Desarrollo de una lámina activa preservante para el empaque de frutos de arándano (Vaccinium corymbosum) en fresco
dc.contributor.advisor | Castellanos Espinosa, Diego Alberto | |
dc.contributor.author | Castellanos González, Sofía | |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-09-04T20:24:53Z | |
dc.date.available | 2025-09-04T20:24:53Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | Los arándanos son frutos apetecidos por sus beneficios nutricionales y para la salud, sin embargo, son susceptibles al ataque y proliferación de hongos durante su manejo poscosecha y almacenamiento. En este trabajo se desarrolló una lámina activa compuesta biodegradable con características preservantes para el empaque de frutos de arándano en fresco y se evaluó el efecto de esta lámina en la vida útil y calidad de los frutos. Para esto se inició con la evaluación de diferentes formulaciones a base de almidón de yuca, celulosa microcristalina y β-ciclodextrina, además de aditivos y plastificantes para la obtención de láminas biodegradables mediante procesos de extrusión. Se determinó el porcentaje máximo de inclusión de celulosa y β-ciclodextrina que condujo a un flujo continuo de material moldeado durante la extrusión y a una lámina homogénea. Se evaluaron algunas propiedades físicas y mecánicas de las láminas como color, esfuerzo máximo, módulo de elasticidad y adsorción de agua, y adicionalmente se evaluó la inclusión de dos sustancias preservantes, mentol y d-limoneno, determinando la capacidad de adsorción de estas sustancias en las láminas. La formulación con 10 % de celulosa y 10 % de β-ciclodextrina (p/p) presentó la mejor combinación de propiedades mecánicas y cantidad de sustancia activa adsorbida y fue seleccionada para su evaluación como elemento activo preservante en el empaque de arándanos. Para la evaluación inicial de la capacidad preservante se empacaron arándanos en canastillas de tereftalato de polietileno (PET) macroperforadas (empaque comercial) y microperforadas (atmósfera modificada con oxígeno restringido) con diferentes cantidades de lámina activa incluida dentro del empaque y a dos temperaturas (4 y 20 °C). Dentro de los frutos empacados se colocaron dos unidades inoculadas con microorganismos causantes de deterioro que habían sido previamente aislados de frutos con daño e identificados mediante sus características morfológicas. Durante el tiempo de almacenamiento se realizó un seguimiento de la calidad general de los frutos y los tiempos de vida útil. A partir de los resultados obtenidos se seleccionaron los tratamientos con cantidades de sustancia activa que mostraron mejor desempeño en la preservación de los frutos. Finalmente, se hizo un ensayo de aplicación, en el cual se evaluó el efecto de la inclusión de la lámina con diferentes concentraciones de sustancia activa sobre la vida útil y calidad general de frutos de arándano almacenados a temperaturas de 20 y 4 °C. En este caso se empacaron frutos frescos sin inocular en las mismas dos configuraciones de canastillas perforadas de PET. Se realizó el seguimiento de propiedades fisicoquímicas de los frutos como sólidos solubles totales (SST), acidez total titulable (ATT), pH, firmeza y color, y aceptabilidad sensorial y microbiológica. Se determinó que, para la lámina con mentol adsorbido a una concentración de 0,07 g g-1 en el empaque microperforado de PET, se obtuvieron hasta 23 días de preservación a 20°C y hasta 47 días de preservación a 4 °C respecto a los 14 días a 20 °C y 24 días a 4 °C que se obtuvieron para canastillas macroperforadas sin láminas activas. Los resultados muestran el potencial de un empaque activo combinado integrando atmósferas modificadas y las láminas activas desarrolladas para la preservación de este tipo de frutos durante su comercialización sin requerir cambios mayores en la configuración de los empaques empleados. (Texto tomado de la fuente) | spa |
dc.description.abstract | Blueberries are desired fruits because of their nutritional and health benefits; however, they are susceptible to fungal attack and proliferation during postharvest handling and storage. In this work, a biodegradable composite active film with preservative properties was developed for fresh blueberry fruit packaging, and its effect on shelf life and fruit quality was evaluated. It started with assessing different formulations based on cassava starch, microcrystalline cellulose, and β-cyclodextrin and with additives and plasticizers to obtain biodegradable films through extrusion processes. The maximum inclusion percentage of cellulose and β-cyclodextrin that allowed obtaining a continuous flow of molded material during extrusion and a homogeneous film were determined. Some physical and mechanical properties of the films were evaluated, such as color, máximum tensile stress, modulus of elasticity, and water uptake; in addition, the inclusion of two preservative substances, menthol and d-limonene, was evaluated by determining this substance's adsorption capacity by the films. The formulation with 10% cellulose and 10% β-cyclodextrin (w/w) had the best combination of mechanical properties and amount of active substance adsorbed and was selected for its assessment as an active preservative element for fresh blueberry fruit packaging. For the initial assessment of the preserving capacity, blueberries were packed in polyethylene terephthalate (PET) macroperforated (commercial packaging) and microperforated (modified atmosphere with restricted oxygen) baskets with different amounts of the active film included inside the packaging and at two temperatures (4 and 20 °C). Among the packed fruits, there were two units inoculated with spoilage microorganisms that had been previously isolated from damaged fruits and identified by their morphological characteristics. During the storage time, the general quality and shelf life of the fruits were monitored. From the results obtained, the treatments with active substances that showed the best performance in fruit preservation were selected for the last part of this work. Finally, an application test was performed, in which the effect of the inclusion of a film with different concentrations of active substance on the shelf life and general quality of blueberry fruits stored at temperatures of 20 and 4 °C was evaluated. In this case, non-inoculated fresh fruits were packed in the same configuration of perforated PET baskets. Physicochemical properties of the fruits, such as total soluble solids (TSS), total titratable acidity (TTA), pH, firmness and color, and sensory and microbiological acceptability were monitored. It was determined that, for the menthol-saturated film with a concentration of 0,07 g g-1 at PET microperforated packaging, 23 preservation days at 20 °C and up to 47 preservation days at 4 °C were obtained, compared to 14 days at 20 °C and 24 days at 4 °C obtained for the macroperforated baskets without active film. The results show the potential of an active packaging integrating modified atmospheres with the active films developed for the preservation of this type of fruit during their commercialization without requiring major changes in the configuration of the packaging used. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | |
dc.description.researcharea | Calidad y empaques para alimentos | |
dc.format.extent | 122 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88617 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.relation.references | Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., & Bruna, J. E. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968-975. https://doi.org/10.1016/j.foodchem.2015.10.023 | |
dc.relation.references | Abdullah, A. H. D., Chalimah, S., Primadona, I., & Hanantyo, M. H. G. (2018). Physical and chemical properties of corn, cassava, and potato starchs. IOP Conference Series: Earth and Environmental Science, 160, 012003. https://doi.org/10.1088/1755-1315/160/1/012003 | |
dc.relation.references | Abdullah, A. H. D., Putri, O. D., Fikriyyah, A. K., Nissa, R. C., & Intadiana, S. (2020). Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polymer-Plastics Technology and Materials, 59(12), 1250-1258. https://doi.org/10.1080/25740881.2020.1738465 | |
dc.relation.references | Ahari, H., Golestan, L., Anvar, S. A. A., Cacciotti, I., Garavand, F., Rezaei, A., Sani, M. A., & Jafari, S. M. (2022). Bio-nanocomposites as food packaging materials; the main production techniques and analytical parameters. Advances in Colloid and Interface Science, 310, 102806. https://doi.org/10.1016/j.cis.2022.102806 | |
dc.relation.references | Aktaruzzaman, Md., Afroz, T., Kim, B.-S., & Lee, Y.-G. (2017). Occurrence of postharvest gray mold rot of sweet cherry due to Botrytis cinerea in Korea. Journal of Plant Diseases and Protection, 124(1), 93-96. https://doi.org/10.1007/s41348-016-0049-5 | |
dc.relation.references | Al-Bayati, F. A. (2009). Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq. Annals of Clinical Microbiology and Antimicrobials, 8(1), 20. https://doi.org/10.1186/1476-0711-8-20 | |
dc.relation.references | Almenar, E., Samsudin, H., Auras, R., Harte, B., & Rubino, M. (2008). Postharvest shelf life extension of blueberries using a biodegradable package. Food Chemistry, 110(1), 120-127. https://doi.org/10.1016/j.foodchem.2008.01.066 | |
dc.relation.references | Almenar, E., Samsudin, H., Auras, R., & Harte, J. (2010). Consumer acceptance of fresh blueberries in bio-based packages. Journal of the Science of Food and Agriculture, 90(7), 1121-1128. https://doi.org/10.1002/jsfa.3922 | |
dc.relation.references | Amiri, A., Sourestani, M. M., Mortazavi, S. M. H., Kiasat, A. R., & Ramezani, Z. (2022). Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits. Journal of Food Measurement and Characterization, 16(1), 66-75. https://doi.org/10.1007/s11694-021-01133-z | |
dc.relation.references | Aouay, M., Magnin, A., Lancelon-Pin, C., Putaux, J.-L., & Boufi, S. (2024). Mitigating the water sensitivity of PBAT/TPS blends through the incorporation of lignin-containing cellulose nanofibrils for application in biodegradable films. ACS Sustainable Chemistry & Engineering, 12(29), 10805-10819. https://doi.org/10.1021/acssuschemeng.4c02245 | |
dc.relation.references | Araya, J., Esquivel, M., Jimenez, G., Navia, D., & Poveda, L. (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film & Sheeting, 38(1), 46-71. https://doi.org/10.1177/87560879211023882 | |
dc.relation.references | Asgher, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137, 109625. https://doi.org/10.1016/j.foodres.2020.109625 | |
dc.relation.references | Azevedo, D. M. Q., Martins, S. D. S., Guterres, D. C., Martins, M. D., Araújo, L., Guimarães, L. M. S., Alfenas, A. C., & Furtado, G. Q. (2020). Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biology, 124(11), 940-957. https://doi.org/10.1016/j.funbio.2020.08.002 | |
dc.relation.references | Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. https://doi.org/10.1016/j.carbpol.2016.10.046 | |
dc.relation.references | Azevedo, V. M., Carvalho, R. A., Borges, S. V., Claro, P. I. C., Hasegawa, F. K., Yoshida, M. I., & Marconcini, J. M. (2019). Thermoplastic starch/whey protein isolate/rosemary essential oil nanocomposites obtained by extrusion process: Antioxidant polymers. Journal of Applied Polymer Science, 136(23), 47619. https://doi.org/10.1002/app.47619 | |
dc.relation.references | Banerjee, S., Nayik, G. A., Kour, J. & Nazir, N. (2020). Blueberries. En Nayik, G. A., & Gull, A. (Eds.), Antioxidants in Fruits: Properties and Health Benefits (pp. 593-614). Springer. https://doi.org/10.1007/978-981-15-7285-2 | |
dc.relation.references | Basavegowda, N., & Baek, K.-H. (2021). Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules, 11(9), 1267. https://doi.org/10.3390/biom11091267 | |
dc.relation.references | Basumatary, I. B., Mukherjee, A., Katiyar, V., & Kumar, S. (2022). Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 62(7), 1912-1935. https://doi.org/10.1080/10408398.2020.1848789 | |
dc.relation.references | Bell, S. R., Hernández Montiel, L. G., González Estrada, R. R., & Gutiérrez Martínez, P. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. LWT, 149, 112046. https://doi.org/10.1016/j.lwt.2021.112046 | |
dc.relation.references | Beltrán Sanahuja, A., & Valdés García, A. (2021). New trends in the use of volatile compounds in food packaging. Polymers, 13(7), 1053. https://doi.org/10.3390/polym13071053 | |
dc.relation.references | Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., De Jesús Yáñez-Morales, M., & Crous, P. W. (2015). Common but different: The expanding realm of Cladosporium. Studies in Mycology, 82(1), 23-74. https://doi.org/10.1016/j.simyco.2015.10.001 | |
dc.relation.references | Bodirlau, R., Teaca, C.-A., & Spiridon, I. (2013). Influence of natural fillers on the properties of starch-based biocomposite films. Composites Part B: Engineering, 44(1), 575-583. https://doi.org/10.1016/j.compositesb.2012.02.039 | |
dc.relation.references | Bof, M. J., Laurent, F. E., Massolo, F., Locaso, D. E., Versino, F., & García, M. A. (2021). Bio-packaging material impact on blueberries quality attributes under transport and marketing conditions. Polymers, 13(4), 481. https://doi.org/10.3390/polym13040481 | |
dc.relation.references | Bora, H., Kamle, M., Mahato, D. K., Tiwari, P., & Kumar, P. (2020). Citrus essential oils (Ceos) and their applications in food: An overview. Plants, 9(3), 357. https://doi.org/10.3390/plants9030357 | |
dc.relation.references | Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. Journal of Agricultural and Food Chemistry, 58(7), 3901-3909. https://doi.org/10.1021/jf902263n | |
dc.relation.references | Bugatti, V., Cefola, M., Montemurro, N., Palumbo, M., Quintieri, L., Pace, B., & Gorrasi, G. (2020). Combined effect of active packaging of polyethylene filled with a nano-carrier of salicylate and modified atmosphere to improve the shelf life of fresh blueberries. Nanomaterials, 10(12), 2513. https://doi.org/10.3390/nano10122513 | |
dc.relation.references | Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 | |
dc.relation.references | Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36. https://doi.org/10.1016/j.postharvbio.2017.03.005 | |
dc.relation.references | Cameron, A. C., Beaudry, R. M., Banks, N. H., & Yelanich, M. V. (1994). Modified-atmosphere packaging of blueberry fruit: Modeling respiration and package oxygen partial pressures as a function of temperature. Journal of the American Society for Horticultural Science, 119(3), 534-539. https://doi.org/10.21273/JASHS.119.3.534 | |
dc.relation.references | Cantín, C. M., Minas, I. S., Goulas, V., Jiménez, M., Manganaris, G. A., Michailides, T. J., & Crisosto, C. H. (2012). Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology, 67, 84-91. https://doi.org/10.1016/j.postharvbio.2011.12.006 | |
dc.relation.references | Casalini, S., & Giacinti Baschetti, M. (2023). The use of essential oils in chitosan or cellulose‐based materials for the production of active food packaging solutions: A review. Journal of the Science of Food and Agriculture, 103(3), 1021-1041. https://doi.org/10.1002/jsfa.11918 | |
dc.relation.references | Chen, J., Long, Z., Dou, C., Wang, X., & Meng, Y. (2021). Processing and characterization of thermoplastic corn starch‐based film/paper composites containing microcrystalline cellulose. Journal of the Science of Food and Agriculture, 101(15), 6443-6451. https://doi.org/10.1002/jsfa.11315 | |
dc.relation.references | Chen, J., Wang, X., Long, Z., Wang, S., Zhang, J., & Wang, L. (2020). Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. International Journal of Biological Macromolecules, 165, 2295-2302. https://doi.org/10.1016/j.ijbiomac.2020.10.117 | |
dc.relation.references | Chen, Q., Shi, Y., Chen, G., & Cai, M. (2020). Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (Microcrystalline cellulose)/NCC (Nanocellulose) as strength agent. International Journal of Biological Macromolecules, 142, 846-854. https://doi.org/10.1016/j.ijbiomac.2019.10.024 | |
dc.relation.references | Ciobanu, A., Mallard, I., Landy, D., Brabie, G., Nistor, D., & Fourmentin, S. (2013). Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chemistry, 138(1), 291-297. https://doi.org/10.1016/j.foodchem.2012.10.106 | |
dc.relation.references | Combrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33(2), 344-349. https://doi.org/10.1016/j.indcrop.2010.11.011 | |
dc.relation.references | Concha-Meyer, A., Eifert, J. D., Williams, R. C., Marcy, J. E., & Welbaum, G. E. (2015). Shelf life determination of fresh blueberries (vaccinium corymbosum) stored under controlled atmosphere and ozone. International Journal of Food Science, 1-9. https://doi.org/10.1155/2015/164143 | |
dc.relation.references | Cortés, L. A., Herrera, A. O., & Castellanos, D. A. (2022). Natural plant‐based compounds applied in antimicrobial active packaging and storage of berries. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16995 | |
dc.relation.references | Defilippi, B., Robledo, P. & Becerra, C. (2017). Cosecha y poscosecha. En Manual de manejo agronómico de arándano (pp. 89-97). Instituto de Desarrollo Agropecuario – Instituto de Investigaciones Agropecuarias. | |
dc.relation.references | Deng, J., Shi, Z., Li, X., & Liu, H. (2014). Effects of cold storage and 1-methylcyclopropene treatments on ripening and cell wall degrading in rabbiteye blueberry (vaccinium ashei) fruit. Food Science and Technology International, 20(4), 287-298. https://doi.org/10.1177/1082013213483611 | |
dc.relation.references | Dias, M. V., Sousa, M. M., Lara, B. R. B., De Azevedo, V. M., De Fátima Ferreira Soares, N., Borges, S. V., & Queiroz, F. (2018). Thermal and morphological properties and kinetics of diffusion of antimicrobial films on food and a simulant. Food Packaging and Shelf Life, 16, 15-22. https://doi.org/10.1016/j.fpsl.2018.01.007 | |
dc.relation.references | Duan, Y., Tarafdar, A., Chaurasia, D., Singh, A., Bhargava, P. C., Yang, J., Li, Z., Ni, X., Tian, Y., Li, H., & Awasthi, M. K. (2022). Blueberry fruit valorization and valuable constituents: A review. International Journal of Food Microbiology, 381, 109890. https://doi.org/10.1016/j.ijfoodmicro.2022.109890 | |
dc.relation.references | Li Destri NicosiaEspina, L., Gelaw, T. K., De Lamo-Castellví, S., Pagán, R., & García-Gonzalo, D. (2013). Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE, 8(2), e56769. https://doi.org/10.1371/journal.pone.0056769 | |
dc.relation.references | Falagán, N., Miclo, T., & Terry, L. A. (2020). Graduated controlled atmosphere: A novel approach to increase “duke” blueberry storage life. Frontiers in Plant Science, 11, 221. https://doi.org/10.3389/fpls.2020.00221 | |
dc.relation.references | Ferdousi, J., Hussain, M. I., Saha, S. R., Rob, M., Afroz, T., Pramanik, S., Islam, M. R., & Nath, D. D. (2024). Postharvest physiology of fruits and vegetables and their management technology: A review. The Journal of Animal and Plant Sciences, 34(2), 291-303. https://doi.org/10.36899/JAPS.2024.2.0717 | |
dc.relation.references | Firmanda, A., Fahma, F., Warsiki, E., Syamsu, K., Arnata, I. W., Sartika, D., Suryanegara, L., Qanytah, & Suyanto, A. (2023). Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control, 147, 109617. https://doi.org/10.1016/j.foodcont.2023.109617 | |
dc.relation.references | Forero, A. C., Garavito, J., & Castellanos, D. A. (2023). Evaluation and modeling of acrylonitrile migration from polypropylene for food packaging. Journal of Food Science, 88(12), 4928-4941. https://doi.org/10.1111/1750-3841.16819 | |
dc.relation.references | Garavito, J., Mendoza, S. M., & Castellanos, D. A. (2022). Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. Journal of Food Engineering, 314, 110761. https://doi.org/10.1016/j.jfoodeng.2021.110761 | |
dc.relation.references | Garay, E., Cruz, S., Fernández, S. P., Rodríguez, G. & Gómez, N. (2021). Pathogenic Microorganisms Infecting Berries in Mexico. International Journal of Agriculture and Biology, 25(05), 1007-1015. https://doi.org/10.17957/IJAB/15.1758 | |
dc.relation.references | Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. https://doi.org/10.1016/j.lwt.2018.08.046 | |
dc.relation.references | Gazula, H., Quansah, J., Allen, R., Scherm, H., Li, C., Takeda, F., & Chen, J. (2019). Microbial loads on selected fresh blueberry packing lines. Food Control, 100, 315-320. https://doi.org/10.1016/j.foodcont.2019.01.032 | |
dc.relation.references | Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 112, 442-447. https://doi.org/10.1016/j.ijbiomac.2018.02.007 | |
dc.relation.references | Ghrab, S., Eloussaief, M., Lambert, S., Bouaziz, S., & Benzina, M. (2017). Adsorption of terpenic compounds onto organo-palygorskite. Environmental Science and Pollution Research, 25(19), 18251-18262. https://doi.org/10.1007/s11356-017-9122-2 | |
dc.relation.references | Giacalone, G & Chiabrando, V. (2012). Problems and Methods to Improve the Market-Life of Berry Fruit en Tuberoso, C (Ed.), Berries: Properties, Consumption and Nutrition (pp. 179-169). ISBN 978-1-61470-257-3 | |
dc.relation.references | Giuggioli, N., Girgenti, V., & Peano, C. (2017). Qualitative performance and consumer acceptability of starch films for the blueberry modified atmosphere packaging storage. Polish Journal of Food and Nutrition Sciences, 67(2), 129-136. https://doi.org/10.1515/pjfns-2016-0023 | |
dc.relation.references | González-Reza, R. M., Hernández-Sánchez, H., Zambrano-Zaragoza, M. L., Gutiérrez-López, G. F., Del-Real, A., Quintanar-Guerrero, D., & Velasco-Bejarano, B. (2020). Influence of stabilizing and encapsulating polymers on antioxidant capacity, stability, and kinetic release of thyme essential oil nanocapsules. Foods, 9(12), 1884. https://doi.org/10.3390/foods9121884 | |
dc.relation.references | Gomes, M. H., Beaudry, R. M., Almeida, D. P. F., & Xavier Malcata, F. (2010). Modelling respiration of packaged fresh-cut ‘Rocha’ pear as affected by oxygen concentration and temperature. Journal of Food Engineering, 96(1), 74-79. https://doi.org/10.1016/j.jfoodeng.2009.06.043 | |
dc.relation.references | Gupta, E., & Mishra, P. (2021). Functional food with some health benefits, so called superfood: A review. Current Nutrition & Food Science, 17(2), 144-166. https://doi.org/10.2174/1573401316999200717171048 | |
dc.relation.references | Herrera, A. O., Castellanos, D. A., Mendoza, R., & Patiño, L. S. (2020). Design of perforated packages to preserve fresh produce considering temperature, gas concentrations and moisture loss. Acta Horticulturae, 1275, 185-192. https://doi.org/10.17660/ActaHortic.2020.1275.26 | |
dc.relation.references | Hietala, M., Mathew, A. P., & Oksman, K. (2013). Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, 49(4), 950-956. https://doi.org/10.1016/j.eurpolymj.2012.10.016 | |
dc.relation.references | Houdkova, M., & Kokoska, L. (2020). Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Medica, 86(12), 822-857. https://doi.org/10.1055/a-1158-4529 | |
dc.relation.references | Huynh, N. K., Wilson, M. D., Eyles, A., & Stanley, R. A. (2019). Recent advances in postharvest technologies to extend the shelf life of blueberries (vaccinium sp.), raspberries (rubus idaeus l.)and blackberries (rubus sp.). Journal of Berry Research, 9(4), 687-707. https://doi.org/10.3233/JBR-190421 | |
dc.relation.references | Hwang, H., Kim, Y.-J., & Shin, Y. (2020). Assessment of physicochemical quality, antioxidant content and activity, and inhibition of cholinesterase between unripe and ripe blueberry fruit. Foods, 9(6), 690. https://doi.org/10.3390/foods9060690 | |
dc.relation.references | Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonca, A., Cooper, B., Thomas-Popo, E., Gordon, K., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86(2), 100025. https://doi.org/10.1016/j.jfp.2022.100025 | |
dc.relation.references | Johar, M., Zarkasi, K. Z., Zaini, N. A. M., & Rusli, A. (2023). Enhancement of mechanical, rheological and antifungal properties of polylactic acid/ethylene–vinyl-acetate blend by triacetin plasticizer. Journal of Polymer Research, 30(7), 259. https://doi.org/10.1007/s10965-023-03630-9 | |
dc.relation.references | Jahdkaran, E., Hosseini, S. E., Mohammadi Nafchi, A., & Nouri, L. (2021). The effects of methylcellulose coating containing carvacrol or menthol on the physicochemical, mechanical, and antimicrobial activity of polyethylene films. Food Science & Nutrition, 9(5), 2768-2778. https://doi.org/10.1002/fsn3.2240 | |
dc.relation.references | Johnston, S. (1959). Essentials of Blueberry Culture. Michigan State University, Agricultura State University. | |
dc.relation.references | Ju, J., Chen, X., Xie, Y., Yu, H., Cheng, Y., Qian, H., & Yao, W. (2019). Simple microencapsulation of plant essential oil in porous starch granules: Adsorption kinetics and antibacterial activity evaluation. Journal of Food Processing and Preservation, 43(10). https://doi.org/10.1111/jfpp.14156 | |
dc.relation.references | Kamatou, G. P. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 96, 15-25. https://doi.org/10.1016/j.phytochem.2013.08.005 | |
dc.relation.references | Karam, H. J., Al-Qassimi, M., Al-Wadi, M. H., Al-Rowaih, A. A., Al-Hazza’A, A. S., & Al-Salem, S. M. (2020). Compounding and processing hydro-biodegradable plastic films for plastic waste reduction. Part i: Processing conditions and environmental performance against plastic solid waste. WIT Transactions on Ecology and the Environment, 247, 93–102. https://doi.org/10.2495/WM200091 | |
dc.relation.references | Karnwal, A., & Malik, T. (2024). Exploring the untapped potential of naturally occurring antimicrobial compounds: Novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8, 1307210. https://doi.org/10.3389/fsufs.2024.1307210 | |
dc.relation.references | Khan, B., Bilal Khan Niazi, M., Samin, G., & Jahan, Z. (2016). Thermoplastic starch: A possible biodegradable food packaging material—a review. Journal of Food Process Engineering, 40(3), e12447. https://doi.org/10.1111/jfpe.12447 | |
dc.relation.references | Kłapeć, T., Wójcik-Fatla, A., Farian, E., Kowalczyk, K., Cholewa, G., Cholewa, A., & Dutkiewicz, J. (2022). Mycobiota of berry fruits – levels of filamentous fungi and mycotoxins, composition of fungi, and analysis of potential health risk for consumers. Annals of Agricultural and Environmental Medicine, 29(1), 28-37. https://doi.org/10.26444/aaem/147297 | |
dc.relation.references | Klinmalai, P., Srisa, A., Laorenza, Y., Katekhong, W., & Harnkarnsujarit, N. (2021). Antifungal and plasticization effects of carvacrol in biodegradable poly(Lactic acid) and poly(Butylene adipate terephthalate) blend films for bakery packaging. LWT, 152, 112356. https://doi.org/10.1016/j.lwt.2021.112356 | |
dc.relation.references | Knobloch, K., Pauli, A., Iberl, B., Weigand, H., & Weis, N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1(3), 119-128. https://doi.org/10.1080/10412905.1989.9697767 | |
dc.relation.references | Lan, W., Liang, X., Lan, W., Ahmed, S., Liu, Y., & Qin, W. (2019). Electrospun polyvinyl alcohol/d-limonene fibers prepared by ultrasonic processing for antibacterial active packaging material. Molecules, 24(4), 767. https://doi.org/10.3390/molecules24040767 | |
dc.relation.references | Lan, W., Wang, S., Chen, M., Sameen, D. E., Lee, K., & Liu, Y. (2019). Developing poly(Vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. International Journal of Biological Macromolecules, 145, 722-732. https://doi.org/10.1016/j.ijbiomac.2019.12.230 | |
dc.relation.references | Li Destri Nicosia, M. G., Pangallo, S., Raphael, G., Romeo, F. V., Strano, M. C., Rapisarda, P., Droby, S., & Schena, L. (2016). Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biology and Technology, 114, 54-61. https://doi.org/10.1016/j.postharvbio.2015.11.012 | |
dc.relation.references | Li, Y., Sun, S., Du, C., Xu, C., Zhang, J., Duan, C., & Zhu, Z. (2016). A new disease of mung bean caused by Botrytis cinerea. Crop Protection, 85, 52-56. https://doi.org/10.1016/j.cropro.2016.03.020 | |
dc.relation.references | Li, Y., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., & Tian, J. (2022). Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry, 382, 132312. https://doi.org/10.1016/j.foodchem.2022.132312 | |
dc.relation.references | Lin, Y., Huang, G., Zhang, Q., Wang, Y., Dia, V. P., & Meng, X. (2020). Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biology and Technology, 162, 111097. https://doi.org/10.1016/j.postharvbio.2019.111097 | |
dc.relation.references | Liu, B., Wang, K., Shu, X., Liang, J., Fan, X., & Sun, L. (2019). Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage. Scientia Horticulturae, 246, 557-562. https://doi.org/10.1016/j.scienta.2018.11.042 | |
dc.relation.references | Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., & Li, Y. (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 157, 842-849. https://doi.org/10.1016/j.carbpol.2016.10.067 | |
dc.relation.references | Liu, H., Fu, Y., Li, D., & Xu, W. (2017). Investigation of active map film with menthol on sugar orange preservation. En P. Zhao, Y. Ouyang, M. Xu, L. Yang, & Y. Ouyang (Eds.), Advanced Graphic Communications and Media Technologies (Vol. 417, pp. 643-650). Springer Singapore. https://doi.org/10.1007/978-981-10-3530-2_80 | |
dc.relation.references | Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348-1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001 | |
dc.relation.references | López-de-Dicastillo, C., Gallur, M., Catalá, R., Gavara, R., & Hernandez-Muñoz, P. (2010). Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 353(1-2), 184-191. https://doi.org/10.1016/j.memsci.2010.02.049 | |
dc.relation.references | Luby, J. J., Ballington, J. R., Draper, A. D., Pliszka, K., & Austin, M. E. (1991). Blueberries and cranberries (Vaccinium). Acta Horticulturae, 290, 393-458. https://doi.org/10.17660/ActaHortic.1991.290.9 | |
dc.relation.references | Ma, M., De Silva, D. D., & Taylor, P. W. J. (2020). Black mould of post-harvest tomato (Solanum lycopersicum) caused by Cladosporium cladosporioides in Australia. Australasian Plant Disease Notes, 15(1), 25. https://doi.org/10.1007/s13314-020-00395-8 | |
dc.relation.references | Madrid, M., & Beaudry, R. (2020). Small fruits: Raspberries, blackberries, blueberries. En Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce (pp. 335-346). Elsevier. https://doi.org/10.1016/B978-0-12-804599-2.00020-X | |
dc.relation.references | Mahecha-Rubiano, Y. R., Garavito, J., & Castellanos, D. A. (2024). Configuration of a combined active packaging system with modified atmospheres and antimicrobial control to preserve fresh strawberry fruits. Food Packaging and Shelf Life, 46, 101390. https://doi.org/10.1016/j.fpsl.2024.101390 | |
dc.relation.references | Medina-Jaramillo, C., Estevez-Areco, S., Goyanes, S., & López-Córdoba, A. (2019). Characterization of starches isolated from colombian native potatoes and their application as novel edible coatings for wild andean blueberries(Vaccinium meridionale Swartz). Polymers, 11(12), 1937. https://doi.org/10.3390/polym11121937 | |
dc.relation.references | Mehra, L. K., MacLean, D. D., Savelle, A. T., & Scherm, H. (2013). Postharvest disease development on southern highbush blueberry fruit in relation to berry flesh type and harvest method. Plant Disease, 97(2), 213-221. https://doi.org/10.1094/PDIS-03-12-0307-RE | |
dc.relation.references | Michalska, A., & Łysiak, G. (2015). Bioactive compounds of blueberries: Post-harvest factors influencing the nutritional value of products. International Journal of Molecular Sciences, 16(8), 18642-18663. https://doi.org/10.3390/ijms160818642 | |
dc.relation.references | Mirzaei, S., Goltapeh, E. M., Shams‐Bakhsh, M., & Safaie, N. (2008). Identification of botrytis spp. on plants grown in Iran. Journal of Phytopathology, 156(1), 21-28. https://doi.org/10.1111/j.1439-0434.2007.01317.x | |
dc.relation.references | Mohamad Haafiz, M. K., Eichhorn, S. J., Hassan, A., & Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymers, 93(2), 628-634. https://doi.org/10.1016/j.carbpol.2013.01.035 | |
dc.relation.references | Moleyar, V., & Narasimham, P. (1986). Antifungal activity of some essential oil components. Food Microbiology, 3(4), 331-336. https://doi.org/10.1016/0740-0020(86)90017-1 | |
dc.relation.references | Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795-804. https://doi.org/10.1016/j.ultsonch.2017.12.048 | |
dc.relation.references | Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2017). Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydrate Polymers, 157, 1094-1104. https://doi.org/10.1016/j.carbpol.2016.10.073 | |
dc.relation.references | Morales, C. G. (2017). Requerimientos de suelo y clima. En Manual de manejo agronómico de arándano (pp. 20-22). Instituto de Desarrollo Agropecuario – Instituto de Investigaciones Agropecuarias. | |
dc.relation.references | Mohammadi Nafchi, A., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch - Stärke, 65(1-2), 61-72. https://doi.org/10.1002/star.201200201 | |
dc.relation.references | Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134-144. https://doi.org/10.1016/j.nut.2013.04.007 | |
dc.relation.references | Nunez-Barrios, A., Nesmith, D. S., Chinnan, M., & Prussia, S. E. (2005). Dynamics of rabbiteye blueberry fruit quality in response to harvest method and postharvest handling temperature. Small Fruits Review, 4(2), 73-81. https://doi.org/10.1300/J301v04n02_08 | |
dc.relation.references | Onyeaka, H., Obileke, K., Makaka, G., & Nwokolo, N. (2022). Current research and applications of starch-based biodegradable films for food packaging. Polymers, 14(6), 1126. https://doi.org/10.3390/polym14061126 | |
dc.relation.references | Othman, S. H., Majid, N. A., Tawakkal, I. S. M. A., Basha, R. K., Nordin, N., & Shapi’I, R. A. (2019). Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Science and Technology, 39(3), 605-612. https://doi.org/10.1590/fst.36017 | |
dc.relation.references | Paniagua, A. C., East, A. R., Hindmarsh, J. P., & Heyes, J. A. (2013). Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biology and Technology, 79, 13-19. https://doi.org/10.1016/j.postharvbio.2012.12.016 | |
dc.relation.references | Park, S.-I., Stan, S. D., Daeschel, M. A., & Zhao, Y. (2005). Antifungal coatings on fresh strawberries (Fragaria × ananassa) to control mold growth during cold storage. Journal of Food Science, 70(4), M202-M207. https://doi.org/10.1111/j.1365-2621.2005.tb07189.x | |
dc.relation.references | Paulussen, C., Hallsworth, J. E., Álvarez‐Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H., & Lievens, B. (2017). Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial Biotechnology, 10(2), 296-322. https://doi.org/10.1111/1751-7915.12367 | |
dc.relation.references | Payasi, A., & Sanwal, G. G. (2010). Ripening of climacteric fruits and their control: Control of ripening in fruits. Journal of Food Biochemistry, 34(4), 679-710. https://doi.org/10.1111/j.1745-4514.2009.00307.x | |
dc.relation.references | Pérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). Strategies for microbial decontamination of fresh blueberries and derived products. Foods, 9(11), 1558. https://doi.org/10.3390/foods9111558 | |
dc.relation.references | Polat, İ., Baysal, Ö., Mercati, F., Gümrükcü, E., Sülü, G., Kitapcı, A., Araniti, F., & Carimi, F. (2018). Characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. Infection, Genetics and Evolution, 60, 151-159. https://doi.org/10.1016/j.meegid.2018.02.019 | |
dc.relation.references | Pushpadass, H. A., Marx, D. B., & Hanna, M. A. (2008). Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch - Stärke, 60(10), 527-538. https://doi.org/10.1002/star.200800713 | |
dc.relation.references | Pushpadass, H. A., Marx, D. B., Wehling, R. L., & Hanna, M. A. (2009). Extrusion and characterization of starch films. Cereal Chemistry, 86(1), 44-51. https://doi.org/10.1094/CCHEM-86-1-0044 | |
dc.relation.references | Rashidinejad, A. (2020). Blueberries. En Nutritional Composition and Antioxidant Properties of Fruits and Vegetables (pp. 467-482). Elsevier. https://doi.org/10.1016/B978-0-12-812780-3.00029-5 | |
dc.relation.references | Reis, M. O., Olivato, J. B., Zanela, J., Yamashita, F., & Grossmann, M. V. E. (2017). Influence of microcrystalline cellulose in thermoplastic starch/polyester blown films. Polímeros, 27(2), 129-135. https://doi.org/10.1590/0104-1428.2338 | |
dc.relation.references | Ren, M., Cai, Z., Chen, L., Wahia, H., Zhang, L., Wang, Y., Yu, X., & Zhou, C. (2022). Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation. International Journal of Biological Macromolecules, 223, 1054-1066. https://doi.org/10.1016/j.ijbiomac.2022.11.090 | |
dc.relation.references | Rezaeinia, H., Ghorani, B., Emadzadeh, B., & Mohebbi, M. (2020). Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. Materials Science and Engineering: C, 115, 111115. https://doi.org/10.1016/j.msec.2020.111115 | |
dc.relation.references | Rhim, J.-W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433. https://doi.org/10.1080/10408390600846366 | |
dc.relation.references | Rodriguez, J., & Zoffoli, J. P. (2016). Effect of sulfur dioxide and modified atmosphere packaging on blueberry postharvest quality. Postharvest Biology and Technology, 117, 230-238. https://doi.org/10.1016/j.postharvbio.2016.03.008 | |
dc.relation.references | Rodrigues, R., Patil, S., Dhakane‐Lad, J., Nadanathangam, V., & Mahapatra, A. (2022). Effect of green tea extract, ginger essential oil and nanofibrillated cellulose reinforcements in starch films on the keeping quality of strawberries. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16109 | |
dc.relation.references | Roy, S., & Rhim, J.-W. (2021). Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127220. https://doi.org/10.1016/j.colsurfa.2021.127220 | |
dc.relation.references | Rozenblit, B., Tenenbaum, G., Shagan, A., Corem Salkmon, E., Shabtay-Orbach, A., & Mizrahi, B. (2018). A new volatile antimicrobial agent-releasing patch for preserving fresh foods. Food Packaging and Shelf Life, 18, 184-190. https://doi.org/10.1016/j.fpsl.2018.11.003 | |
dc.relation.references | Ruiz, M. L., Pichardo, S., Maisanaba, S., Puerto, M., Prieto, A. I., Gutiérrez-Praena, D., Jos, A., & Cameán, A. M. (2015). In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review. Food and Chemical Toxicology, 81, 9-27. https://doi.org/10.1016/j.fct.2015.03.030 | |
dc.relation.references | Saffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ingredients and their cyclodextrin inclusion complexes. Food and Bioprocess Technology, 12(7), 1157-1173. https://doi.org/10.1007/s11947-019-02285-z | |
dc.relation.references | Samad, N. B., Debnath, T., Ye, M., Hasnat, Md. A., & Lim, B. O. (2014). In vitro antioxidant and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pacific Journal of Tropical Biomedicine, 4(10), 807-815. https://doi.org/10.12980/APJTB.4.2014C1008 | |
dc.relation.references | Sha, H., Yuan, C., Cui, B., Zhao, M., & Wang, J. (2022). Pre-gelatinized cassava starch orally disintegrating films: Influence of β-Cyclodextrin. Food Hydrocolloids, 123, 107196. https://doi.org/10.1016/j.foodhyd.2021.107196 | |
dc.relation.references | Duarte Sierra, A., & Jha, D. K. (2023). Extending the postharvest life of wild blueberries with proprietary plastic pallet covers. Future Foods, 8, 100277. https://doi.org/10.1016/j.fufo.2023.100277 | |
dc.relation.references | Sikora, J. W., Majewski, Ł., & Puszka, A. (2021). Modern biodegradable plastics—Processing and properties part ii. Materials, 14(10), 2523. https://doi.org/10.3390/ma14102523 | |
dc.relation.references | Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1-3), 107-115. https://doi.org/10.1016/S0141-3910(97)00151-1 | |
dc.relation.references | Singh, G., Bangar, S., Yang, T., Trif, M., Kumar, V., & Kumar, D. (2022). Effect on the properties of edible starch-based films by the incorporation of additives: A review. Polymers, 14(10), 1987. https://doi.org/10.3390/polym14101987 | |
dc.relation.references | Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003 | |
dc.relation.references | Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706. https://doi.org/10.3390/ijms161024673 | |
dc.relation.references | Soković, M., & Van Griensven, L. J. L. D. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116(3), 211-224. https://doi.org/10.1007/s10658-006-9053-0 | |
dc.relation.references | Song, Y., Lee, D. S., & Yam, K. L. (2001). Predicting relative humidity in modified atmosphere packaging system containing blueberry and moisture absorbent. Journal of Food Processing and Preservation, 25(1), 49-70. https://doi.org/10.1111/j.1745-4549.2001.tb00443.x | |
dc.relation.references | Song, Y., Vorsa, N., & Yam, K. L. (2002). Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. Journal of Food Engineering, 53(2), 103-109. https://doi.org/10.1016/S0260-8774(01)00146-7 | |
dc.relation.references | Suvarna, V., Nair, A., Mallya, R., Khan, T., & Omri, A. (2022). Antimicrobial nanomaterials for food packaging. Antibiotics, 11(6), 729. https://doi.org/10.3390/antibiotics11060729 | |
dc.relation.references | Svoboda, K. P. & Greenaway, R. I. (2003). Lemon scented plants. International Journal of Aromatherapy, 13 (1), 23–32. https://doi.org/10.1016/S0962-4562(03)00048-1 | |
dc.relation.references | Syafiq, R. M. O., Sapuan, S. M., Zuhri, M. Y. M., Othman, S. H., & Ilyas, R. A. (2022). Effect of plasticizers on the properties of sugar palm nanocellulose/cinnamon essential oil reinforced starch bionanocomposite films. Nanotechnology Reviews, 11(1), 423-437. https://doi.org/10.1515/ntrev-2022-0028 | |
dc.relation.references | Szymanski, S., Longley, R., Hatlen, R. J., Heger, L., Sharma, N., Bonito, G., & Miles, T. D. (2023). The blueberry fruit mycobiome varies by tissue type and fungicide treatment. Phytobiomes Journal, 7(2), 208-219. https://doi.org/10.1094/PBIOMES-04-22-0028-FI | |
dc.relation.references | Taghavi, T., Kim, C., & Rahemi, A. (2018). Role of natural volatiles and essential oils in extending shelf life and controlling postharvest microorganisms of small fruits. Microorganisms, 6(4), 104. https://doi.org/10.3390/microorganisms6040104 | |
dc.relation.references | Tang, H., Han, Z., Zhao, C., Jiang, Q., Tang, Y., Li, Y., & Cheng, Z. (2023). Preparation and characterization of Aloe vera polysaccharide-based packaging film and its application in blueberry preservation. Progress in Organic Coatings, 177, 107445. https://doi.org/10.1016/j.porgcoat.2023.107445 | |
dc.relation.references | Tang, X., Alavi, S., & Herald, T. J. (2008). Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74(3), 552-558. https://doi.org/10.1016/j.carbpol.2008.04.022 | |
dc.relation.references | Taylan, O., Cebi, N., & Sagdic, O. (2021). Rapid screening of mentha spicata essential oil and l-menthol in mentha piperita essential oil by atr-ftir spectroscopy coupled with multivariate analyses. Foods, 10(2), 202. https://doi.org/10.3390/foods10020202 | |
dc.relation.references | Tharanathan, R. N. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology, 14(3), 71-78. https://doi.org/10.1016/S0924-2244(02)00280-7 | |
dc.relation.references | Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & Pérez-Martínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLOS ONE, 12(1), e0170782. https://doi.org/10.1371/journal.pone.0170782 | |
dc.relation.references | Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005 | |
dc.relation.references | Tullio, V., Nostro, A., Mandras, N., Dugo, P., Banche, G., Cannatelli, M. A., Cuffini, A. M., Alonzo, V., & Carlone, N. A. (2007). Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. Journal of Applied Microbiology, 102(6), 1544-1550. https://doi.org/10.1111/j.1365-2672.2006.03191.x | |
dc.relation.references | Umagiliyage, A. L., Becerra-Mora, N., Kohli, P., Fisher, D. J., & Choudhary, R. (2017). Antimicrobial efficacy of liposomes containing d -limonene and its effect on the storage life of blueberries. Postharvest Biology and Technology, 128, 130-137. https://doi.org/10.1016/j.postharvbio.2017.02.007 | |
dc.relation.references | Valverde, J. M., Guillén, F., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2005). Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (Map) and eugenol, menthol, or thymol. Journal of Agricultural and Food Chemistry, 53(19), 7458-7464. https://doi.org/10.1021/jf050913i | |
dc.relation.references | Vargas, O. L. T., Loaiza, Y. V. G., & Agredo, I. A. R. (2024). Development and characterisation of starch/alginate active films incorporated with lemongrass essential oil (cymbopogon citratus). Materials Advances, 5(23), 9417-9427. https://doi.org/10.1039/D4MA00608A | |
dc.relation.references | Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307-344. https://doi.org/10.3390/ma2020307 | |
dc.relation.references | Wang, L., Hu, J., Li, D., Reymick, O. O., Tan, X., & Tao, N. (2022). Isolation and control of Botrytis cinerea in postharvest green pepper fruit. Scientia Horticulturae, 302, 111159. https://doi.org/10.1016/j.scienta.2022.111159 | |
dc.relation.references | Wang, X.-L., Yang, K.-K., & Wang, Y.-Z. (2003). Properties of starch blends with biodegradable polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, 43(3), 385-409. https://doi.org/10.1081/MC-120023911 | |
dc.relation.references | Wilson, C. T., Harte, J., & Almenar, E. (2018). Effects of sachet presence on consumer product perception and active packaging acceptability—A study of fresh-cut cantaloupe. LWT, 92, 531-539. https://doi.org/10.1016/j.lwt.2018.02.060 | |
dc.relation.references | Xu, R., Lin, X., Xu, J., & Lei, C. (2020). Controlling the water absorption and improving the high C-rate stability: A coated Li-ion battery separator using β-cyclodextrin as binder. Ionics, 26(7), 3359-3365. https://doi.org/10.1007/s11581-020-03449-0 | |
dc.relation.references | Yan, H., Wang, R., Ji, N., Li, J., Ma, C., Lei, J., Ba, L., Wen, G., & Long, X. (2023). Regulation of cell wall degradation and energy metabolism for maintaining shelf quality of blueberry by short-term 1-methylcyclopropene treatment. Agronomy, 13(1), 46. https://doi.org/10.3390/agronomy13010046 | |
dc.relation.references | Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46-53. https://doi.org/10.1016/j.postharvbio.2014.01.018 | |
dc.relation.references | Yang, N., Zhang, W., Wang, D., Cao, D., Cao, Y., He, W., Lin, Z., Chen, X., Ye, G., Chen, Z., Chen, J., & Wei, X. (2023). A novel endophytic fungus strain of Cladosporium: Its identification, genomic analysis, and effects on plant growth. Frontiers in Microbiology, 14, 1287582. https://doi.org/10.3389/fmicb.2023.1287582 | |
dc.relation.references | Zabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M., Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., & Olivera-Montenegro, L. (2022). Encapsulation of bioactive compounds for food and agricultural applications. Polymers, 14(19), 4194. https://doi.org/10.3390/polym14194194 | |
dc.relation.references | Zaidar, E., Lenny, S., Amaturrahim, S. A., Situmorang, S. A., Sari, J. N., Rahayu, S. U., & Gea, S. (2021). Green plastics based on thermoplastic starch and steam-exploded nanofiber cellulose. Rasayan Journal of Chemistry, 14(02), 1281-1288. https://doi.org/10.31788/RJC.2021.1425929 | |
dc.relation.references | Zaitoon, A., Luo, X., & Lim, L. (2022). Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri‐food products: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 541-579. https://doi.org/10.1111/1541-4337.12874 | |
dc.relation.references | Zhang, J., Zou, F., Tao, H., Gao, W., Guo, L., Cui, B., Yuan, C., Liu, P., Lu, L., Wu, Z., & Fang, Y. (2023). Effects of different sources of cellulose on mechanical and barrier properties of thermoplastic sweet potato starch films. Industrial Crops and Products, 194, 116358. https://doi.org/10.1016/j.indcrop.2023.116358 | |
dc.relation.references | Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. https://doi.org/10.1016/j.aiepr.2019.11.002 | |
dc.relation.references | Zhou, Y. J., Zhang, J., Wang, X. D., Yang, L., Jiang, D. H., Li, G. Q., Hsiang, T., & Zhuang, W. Y. (2014). Morphological and phylogenetic identification of Botrytis sinoviticola , a novel cryptic species causing gray mold disease of table grapes (vitis vinifera) in China. Mycologia, 106(1), 43-56. https://doi.org/10.3852/13-032 | |
dc.relation.references | Ziyat, H., Naciri Bennani, M., Hajjaj, H., Qabaqous, O., Arhzaf, S., Mekdad, S., & Allaoui, S. (2020). Adsorption of thymol onto natural clays of morocco: Kinetic and isotherm studies. Journal of Chemistry, 2020, 1-10. https://doi.org/10.1155/2020/4926809 | |
dc.relation.references | Zou, Y., Yuan, C., Cui, B., Sha, H., Liu, P., Lu, L., & Wu, Z. (2021). High-amylose corn starch/konjac glucomannan composite film: Reinforced by incorporating β-cyclodextrin. Journal of Agricultural and Food Chemistry, 69(8), 2493-2500. https://doi.org/10.1021/acs.jafc.0c06648 | |
dc.relation.references | Agronet. Ministerio de Agricultura. Obtenido de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 | |
dc.relation.references | Food and Agriculture Organization (FAO). Obtenido de https://www.fao.org/faostat/es/#data/QCL | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.agrovoc | Vaccinium corymbosum | spa |
dc.subject.bne | Arándanos (Frutas) -- Tecnología poscosecha | spa |
dc.subject.bne | Blueberries -- Postharvest technology | eng |
dc.subject.bne | Tecnología poscosecha -- Control de calidad | spa |
dc.subject.bne | Postharvest technology -- Quality control | eng |
dc.subject.ddc | 664.804737 | |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura | |
dc.subject.decs | Plásticos biodegradables | spa |
dc.subject.decs | Biodegradable plastics | eng |
dc.subject.lemb | Almacenamiento de frutas -- Enfermedades y daños | spa |
dc.subject.lemb | Fruit - Storage -- Diseases and injuries | eng |
dc.subject.lemb | Tecnología de alimentos -- Investigaciones -- Colombia | spa |
dc.subject.other | Conservación de frutas | spa |
dc.subject.other | Fruit preservation | eng |
dc.subject.other | Empaques biodegradables | spa |
dc.subject.other | Envases para productos agricolas | spa |
dc.subject.other | Farm produce containers | eng |
dc.subject.other | Materiales compuestos biodegradables | spa |
dc.subject.other | Biodegradable composite materials | eng |
dc.subject.other | Polímeros biodegradables | spa |
dc.subject.other | Polymers | eng |
dc.subject.other | Biodegradable packaging | eng |
dc.subject.proposal | Empaque activo | spa |
dc.subject.proposal | Arándanos | spa |
dc.subject.proposal | Almidón termoplástico | spa |
dc.subject.proposal | Biodegradable | spa |
dc.subject.proposal | Agentes antimicrobianos | spa |
dc.subject.proposal | Active packaging | eng |
dc.subject.proposal | Blueberries | eng |
dc.subject.proposal | Thermoplastic starch | eng |
dc.subject.proposal | Antimicrobial agents | eng |
dc.subject.proposal | Biodegradable | eng |
dc.subject.unam | Frutas -- Almacenamiento -- Técnica | spa |
dc.subject.unam | Fruit -- Storage -- Técnica | eng |
dc.subject.wikidata | Antimicrobial agent | eng |
dc.title | Desarrollo de una lámina activa preservante para el empaque de frutos de arándano (Vaccinium corymbosum) en fresco | spa |
dc.title.translated | Development of an active preservative sheet for the packaging of blueberry (Vaccinium corymbosum) fresh fruits | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032507079 - 2025.pdf
- Tamaño:
- 3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: