Evaluación de la participación de la proteína YlbF en la formación de biofilm y hemólisis de Staphylococcus aureus y Klebsiella pneumoniae

dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.advisorCorredor Rozo, Zayda Lorena
dc.contributor.authorÁvila Jiménez, Santiago
dc.contributor.researchgroupLaboratorio de Genética molecular bacteriana de la Universidad del Bosquerspa
dc.date.accessioned2023-02-07T15:41:03Z
dc.date.available2023-02-07T15:41:03Z
dc.date.issued2022
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractStaphylococcus aureus y Klebsiella pneumoniae son bacterias reconocidas como patógenas de infecciones intrahospitalarias y comunitarias a nivel mundial. Estas se caracterizan por presentar genes que codifican diferentes factores de adaptación al medio y factores de virulencia como la formación de biofilm y la lisis de eritrocitos, los cuales son controlados por una red compleja de reguladores transcripcionales y ribonucleasas. En Bacillus subtilis se ha demostrado que las proteínas del complejo Y (YlbF, YmcA y YaaT), que se caracterizan por presentar un dominio Com_ylbF, están relacionadas con la regulación de la formación de biofilm, competencia y esporulación. Recientemente, en S. aureus se identificó una proteína con dominio Com_ylbF denominada Qrp (YheA), la cual al ser delecionada del genoma, afecta la formación de biofilm y la hemólisis. S. aureus expresa las proteínas YmcA, YaaT y YlbF, pero a la fecha no se tiene información sobre su participación en la regulación de estos factores de virulencia. Por otra parte, en K. pneumoniae no se han reportado los genes que codifican para estas proteínas, ni la relación que pueden tener con los factores de virulencia, pero se ha encontrado la proteína YlbF en una cepa de esta bacteria. El objetivo de este trabajo fue evaluar la participación de la proteína YlbF en los procesos de hemólisis y formación de biofilm en S. aureus y K. pneumoniae, para ello se realizaron ensayos de deleción (S. aureus) y complementación (K. pneumoniae) de las bacterias con el gen ylbF y se evaluó mediante ensayos de formación de biofilm y ensayos de hemolisis si existía alguna variación en estos procesos al realizar la deleción o complementación de este gen. Se logró realizar la deleción del gen ylbF del genoma de S. aureus y la complementación del gen ylbF en K. pneumoniae y se encontró que las cepas estudiadas presentan una variación en la formación de biofilm y en la hemolisis de eritrocitos cuando se varia la presencia de esta proteína. Esto no indicaría que esta proteína YlbF, perteneciente al complejo Y puede ser de gran importancia para los procesos básicos de colonización y secreción de factores de virulencia por parte de estas bacterias. (Texto tomado de la fuente)spa
dc.description.abstractStaphylococcus aureus and Klebsiella pneumoniae are bacteria recognized as pathogens of nosocomial and community infections worldwide. These are characterized by presenting genes that encode different adaptation factors to the environment and virulence factors such as biofilm formation and erythrocyte lysis, which are controlled by a complex network of transcriptional regulators and ribonucleases. In Bacillus subtilis it has been shown that the proteins of the Y complex (YlbF, YmcA and YaaT), which are characterized by having a Com_ylbF domain, are related to the regulation of biofilm formation, competition, and sporulation. Recently, a protein with a Com_ylbF domain called Qrp (YheA) was identified in S. aureus, which, when deleted from the genome, affects biofilm formation and hemolysis. S. aureus expresses YmcA, YaaT and YlbF proteins, but to date there is no information on their participation in the regulation of these virulence factors. On the other hand, the genes that code for these proteins have not been reported in K. pneumoniae, nor the relationship they may have with virulence factors, but the YlbF protein has been found in a strain of this bacterium. The objective of this work was to evaluate the participation of the YlbF protein in the processes of hemolysis and biofilm formation in S. aureus and K. pneumoniae, for which deletion (S. aureus) and complementation (K. pneumoniae) assays were performed. of the bacteria with the ylbF gene and it was evaluated by means of biofilm formation assays and hemolysis assays if there was any variation in these processes when performing the deletion or complementation of this gene. It was possible to carry out the deletion of the ylbF gene from the S. aureus genome and the complementation of the ylbF gene in K. pneumoniae and it was found that the studied strains present a variation in the formation of biofilm and in the hemolysis of erythrocytes when the presence is varied. of this protein. This would not indicate that this YlbF protein, belonging to the Y complex, may be of great importance for the basic processes of colonization and secretion of virulence factors by these bacteriaeng
dc.description.degreelevelMaestríaspa
dc.description.researchareaGENETICA MOLECULAR BACTERIANAspa
dc.description.researchareaBIOQUIMICAspa
dc.description.researchareaPROTEOMICAspa
dc.description.researchareaEstudio de factores de virulencia bacterianosspa
dc.description.sponsorshipCOLCIENCIASspa
dc.format.extentxx, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83350
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesBryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids. Biotechniques 48, 463–465 (2010).spa
dc.relation.referencesPeters, B. M., Jabra-Rizk, M. A., O’May, G. A., William Costerton, J. & Shirtliff, M. E. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25, 193–213 (2012).spa
dc.relation.referencesMiller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).spa
dc.relation.referencesWaters, C. M. & Bassler, B. L. QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005)spa
dc.relation.referencesArcher, N. K. et al. Staphylococcus aureus biofilms: Properties, regulation and roles in human disease. Virulence vol. 2 445–459 (2011).spa
dc.relation.referencesBalasubramanian, D., Harper, L., Shopsin, B. & Torres, V. J. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis. 75, (2017)spa
dc.relation.referencesChambers, H. F. The changing epidemiology of staphylococcus aureus? in Emerging Infectious Diseases vol. 7 178–182 (Centers for Disease Control and Prevention (CDC), 2001)spa
dc.relation.referencesIwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. nature.com doi:10.1038/nature09074.spa
dc.relation.referencesCervantes-García, E., García-González, R. & María Salazar-Schettino, P. Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab vol. 61 www.medigraphic.com/patologiaclinicawww.medigraphic.org.mx (2014).spa
dc.relation.references. Tumbarello, M. et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 51, 1987–1994 (2007).spa
dc.relation.referencesPaczosa, M. K. & Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 80, 629–661 (2016).spa
dc.relation.referencesBotto, M. et al. Bacterial Biofilms: A Common Cause of Persistent Infections. Annu. Rev. Plant Physiol. Plant Mol. Biol vol. 64 www.sciencemag.org (1998).spa
dc.relation.referencesOtto, M. Staphylococcal Biofilms. in Gram-Positive Pathogens 699–711 (ASM Press, 2019). doi:10.1128/9781683670131.ch43.spa
dc.relation.referencesPiperaki, E. T., Syrogiannopoulos, G. A., Tzouvelekis, L. S. & Daikos, G. L. Klebsiella pneumoniae: Virulence, Biofilm and Antimicrobial Resistance. Pediatr. Infect. Dis. J. 36, 1002–1005 (2017).spa
dc.relation.referencesSoto, S. M. Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches. (2014) doi:10.1155/2014/543974.spa
dc.relation.referencesSowemimo-Coker, S. O. Red blood cell hemolysis during processing. Transfus. Med. Rev. 16, 46–60 (2002).spa
dc.relation.referencesVandenesch, F., Lina, G. & Henry, T. Staphylococcus aureus hemolysins, bicomponent leukocidins, and cytolytic peptides: a redundant arsenal of membranedamaging virulence factors? Frontiers in cellular and infection microbiology vol. 2 12 (2012).spa
dc.relation.referencesCarabetta, V. J. et al. A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. doi:10.1111/mmi.12186.spa
dc.relation.referencesTortosa, P., Albano, M. & Dubnau, D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol. Microbiol. 35, 1110–1119 (2000).spa
dc.relation.referencesAdusei-Dans, F. et al. Structure-function studies of the Bacillus Subtilis RIC proteins identify the Fe-S cluster-ligating residues and their roles in development and RNA processing. MBio 10, (2019).spa
dc.relation.referencesEscobar Pérez, J. A. Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus. (2018)spa
dc.relation.referencesDeLoughery, A., Dengler, V., Chai, Y. & Losick, R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Mol. Microbiol. 99, 425–437 (2016)spa
dc.relation.referencesOhniwa, R. L., Ushijima, Y., Saito, S. & Morikawa, K. Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 6, e19172 (2011).spa
dc.relation.referencesEscobar-Perez, J. et al. Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus. Open Bioinforma. J. 12, 18–29 (2019)spa
dc.relation.referencesDeLoughery, A., Lalanne, J. B., Losick, R. & Li, G. W. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 115, E5585–E5594 (2018).spa
dc.relation.referencesTanner, A. W. et al. The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe4S]2+ clusters and may respond to redox changes. Mol. Microbiol. 104, 837–850 (2017)spa
dc.relation.referencesGheorghe, I., Popa, M. & Gabriela Măruţescu, L. Molecular Features of Virulence and Resistance Mechanisms in Nosocomial and Community-Acquired Staphylococcus aureus. in Staphylococcus Aureus (IntechOpen, 2019). doi:10.5772/intechopen.75191.spa
dc.relation.referencesKluytmans, J., Van Belkum, A. & Verbrugh, H. Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Am Soc Microbiol vol. 10 http://cmr.asm.org/ (1997).spa
dc.relation.referencesChambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology vol. 7 629–641 (2009).spa
dc.relation.referencesKuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Elsevier.spa
dc.relation.referencesValle, J. et al. SarA and not σB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol. 48, 1075–1087 (2003)spa
dc.relation.referencesMartí, M. et al. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect. 12, 55–64 (2010).spa
dc.relation.referencesO’Rourke, J. P. et al. Development of a Mimotope Vaccine Targeting the Staphylococcus aureus Quorum Sensing Pathway. PLoS One 9, e111198 (2014).spa
dc.relation.referencesOtto, M. Staphylococcal biofilms. Current Topics in Microbiology and Immunology vol. 322 207–228 (2008).spa
dc.relation.referencesO’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008).spa
dc.relation.referencesRodriguez Tamayo, E. A. & Quinceno, Jimenez, J. N. Factores relacionados con la colonización por Staphylococcus aureus. 66–77 (2015).spa
dc.relation.referencesYamashita, K. et al. Crystal structure of the octameric pore of staphylococcal γhemolysin reveals the β-barrel pore formation mechanism by two components. Proc. Natl. Acad. Sci. U. S. A. 108, 17314–17319 (2011).spa
dc.relation.referencesCamussone, C. M. & Calvinho, L. F. Virulence factors of Staphylococcus aureus associated with intramammary infections in cows: Relevance and role as immunogens. Rev. Argent. Microbiol. 45, 119–130 (2013)spa
dc.relation.referencesBerube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue. Toxins (Basel). 5, 1140–1166 (2013).spa
dc.relation.referencesOtto, M. & Gov, M. N. Staphylococcus aureus toxins. doi:10.1016/j.mib.2013.11.004.spa
dc.relation.referencesVerdon, J., Girardin, N., Lacombe, C., Berjeaud, J. M. & Héchard, Y. δ-hemolysin, an update on a membrane-interacting peptide. Peptides vol. 30 817–823 (2009).spa
dc.relation.referencesDubnau, E. J. et al. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol. Microbiol. 101, 606–624 (2016).spa
dc.relation.referencesKearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2005).spa
dc.relation.referencesParashar, V., Konkol, M. A., Kearns, D. B. & Neiditch, M. B. A plasmid-encoded phosphatase regulates bacillus subtilis biofilm architecture, sporulation, and genetic competence. J. Bacteriol. 195, 2437–2448 (2013).spa
dc.relation.referencesBranda, S. S. et al. Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).spa
dc.relation.references. Khemici, V., Prados, J., Linder, P. & Redder, P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLOS Genet. 11, e1005577 (2015).spa
dc.relation.referencesBonnin, R. A. & Bouloc, P. RNA Degradation in Staphylococcus aureus: Diversity of Ribonucleases and Their Impact. (2015) doi:10.1155/2015/395753.spa
dc.relation.referencesMarincola, G. et al. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes. Mol. Microbiol. 85, 817–832 (2012).spa
dc.relation.referencesMarincola, G. & Wolz, C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 45, 5980–5994 (2017).spa
dc.relation.referencesAshurst, J. V. & Dawson, A. Klebsiella Pneumonia. StatPearls (2018).spa
dc.relation.referencesLopez Vargas, J. A. & Echeverri Toro, L. M. K. pneumoniae: ¿la nueva “superbacteria”? Patogenicidad, epidemiología y mecanismos de resistencia | Iatreia. https://revistas.udea.edu.co/index.php/iatreia/article/view/11129 (2010).spa
dc.relation.referencesTzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T. & Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 25, 682–707 (2012).spa
dc.relation.referencesVan Duijn, P. J., Dautzenberg, M. J. D. & Oostdijk, E. A. N. Recent trends in antibiotic resistance in European ICUs. Curr. Opin. Crit. Care 17, 658–665 (2011)spa
dc.relation.referencesAndrade, G. et al. Comité Editorial: MENSAJE BIOQUÍMICO. (2020).spa
dc.relation.referencesPodschun, R. & Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603 (1998).spa
dc.relation.referencesClements, A. et al. The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association. PLoS One 3, e3817 (2008).spa
dc.relation.referencesHornick, D. B., Allen, B. L., Horn, M. A. & Clegg, S. Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect. Immun. 60, 1577 (1992).spa
dc.relation.referencesTarkkanen, A. M., Virkola, R., Clegg, S. & Korhonen, T. K. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect. Immun. 65, 1546 (1997).spa
dc.relation.referencesJagnow, J. & Clegg, S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149, 2397–2405 (2003).spa
dc.relation.referencesLangstraat, J., Bohse, M. & Clegg, S. Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect. Immun. 69, 5805–5812 (2001).spa
dc.relation.referencesHornick, D. B., Thommandru, J., Smits, W. & Clegg, S. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect. Immun. 63, 2026–2032 (1995).spa
dc.relation.referencesArnaud, M., Chastanet, A. & Débarbouillé, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004).spa
dc.relation.referencesYansura, D. G. & Henner, D. J. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 81, 439–443 (1984).spa
dc.relation.referencesTran, D. T. M. et al. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microb. Cell Fact. 16, 1–10 (2017).spa
dc.relation.referencesDeloughery, A., Dengler, V., Chai, Y. & Losick, R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Mol. Microbiol. 99, 425–437 (2016).spa
dc.relation.referencesVergara-Irigaray, M. et al. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections †. Infect. Immun. 77, 3978–3991 (2009).spa
dc.relation.referencesGeorge, E. A. & Muir, T. W. Molecular mechanisms of agr quorum sensing in virulent staphylococci. ChemBioChem vol. 8 847–855 (2007).spa
dc.relation.referencesPilar Trotonda, M., Manna, A. C., Cheung, A. L., Lasa, I. & Penadés, J. R. SarA Positively Controls Bap-Dependent Biofilm Formation in Staphylococcus aureus. J. Bacteriol. 187, 5790–5798 (2005)spa
dc.relation.referencesLiu, Q., Yeo, W. S. & Bae, T. The SaeRS two-component system of Staphylococcus aureus. Genes vol. 7 (2016).spa
dc.relation.referencesCharpentier, E. et al. Novel Cassette-Based Shuttle Vector System for GramPositive Bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).spa
dc.relation.referencesJumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583 (2021).spa
dc.relation.referencesPettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).spa
dc.relation.referencesLehnik-Habrink, M., Lewis, R. J., Mäder, U. & Stülke, J. RNA degradation in Bacillus subtilis: An interplay of essential endo- and exoribonucleasesmmi. Mol. Microbiol. 84, 1005–1017 (2012).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembProteinaspa
dc.subject.lembProteineng
dc.subject.lembBacteriaspa
dc.subject.proposalStaphylococcus aureusspa
dc.subject.proposalKlebsiella pneumoniaespa
dc.subject.proposalYlbFspa
dc.subject.proposalBIOFILMeng
dc.subject.proposalHemolisisspa
dc.titleEvaluación de la participación de la proteína YlbF en la formación de biofilm y hemólisis de Staphylococcus aureus y Klebsiella pneumoniaespa
dc.title.translatedEvaluation of the participation of the YlbF protein in the formation of biofilm and hemolysis of Staphylococcus aureus and Klebsiella pneumoniaeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014249157.2022.pdf
Tamaño:
1.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: