyd.2021.107196
dc.relation.referencesDuarte Sierra, A., & Jha, D. K. (2023). Extending the postharvest life of wild blueberries with proprietary plastic pallet covers. Future Foods, 8, 100277. https://doi.org/10.1016/j.fufo.2023.100277
dc.relation.referencesSikora, J. W., Majewski, Ł., & Puszka, A. (2021). Modern biodegradable plastics—Processing and properties part ii. Materials, 14(10), 2523. https://doi.org/10.3390/ma14102523
dc.relation.referencesSimon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1-3), 107-115. https://doi.org/10.1016/S0141-3910(97)00151-1
dc.relation.referencesSingh, G., Bangar, S., Yang, T., Trif, M., Kumar, V., & Kumar, D. (2022). Effect on the properties of edible starch-based films by the incorporation of additives: A review. Polymers, 14(10), 1987. https://doi.org/10.3390/polym14101987
dc.relation.referencesSiracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003
dc.relation.referencesSkrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706. https://doi.org/10.3390/ijms161024673
dc.relation.referencesSoković, M., & Van Griensven, L. J. L. D. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116(3), 211-224. https://doi.org/10.1007/s10658-006-9053-0
dc.relation.referencesSong, Y., Lee, D. S., & Yam, K. L. (2001). Predicting relative humidity in modified atmosphere packaging system containing blueberry and moisture absorbent. Journal of Food Processing and Preservation, 25(1), 49-70. https://doi.org/10.1111/j.1745-4549.2001.tb00443.x
dc.relation.referencesSong, Y., Vorsa, N., & Yam, K. L. (2002). Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. Journal of Food Engineering, 53(2), 103-109. https://doi.org/10.1016/S0260-8774(01)00146-7
dc.relation.referencesSuvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial nanomaterials for food packaging. Antibiotics, 11(6), 729. https://doi.org/10.3390/antibiotics11060729
dc.relation.referencesSvoboda, K. P. & Greenaway, R. I. (2003). Lemon scented plants. International Journal of Aromatherapy, 13 (1), 23–32. https://doi.org/10.1016/S0962-4562(03)00048-1
dc.relation.referencesSyafiq, R. M. O., Sapuan, S. M., Zuhri, M. Y. M., Othman, S. H., & Ilyas, R. A. (2022). Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films. Nanotechnology Reviews, 11(1), 423-437. https://doi.org/10.1515/ntrev-2022-0028
dc.relation.referencesSzymanski, S., Longley, R., Hatlen, R. J., Heger, L., Sharma, N., Bonito, G., & Miles, T. D. (2023). The blueberry fruit mycobiome varies by tissue type and fungicide treatment. Phytobiomes Journal, 7(2), 208-219. https://doi.org/10.1094/PBIOMES-04-22-0028-FI
dc.relation.referencesTaghavi, T., Kim, C., & Rahemi, A. (2018). Role of natural volatiles and essential oils in extending shelf life and controlling postharvest microorganisms of small fruits. Microorganisms, 6(4), 104. https://doi.org/10.3390/microorganisms6040104
dc.relation.referencesTang, H., Han, Z., Zhao, C., Jiang, Q., Tang, Y., Li, Y., & Cheng, Z. (2023). Preparation and characterization of Aloe vera polysaccharide-based packaging film and its application in blueberry preservation. Progress in Organic Coatings, 177, 107445. https://doi.org/10.1016/j.porgcoat.2023.107445
dc.relation.referencesTang, X., Alavi, S., & Herald, T. J. (2008). Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74(3), 552-558. https://doi.org/10.1016/j.carbpol.2008.04.022
dc.relation.referencesTaylan, O., Cebi, N., & Sagdic, O. (2021). Rapid screening of mentha spicata essential oil and l-menthol in mentha piperita essential oil by atr-ftir spectroscopy coupled with multivariate analyses. Foods, 10(2), 202. https://doi.org/10.3390/foods10020202
dc.relation.referencesTharanathan, R. N. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology, 14(3), 71-78. https://doi.org/10.1016/S0924-2244(02)00280-7
dc.relation.referencesTorres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & Pérez-Martínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLOS ONE, 12(1), e0170782. https://doi.org/10.1371/journal.pone.0170782
dc.relation.referencesTrombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005
dc.relation.referencesTullio, V., Nostro, A., Mandras, N., Dugo, P., Banche, G., Cannatelli, M. A., Cuffini, A. M., Alonzo, V., & Carlone, N. A. (2007). Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. Journal of Applied Microbiology, 102(6), 1544-1550. https://doi.org/10.1111/j.1365-2672.2006.03191.x
dc.relation.referencesUmagiliyage, A. L., Becerra-Mora, N., Kohli, P., Fisher, D. J., & Choudhary, R. (2017). Antimicrobial efficacy of liposomes containing d -limonene and its effect on the storage life of blueberries. Postharvest Biology and Technology, 128, 130-137. https://doi.org/10.1016/j.postharvbio.2017.02.007
dc.relation.referencesValverde, J. M., Guillén, F., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2005). Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (Map) and eugenol, menthol, or thymol. Journal of Agricultural and Food Chemistry, 53(19), 7458-7464. https://doi.org/10.1021/jf050913i
dc.relation.referencesVargas, O. L. T., Loaiza, Y. V. G., & Agredo, I. A. R. (2024). Development and characterisation of starch/alginate active films incorporated with lemongrass essential oil (cymbopogon citratus). Materials Advances, 5(23), 9417-9427. https://doi.org/10.1039/D4MA00608A
dc.relation.referencesVroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307-344. https://doi.org/10.3390/ma2020307
dc.relation.referencesWang, L., Hu, J., Li, D., Reymick, O. O., Tan, X., & Tao, N. (2022). Isolation and control of Botrytis cinerea in postharvest green pepper fruit. Scientia Horticulturae, 302, 111159. https://doi.org/10.1016/j.scienta.2022.111159
dc.relation.referencesWang, X.-L., Yang, K.-K., & Wang, Y.-Z. (2003). Properties of starch blends with biodegradable polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, 43(3), 385-409. https://doi.org/10.1081/MC-120023911
dc.relation.referencesWilson, C. T., Harte, J., & Almenar, E. (2018). Effects of sachet presence on consumer product perception and active packaging acceptability—A study of fresh-cut cantaloupe. LWT, 92, 531-539. https://doi.org/10.1016/j.lwt.2018.02.060
dc.relation.referencesXu, R., Lin, X., Xu, J., & Lei, C. (2020). Controlling the water absorption and improving the high C-rate stability: A coated Li-ion battery separator using β-cyclodextrin as binder. Ionics, 26(7), 3359-3365. https://doi.org/10.1007/s11581-020-03449-0
dc.relation.referencesYan, H., Wang, R., Ji, N., Li, J., Ma, C., Lei, J., Ba, L., Wen, G., & Long, X. (2023). Regulation of cell wall degradation and energy metabolism for maintaining shelf quality of blueberry by short-term 1-methylcyclopropene treatment. Agronomy, 13(1), 46. https://doi.org/10.3390/agronomy13010046
dc.relation.referencesYang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46-53. https://doi.org/10.1016/j.postharvbio.2014.01.018
dc.relation.referencesYang, N., Zhang, W., Wang, D., Cao, D., Cao, Y., He, W., Lin, Z., Chen, X., Ye, G., Chen, Z., Chen, J., & Wei, X. (2023). A novel endophytic fungus strain of Cladosporium: Its identification, genomic analysis, and effects on plant growth. Frontiers in Microbiology, 14, 1287582. https://doi.org/10.3389/fmicb.2023.1287582
dc.relation.referencesZabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M., Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., & Olivera-Montenegro, L. (2022). Encapsulation of bioactive compounds for food and agricultural applications. Polymers, 14(19), 4194. https://doi.org/10.3390/polym14194194
dc.relation.referencesZaidar, E., Lenny, S., Amaturrahim, S. A., Situmorang, S. A., Sari, J. N., Rahayu, S. U., & Gea, S. (2021). Green plastics based on thermoplastic starch and steam-exploded nanofiber cellulose. Rasayan Journal of Chemistry, 14(02), 1281-1288. https://doi.org/10.31788/RJC.2021.1425929
dc.relation.referencesZaitoon, A., Luo, X., & Lim, L. (2022). Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri‐food products: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 541-579. https://doi.org/10.1111/1541-4337.12874
dc.relation.referencesZhang, J., Zou, F., Tao, H., Gao, W., Guo, L., Cui, B., Yuan, C., Liu, P., Lu, L., Wu, Z., & Fang, Y. (2023). Effects of different sources of cellulose on mechanical and barrier properties of thermoplastic sweet potato starch films. Industrial Crops and Products, 194, 116358. https://doi.org/10.1016/j.indcrop.2023.116358
dc.relation.referencesZhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. https://doi.org/10.1016/j.aiepr.2019.11.002
dc.relation.referencesZhou, Y. J., Zhang, J., Wang, X. D., Yang, L., Jiang, D. H., Li, G. Q., Hsiang, T., & Zhuang, W. Y. (2014). Morphological and phylogenetic identification of Botrytis sinoviticola , a novel cryptic species causing gray mold disease of table grapes (vitis vinifera) in China. Mycologia, 106(1), 43-56. https://doi.org/10.3852/13-032
dc.relation.referencesZiyat, H., Naciri Bennani, M., Hajjaj, H., Qabaqous, O., Arhzaf, S., Mekdad, S., & Allaoui, S. (2020). Adsorption of thymol onto natural clays of morocco: Kinetic and isotherm studies. Journal of Chemistry, 2020, 1-10. https://doi.org/10.1155/2020/4926809
dc.relation.referencesZou, Y., Yuan, C., Cui, B., Sha, H., Liu, P., Lu, L., & Wu, Z. (2021). High-amylose corn starch/konjac glucomannan composite film: Reinforced by incorporating β-cyclodextrin. Journal of Agricultural and Food Chemistry, 69(8), 2493-2500. https://doi.org/10.1021/acs.jafc.0c06648
dc.relation.referencesAgronet. Ministerio de Agricultura. Obtenido de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesFood and Agriculture Organization (FAO). Obtenido de https://www.fao.org/faostat/es/#data/QCL
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocVaccinium corymbosumspa
dc.subject.bneArándanos (Frutas) -- Tecnología poscosechaspa
dc.subject.bneBlueberries -- Postharvest technologyeng
dc.subject.bneTecnología poscosecha -- Control de calidadspa
dc.subject.bnePostharvest technology -- Quality controleng
dc.subject.ddc664.804737
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.decsPlásticos biodegradablesspa
dc.subject.decsBiodegradable plasticseng
dc.subject.lembAlmacenamiento de frutas -- Enfermedades y dañosspa
dc.subject.lembFruit - Storage -- Diseases and injurieseng
dc.subject.lembTecnología de alimentos -- Investigaciones -- Colombiaspa
dc.subject.otherConservación de frutasspa
dc.subject.otherFruit preservationeng
dc.subject.otherEmpaques biodegradablesspa
dc.subject.otherEnvases para productos agricolasspa
dc.subject.otherFarm produce containerseng
dc.subject.otherMateriales compuestos biodegradablesspa
dc.subject.otherBiodegradable composite materialseng
dc.subject.otherPolímeros biodegradablesspa
dc.subject.otherPolymerseng
dc.subject.otherBiodegradable packagingeng
dc.subject.proposalEmpaque activospa
dc.subject.proposalArándanosspa
dc.subject.proposalAlmidón termoplásticospa
dc.subject.proposalBiodegradablespa
dc.subject.proposalAgentes antimicrobianosspa
dc.subject.proposalActive packagingeng
dc.subject.proposalBlueberrieseng
dc.subject.proposalThermoplastic starcheng
dc.subject.proposalAntimicrobial agentseng
dc.subject.proposalBiodegradableeng
dc.subject.unamFrutas -- Almacenamiento -- Técnicaspa
dc.subject.unamFruit -- Storage -- Técnicaeng
dc.subject.wikidataAntimicrobial agenteng
dc.titleDesarrollo de una lámina activa preservante para el empaque de frutos de arándano (Vaccinium corymbosum) en frescospa
dc.title.translatedDevelopment of an active preservative sheet for the packaging of blueberry (Vaccinium corymbosum) fresh fruitseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032507079 - 2025.pdf
Tamaño:
3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: