Análisis de los intermediarios del ciclo de krebs durante las primeras 6 horas de endotoxemia inducida por lipopolisacárido en un modelo de sepsis porcina.

dc.contributor.advisorDiaztagle Fernández, Juan José
dc.contributor.authorCaicedo Ruiz, Juan Daniel
dc.contributor.orcid0000-0001-6488-806Xspa
dc.date.accessioned2023-10-05T16:00:38Z
dc.date.available2023-10-05T16:00:38Z
dc.date.issued2023-10-02
dc.descriptionilustracionesspa
dc.description.abstractRESUMEN. Introducción: El ciclo de Krebs o ciclo de los ácidos tricarboxilicos (CAT) se considera tradicionalmente como una vía cíclica que opera acoplada a la fosforilación oxidativa. En condiciones de hipoxia se asume que el CAT se encuentra detenido. Sin embargo, la persistencia del funcionamiento del CAT en estados de choque ha sido documentada, así como la “fragmentación” de sus reacciones enzimáticas en modelos animales de hipoxia conllevando a la persistencia de sus reacciones catabólicas. El objetivo de este trabajo es identificar la cinética de los intermediarios del CAT en el plasma durante el choque por endotoxemia en un modelo porcino. Métodos: Estudio experimental, a 9 porcinos se les suministró LPS de E. Coli hasta el desarrollo de choque (PAM<50 mmHg), 3 porcinos se utilizaron como controles. Se obtuvieron muestras de sangre venosa en 3 tiempos: T0: inmediatamente antes del suministro de endotoxina o placebo, T1: 3-horas posterior a su suministro, T2: 6-horas posterior a su suministro. La cuantificación de los intermediarios del CAT, lactato y piruvato en plasma se realizó mediante cromatografía liquida. Como medida de la progresión a la anaerobiosis se utilizó la relación entre lactato y piruvato (L/P). Las diferencias de las medianas de las concentraciones entre T0-T1, T0-T2 y T1-T2 para cada grupo se analizaron con el test de Wilkoxon, igualmente, se analizó la diferencia entre grupo control y grupo endotoxina para cada tiempo. Finalmente, se realizó una regresión lineal univariada entre las concentraciones de los intermediarios del CAT y los valores de lactato. Resultados: En el grupo control el citrato fue el metabolito del CAT predominante en plasma en T2 (180 μmol/L). En contraste, en condiciones de endotoxemia el succinato fue el metabolito mas abundante a nivel plasmatico (783 μmol/L). En el grupo de endotoxemia los únicos metabolitos del CAT que presentaron variaciones significativas fueron: Succinato (T0:370.00 - T1:586.67 - T2:783.33 μmol/L; p<0.05) y citrato (T0:190 - T2: 540 μmol/L; p<0.05). Los demás intermediarios no presentaron variaciones significativas durante la experimentación. La regresión lineal entre los niveles de lactato y succinato obtuvo un coeficiente de determinación de 0.347 (p=0.003). Conclusiones: La elevación reportada en los niveles de succinato y citrato durante el transcurso de nuestro biomodelo de endotoxemia sugiere un incremento de la actividad catabólica a nivel celular. Así mismo, los niveles elevados de succinato se correlacionan de manera parcial con la hiperlactatemia que se observa durante la endotoxemia. (Texto tomado de la fuente)spa
dc.description.abstractSUMMARY. Introduction: The Krebs cycle or tricarboxylic acid cycle (TAC) is traditionally considered as a cyclic pathway that operates coupled to oxidative phosphorylation. Under conditions of hypoxia it is assumed that the TAC is arrested. However, the persistence of TAC function in shock states has been documented, as well as the "fragmentation" of its enzymatic reactions in animal models of hypoxia leading to the persistence of its catabolic reactions. The aim of this work is to identify the kinetics of TAC intermediates in plasma during endotoxemia shock in a swine model. Methods: Experimental study, 9 swine were given LPS of E. coli until the development of shock (MAP<50 mmHg), 3 swine were used as controls. Venous blood samples were obtained at 3 times: T0: immediately before endotoxin or placebo administration, T1: 3-hours after administration, T2: 6-hours after administration. The quantification of TAC intermediates, lactate and pyruvate in plasma was performed by liquid chromatography. The lactate to pyruvate ratio (L/P) was used as a measure of progression to anaerobiosis. The differences in median concentrations between T0-T1, T0-T2 and T1-T2 for each group were analyzed with the Wilkoxon test, as well as the difference between the control group and the endotoxin group for each time. Finally, a univariate linear regression was performed between the concentrations of TAC intermediates and lactate values. Results: In the control group citrate was the predominant TAC metabolite in plasma at T2 (180 μmol/L). In contrast, under endotoxemia conditions succinate was the most abundant metabolite at plasma level (783 μmol/L). In the endotoxemia group the only TAC metabolites that presented significant variations were: succinate (T0:370.00 - T1:586.67 - T2:783.33 μmol/L; p<0.05) and citrate (T0:190 - T2: 540 μmol/L; p<0.05). The other intermediates did not present significant variations during the experimentation. Linear regression between lactate and succinate levels obtained a coefficient of determination of 0.347 (p=0.003). Conclusions: The reported elevation in succinate and citrate levels during the course of our endotoxemia biomodel suggests increased catabolic activity at the cellular level. Likewise, elevated succinate levels correlate partially with the hyperlactatemia observed during endotoxemia.eng
dc.description.degreelevelMaestríaspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84766
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.references1. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019; 321(20): 2003-2017.spa
dc.relation.references2. Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014.JAMA. 2017;318(13):1241- 1249.spa
dc.relation.references3. Rhodes, A., Evans, L.E., Alhazzani, W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: (3) 304-377spa
dc.relation.references4. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-78.spa
dc.relation.references5. Vincent JL, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirovet MY, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA 2019; 321: 1993-2002.spa
dc.relation.references6. Vincent JL. Improved survival in critically ill patients: are large RCTs more useful than personalized medicine? No. Intensive Care Med 2016; 42: 1778-80.spa
dc.relation.references7. Kent DM, Hayward RA. Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification. JAMA. 2007;298(10):1209-1212.spa
dc.relation.references8. Itenov TS, Murray DD, Jensen JUS. Sepsis: personalized medicine utilizing “omic” technologies-a paradigm shift? Healthcare (Basel) 2018; 6:1-9.spa
dc.relation.references9. Langley RJ, Tsalik EL, Velkinburgh JCV, Glickman SW, Rice BJ, Wang C, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med. 2013; 5: 195ra95.spa
dc.relation.references10. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G. et al. Pharmaco-metabonomomic phenotyping and personalized drug treatment. Nature 2006; 440: 1073-7.spa
dc.relation.references11. Van Wyngene L., Vandewalle J., Libert C. (2018). Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol. Med. 10:e8712.spa
dc.relation.references12. Gomez H, Kellum JA, Ronco C. Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 2017; 13: 143-15119.spa
dc.relation.references13. Pool R, Gomez H, Kellum JA. Mechanisms of Organ Dysfunction in Sepsis. Crit Care Clin 2018; 34: 63-80.spa
dc.relation.references14. Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, et al. Mitochondria in Sepsis-Induced AKI. JASN 2019; 30 (7): 1151-1161.spa
dc.relation.references15. Hotchkiss RS, Karl IE. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 1992; 267:1503–1510.spa
dc.relation.references16. Spronk P, Zandstra D, Ince C. Bench-to-bedside review: Sepsis is a disease of the microcirculation Crit Care 2004; 8 (6): 462–68.spa
dc.relation.references17. Nelson DP, Samsel RW, Wood LDH, et al: Pathological supply dependence of systemic and intestinal 02 uptake during endotoxemia. J Appl Physiol. 1988; 64:2410-2419.spa
dc.relation.references18. Ospina-Tascón GA, García Marin AF, Echeverri GJ, Bermudez WF, Madriñan-Navia H, Valencia JD, et al. Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O2 extraction during septic shock. Journal of Applied Physiology. (1985) 2017; 122 (6): 1406-1417.spa
dc.relation.references19. Fink MP. Cytopathic Hypoxia Mitochondrial Dysfunction as Mechanism Contributing to Organ Dysfunction in Sepsis. Crit Care Clin 2001; 17: 219-237spa
dc.relation.references20. Warburg O. The metabolism of carcinoma cells. Cancer Res 1925; 9: 148-163.spa
dc.relation.references21. Srivastava A, Mannam P. Warburg revisited: lessons for innate immunity and sepsis. Front Physiol 2015; 6: 70.spa
dc.relation.references22. Cheng S, Scicluna B, Arts R. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 2016; 17:406-413.spa
dc.relation.references23. Cambiaghi A, Pinto BB, Brunelli L, Falcetta F, Aletti F, Bendjelid K, et al. Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock. Sci Rep. 2017; 7 (1): 9748.spa
dc.relation.references24. Whelan SP, Carchman EH, Kautza B, et al. Polymicrobial sepsis is associated with decreased hepatic oxidative phosphorylation and an altered metabolic profile. J Surg Res 2014; 186:297–303.spa
dc.relation.references25. Waltz P, Carchman E, Gomez H, and Zuckerbraun B. Sepsis results in an altered renal metabolic and osmolyte profile. J Surg Res. 2016; 202: 8-12.spa
dc.relation.references26. Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 2000; 97: 2826–2831.spa
dc.relation.references27. Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? - The critical role of alpha-ketoglutarate dehydrogenase complex. J. Neurosci. Res. 2013; 91: 1030–1043.spa
dc.relation.references28. Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 1966; 211: 493-505.spa
dc.relation.references29. Baldwin JE, Krebs H. the evolution of metabolic cycles. Nature 1981; 291: 381-382.spa
dc.relation.references30. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002; 277:30409-30412.spa
dc.relation.references31. Tannahill, G.M et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013; 496:238-242spa
dc.relation.references32. Koivunen P, Hirsilä M, Remes AM, et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 2007; 282: 4524-4532.spa
dc.relation.references33. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016; 167: 457-470.spa
dc.relation.references34. Chouchani ET, Pell VR, Gaude E, Aksentijevíc D, Sundier SY, Robb EL et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 525: 431-436.spa
dc.relation.references35. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ. Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med. 2014; 42: 1140–1149.spa
dc.relation.references36. Fedotcheva NI, Litvinova EG, Osipov AA, Olenin AY, Moroz VV, et al. Influence of Microbial Metabolites of Phenolic Nature on the Activity of Mitochondrial Enzymes. Biofzika 2015; 60 (6): 1118-1124.spa
dc.relation.references37. Mackenzie IM. The haemodynamics of human septic shock. Anaesthesia 2001; 56: 130-144.spa
dc.relation.references38. Hotchkiss R, et al. Sepsis & Septic Shock. Nature Review 2016; 45 (2): 1-21.spa
dc.relation.references39. Ince C, Mik E. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol 2016; 120: 226-35.spa
dc.relation.references40. Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann. Intensive Care 2017; 7: 117spa
dc.relation.references41. Koutroulis I, Batabyal R, McNamara B, Ledda M, Hoptay C, Freishtat R. Sepsis immunometabolism: from defining sepsis to understanding how energy production affects immune response. Critical Care Explorations 2019; 1 (11):e0061.spa
dc.relation.references42. Andrades M, Spasic M, Spasic S, Spasojević I. Bench to bedside review: Sepsis - from the redox point of view. Crit Care 2011; 15(5): 230.spa
dc.relation.references43. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5: 66–72.spa
dc.relation.references44. Weil M, Afifi A. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (Shock). Circulation 1970; 41: 989-1001.spa
dc.relation.references45. Chertoff J, Chisum M, Garcia B, et al. Lactate kinetics in sepsis and septic shock: a review of the literature and rationale for further research. J Intensive Care. 2015; 3: 39-42.spa
dc.relation.references46. Lee I, Huttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta. 2014; 1842: 1579-1586.spa
dc.relation.references47. D’Alessandro A, Moore HB, Moore EE, Wither M, Nemkov T, Gonzalez E, Slaughter A, Fragoso M, Hansen KC, Silliman CC, et al. Early hemorrhage triggers metabolic responses that build up during prolonged shock. Am J Physiol – Regul Integr Comp Physiol. 2015; 308 (12): R1034–44.spa
dc.relation.references48. Servià L, Jové M, Sol J, Pamplona R, Badia M, Montserrat N, et al. A prospective pilot study using metabolomics discloses specific fatty acid, catecholamine and tryptophan metabolic pathways as possible predictors for a negative outcome after severe trauma. J Scand J Trauma Resusc Emerg Med. 2019; 27 (1): 56.spa
dc.relation.references49. Liu Z, Triba MN, Amathieu R, Lin X, Bouchemal N, Hantz E, et al. Nuclear magnetic resonance-based serum metabolomic analysis reveals different disease evolution profiles between septic shock survivors and non-survivors. Crit. Care. 2019; 23: 169.spa
dc.relation.references50. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Bernard GR, Annane D, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315: 801-810.spa
dc.relation.references51. Silva S, Teboul JL. Defining the adequate arterial pressure target during septic shock: not a “micro” issue but the microcirculation can help. Crit care. 2011; 15:1004.spa
dc.relation.references52. Saugel B, Trepte CJ, Heckel H, Wagner JY, Reuter DA. Hemodynamic management of septic shock: is it time for “individualized goal-directed hemodynamic therapy” and for specifically targeting the microcirculation? Shock 2015. 43 (6): 522-529.spa
dc.relation.references53. Monnet X, Saugel B. Could resuscitation be based on microcirculation data? We are not sure. Intensive Care Med. 2018; 44: 950-953.spa
dc.relation.references54. Ince, C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015; 19: S8spa
dc.relation.references55. Hernandez, G., Teboul J.L. Is the macrocirculation really dissociated from the microcirculation in septic shock? Intensive Care Med 2016; 42:1621-24.spa
dc.relation.references56. Dubin A, Pozo MO, Casabella CA, Palizas F jr; Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 2009; 13 (3): R92spa
dc.relation.references57. De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion. Critical Care 2019; 23 (1): 149.spa
dc.relation.references58. Hotchkiss RS, Rust RS, Dence CS, et al. Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F] fluoromisonidazole. Am J Physiol Regul Integr Comp Physiol 1991; 261: R965–72spa
dc.relation.references59. Groeneveld AB, van Lambalgen AA, van den Bos GC, et al. Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 1991; 25: 80–8spa
dc.relation.references60. Chew MS, Johansson A, Anderson C, Ersson A, et al. Decreases in myocardial glucose and increases in pyruvate but not ischaemia are observed during porcine endotoxaemia. Acta Anaesthesiol Scand 2008; 52: 959–68spa
dc.relation.references61. Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit Care Med 2007; 35: 2408–16.spa
dc.relation.references62. Fink MP. Cytopathic hypoxia and sepsis: is mitochondrial dysfunction pathophysiologically important or just an epiphenomenon. Pediatr Crit Care Med 2015; 16: 89-91.spa
dc.relation.references63. Shoemaker W, Appel P, kram HB, Bishop MH, Abraham E. temporal hemodynamic and oxygen transport patterns in medical patients. Septic Shock. Chest 1993; 1529-36.spa
dc.relation.references64. Elbers PW, Ince C. Bench-to-bedside review: Mechanisms of critical illness – classifying microcirculatory flow abnormalities in distributive shock. Critical Care 2006; 10: 221.spa
dc.relation.references65. Kakihana Y, Ito K, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myiocardial dysfunction: pathophysiology and management. Journal of Intensive Care 2016; 4:22,spa
dc.relation.references66. Marx G, Vangerow B, Burczyk C, Gratz KF, Maassen N, Cobas Meyer M, et al. Evaluation of noninvasive determinants for capillary leakage syndrome in septic shock patients. Intensive Care Med 2000; 26:1252–1258.spa
dc.relation.references67. Magder S, Vanelli G. Circuit factors in the high cardiac output of sepsis. J Crit Care 1996; 11: 155–166.spa
dc.relation.references68. Jianhui L, Rosenblatt-Velin N, Loukili N, Pacher P, Feihl F, Waeber B, et al. Endotoxin impairs cardiac hemodynamics by affecting loading conditions but not by reducing cardiac inotropism. Am J Physiol Heart Circ Physiol 2010; 299: H492–H501. .spa
dc.relation.references69. Groeneveld AB, Nauta JJ, Thijs LG.Peripheral vascular resistance in septic shock: its relation to outcome. Intensive Care Med 1988; 14:141-147.spa
dc.relation.references70. Chan CM, Klinger JR. The Right Ventricle in Sepsis. Clin Chest Med 2008; 29: 661 – 676.spa
dc.relation.references71. Court O, Kumar A, Parrillo JE, et al. Clinical review: Myocardial depression in sepsis and septic shock. Crit Care 2002; 6:500-508.spa
dc.relation.references72. Silva Ramos FJ, Azevedo LC: Hemodynamic and perfusion end points for volemic resuscitation in sepsis. Shock. 2010; 34: 34-39.spa
dc.relation.references73. Marx G, Pedder S, Smith L, Swaraj S, Grime S, Stockdale H, et al. Resuscitation from septic shock with capillary leakage: Hydroxyethyl starch (130 kd), but not Ringer's solution maintains plasma volume and systemic oxygenation. Shock 2004; 21: 336–41.spa
dc.relation.references74. Perner A, Cecconi M, Cronhjort M, Darmon M, Jakob S, Pettila V. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med 2018; 44: 791-798.spa
dc.relation.references75. Parrillo JE, Parker MM, Natanson C, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 1990; 113: 227-242.spa
dc.relation.references76. Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock. Critical Care 2019; 23: 118.spa
dc.relation.references77. De Backer D. Detailing the cardiovascular profile in shock patients. Critical Care 2017; 21 (3): 311.spa
dc.relation.references78. Garcia-Alvarez M, Paul Marik, Rinaldo Bellomo. Sepsis-associated hyperlactatemia. Critical Care 2014; 18: 503-513.spa
dc.relation.references79. Suetrong B, Walley KR. Lactic Acidosis in Sepsis: It’s Not All Anaerobic Implications for Diagnosis and Management. CHEST 2016; 149:252-261spa
dc.relation.references80. Vincent JL, Quintairos A, Couto L, et al. The value of blood lactate kinetics in critically ill patients: a systematic review. Critical Care 2016; 20: 257-270.spa
dc.relation.references81. Dunser M, Takala J, Brunauer A, Bakker J. Rethinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Critical Care 2013; 17 (5): 326spa
dc.relation.references82. Aird WC. Endothelium as an organ system. Crit Care Med 2004; 32: S271-S279.spa
dc.relation.references83. Segal S. Regulation of blood flow in the microcirculation. Microcirculation 2005; 12: 33-45.spa
dc.relation.references84. Davis MJ. Perspective: physiological role(s) of the vascular myogenic response. MicrocirCulation 2012; 19: 99-114.spa
dc.relation.references85. Moore J, Dyson A, Singer M, et al. Microcirculatory dysfunction and resuscitation: why, when, and how. British Journal of Anaesthesia 2015: 366–75spa
dc.relation.references86. Chen K, Popel AS. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med 2006; 41: 668-80.spa
dc.relation.references87. Trzeciak S, Cinel I, Phillip Dellinger R, et al. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med 2008; 15: 399-413.spa
dc.relation.references88. De Backer D, Ospina-Tascon G, Salgado D, et al. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 2010; 36: 1813 – 1825.spa
dc.relation.references89. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26.spa
dc.relation.references90. Price SA, Spain DA, Wilson MA, Harris PD, Garrison RN. Subacute sepsis impairs vascular smooth muscle contractile machinery and alters vasoconstrictor and dilator mechanisms. J Surg Res 1999; 83: 75–80.spa
dc.relation.references91. Marechal X, Favory R, Joulin O, et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008; 29: 572-576.spa
dc.relation.references92. Eichelbrönner O, Sielenkämper A, Cepinskas G, Sibbald WJ, ChinYee IH. Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 2000; 28: 1865–70.spa
dc.relation.references93. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369 –1377, 1999.spa
dc.relation.references94. Hernandez G, Bruhn A, Ince C. Microcirculation in sepsis: new perspectives. Curr Vasc Pharmacol 2013; 11: 161–69.spa
dc.relation.references95. Trzeciak S, McCoy JV, Phillip Dellinger R. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 2008; 34: 2210-2217.spa
dc.relation.references96. Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30: 623–27.spa
dc.relation.references97. Bateman RM, Sharpe MD, Jagger JE, et al. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care 2015. 19: 389.spa
dc.relation.references98. Borutaite V, Matthias A, Harris H, et al. Reversible inhibition of cellular respiration by nitric oxide in vascular inflammation. Am J Physiol Heart Circ Physiol 2001; 281: H2256 –H2260.spa
dc.relation.references99. Bateman RM, Sharpe MD, Ellis CG. Microvascular dysfunction in sepsis— hemodynamics, oxygen transport, and nitric oxide. Crit Care 2003; 7: 359 –73.spa
dc.relation.references100. Marik PE. The demise of early goal directed therapy for severe sepsis and septic shock. Acta Anaesthesiol Scand 2015; 59: 561-567.spa
dc.relation.references101. Singer M, De Santis V, Vitale D, et al. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 2004; 364: 545-8.spa
dc.relation.references102. Hotchkiss RS, Swanson PE, Freeman BD, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27:1230-1251.spa
dc.relation.references103. VanderMeer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 1995; 23: 1217-1226.spa
dc.relation.references104. Sair M, Etherington PJ, Winlove CP, et al. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 2001; 29: 1343 -1349.spa
dc.relation.references105. Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med 2007; 35: 441-448spa
dc.relation.references106. Schumacker PT, Chandel N, Agusti AG. Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol Lung Cell Mol Physiol 1993; 265: 395- 400.spa
dc.relation.references107. Brealey D, Karyampudi S, Jacques TS, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. American Journal of Physiology—Regulatory Integrative and Comparative Physiology 2004; 286: 491-497.spa
dc.relation.references108. Levy RJ. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock. 2007; 28: 24–28.spa
dc.relation.references109. Carré, J.E. & Singer, M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta 2008; 1777:763–771.spa
dc.relation.references110. Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care 2002; 6: 491–99.spa
dc.relation.references111. Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D, Brody EN. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment? Redox Rep 2015; 20: 193-197.spa
dc.relation.references112. Levy B, Desebbe O, Montemont C, et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 2008; 30: 417-21.spa
dc.relation.references113. Robergs R, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: 502-516.spa
dc.relation.references114. Crouser ED, Julian MW, Blaho DV, Pfeiffer DR. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002; 30: 276–284.spa
dc.relation.references115. Eyenga P, Roussel D, Morel J, et al. Early septic shock induces loss of oxidative phosphorylation yield plasticity in liver mitochondria. J Physiol Biochem 2014; 70: 285-296spa
dc.relation.references116. Taylor DE, Ghio AJ, Piantadosi CA. Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch Biochem Biophys. 1995; 316: 70-76.spa
dc.relation.references117. Galley H. F. Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia. 2011; 107: 57–64.spa
dc.relation.references118. Levy RJ, Deutschman CS. Deficient mitochondrial biogenesis in critical illness: cause, effect, or epiphenomenon? Crit Care. 2007; 11: 158-159spa
dc.relation.references119. Chaudry IH, Wichterman KA, Baue AE. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979; 85: 205-211.spa
dc.relation.references120. Hotchkiss RS, Morikawa S, Inubushi T, et al. Gluconeogenesis and phosphoenergetics in rat liver during endotoxemia. J Surg Res. 1998; 74: 179-186.spa
dc.relation.references121. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002. 360: 219-23.spa
dc.relation.references122. Frayn KN, et al. Metabolic regulation. A human perspective. 3rd edn. 2010. Oxford: Willey Blackwell, 2010.spa
dc.relation.references123. Alberts B, et al. Molecular Biology of the Cell. 6th edn. 2015. New York. Taylor & Francis Group: Garland Science, 2015.spa
dc.relation.references124. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77: 731-758.spa
dc.relation.references125. Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry 6th edn 2010. New York. Worth Publishers, 2010.spa
dc.relation.references126. Nalos M, Robergs R. Underestanding hyperlactatemia in human sepsis: Are we there yet?. Am J Respir Crtic Care Med 2019; 200: 1069-70.spa
dc.relation.references127. Corrêa TD, Jakob SM, Takala J. Mitochondrial function in sepsis. Crit Care Horizons. 2015; 1: 31-41.spa
dc.relation.references128. Solaini G, Baracca A, Lenaz G, et al. Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta 2010; 1797: 1171–1177.spa
dc.relation.references130. Duke T. Dysoxia and lactate. Archives of Disease in Childhood 1999; 81: 343-350.spa
dc.relation.references131. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447-5454.spa
dc.relation.references132. Hochachka PW, Somero GN. Biochemical Adaptations. Mechanisms and Process 1st edn 1983. Princeton NJ, Princeton Univ Press 1983.spa
dc.relation.references133. Hochachka PW. Oxygen, homeostasis, and metabolic regulation. Adv Exp Med Biol 2000; 475: 311-335.spa
dc.relation.references134. Zhang JZ., Behrooz A., Ismail-Beigi F. Regulation of glucose transport by hypoxia. American Journal of Kidney Diseases 1999; 34 (1): 189-202.spa
dc.relation.references135. Greijer A, van der Groep P, Kemming D, Shvarts A, Semenza G, Meijer G, et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). The Journal of Pathology 2005; 206(3): 291–304.spa
dc.relation.references136. Lum JJ, Bui T, Gruber M, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21: 1037-1049.spa
dc.relation.references137. Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-185.spa
dc.relation.references138. Viollet B, Athea Y, Mounier R, et al. AMPK: lessons from transgenic and knockout animals. Front Biosci Review 2009; 14: 19-44.spa
dc.relation.references139. Chandel NS, E. Maltepe E, Goldwasser E, et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998; 95: 11715-11720.spa
dc.relation.references140. Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314.spa
dc.relation.references141. Bar-Or D, Carrick M, Tanner A, et al. Overcoming the Warburg Effect: Is it the key to survival in sepsis? J Crit Care 2018; 43:197-201.spa
dc.relation.references142. Ganeshan K, Ajay Chawla A. Metabolic Regulation of Immune Responses. Annual Review of Immunology. 2014; 32:1, 609-634.spa
dc.relation.references143. Staples JF. Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 2014; 217:2032-2036.spa
dc.relation.references144. Senyilmaz D, Teleman AA. Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep 2015; 7: 41-47spa
dc.relation.references145. Carré JE, Orban J-C, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010; 182: 745-51.spa
dc.relation.references146. Kim V, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-185.spa
dc.relation.references147. Handzlik MK, Constantin-Teodosiu D, Greenhaff PL, et al. Increasing cardiac pyruvate dehydrogenase flux during chronic hypoxia improves acute hypoxic tolerance. J Physiol 2018; 596 (15): 3357-3369.spa
dc.relation.references148. Nuzzo E, Berg KM, Andersen LW. Pyruvate Dehydrogenase Activity Is Decreased in the Peripheral Blood Mononuclear Cells of Patients with Sepsis - A Prospective Observational Trial. Ann Am Thorac Soc 2015; 12 (11):1662-6.spa
dc.relation.references149. Cooper CE, Giulivi C. Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology. Am. J. Physiol. Cell Physiol 2007. 292: 1993–2003.spa
dc.relation.references150. Galkin A, Abramov AY, Frakich N, et al. Lack of oxygen deactivates mitochondrial Complex I: implications for ischemic injury? J Biol Chem 2009. 284: 36055–36061.spa
dc.relation.references151. Forget AP, Mangalaboyi J, Mordon S, et al. Escherichia coli endotoxin reduces cytochrome aa3 redox status in pig skeletal muscle. Crit Care Med 2000; 28: 3491-3497.spa
dc.relation.references152. Barth E, Radermacher P, Thiemermann C, et al. Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit Care Med 2006; 34: 307-313.spa
dc.relation.references153. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab 2009; 7: 332-340.spa
dc.relation.references154. Haisch M, Fukagawa NK, Matthews DE. Oxidation of glutamine by the splanchnic bed in humans. Am J Physiol Endocrinol Metab 2000; 278: 593-602.spa
dc.relation.references155. Owen OE, Smalley KJ, D’Alessio DA, et al. Protein, fat, and carbohydrate requirements during starvation: anaplerosis and cataplerosis. The American Journal of Clinical Nutrition 1998; 68: 12-34.spa
dc.relation.references156. Meléndez-Hevia E, Waddell TG. Cascante M.The puzzle of the Krebs citric acid cycle: Assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. J Mol Evol 1996; 43: 293-303.spa
dc.relation.references157. Martin W, Muller M. The hydrogen hypothesis for the first eukaryote. Nature 1998; 392: 37-41spa
dc.relation.references158. Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 1966; 211: 493-505spa
dc.relation.references159. D’Alessandro A, Slaughter AL, Peltz ED, et al. Trauma/hemorrhagic shock instigates aberrant metabolic flux through glycolytic pathways, as revealed by preliminary 13C-glucose labeling metabolomics. J Transl Med 2015; 13: 253-265.spa
dc.relation.references160. Randle PJ, England PJ, Denton RM.Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J 1970; 117: 677-695.spa
dc.relation.references161. Guynn RW, Gelberg HJ & Veech RL. Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J. Biol. Chem. 1973; 248: 6957–6965.spa
dc.relation.references162. Cooney GJ, Taegtmeyer H, Newsholme EA. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J 1981; 200: 701-703.spa
dc.relation.references163. Hochachka PW, Dressendorfer RH. Succinate accumulation in man during exercise. Eur J Appl Physiol Occup Physiol 1976. 35: 235-242.spa
dc.relation.references164. Sanborn T, Gavin W, Berkowitz S, et al. Augmented conversion of aspartate and glutamate to succinate during anoxia in rabbit heart. Am J Physiol 1979; 237: H535-H541.spa
dc.relation.references165. Shi Q, Gibson GE. Upregulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem 2011; 118: 440-448.spa
dc.relation.references166. Des Rosiers C, Fernandez CA, David F, Brunengraber H. Reversibility of the mitochondrial isocitrate dehydrogenase reaction in the perfused rat liver. Evidence from isotopomer analysis of citric acid cycle intermediates. J Biol Chem 1994; 269: 27179-27182.spa
dc.relation.references167. Comte B, Vincent G, Bouchard B, Benderdour M, Des Rosiers C. Reverse flux through cardiac NADP1-isocitrate dehydrogenase under normoxia and ischemia. Am J Physiol Heart Circ Physiol 2002; 283: H1505-H1514.spa
dc.relation.references168. Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385-388.spa
dc.relation.references169. Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry 2009; 48: 7140-7149.spa
dc.relation.references170. Siegel JH, Cerra FB, Coleman B, et al. Physiologic and metabolic correlations in human sepsis. Surgery 1979; 85:163.spa
dc.relation.references171. Cerra FB, Siegel JH, Coleman B, et al. Septic autocannibalism a failure of exogenous nutritional support. Ann Surg 1980; 192: 570-579.spa
dc.relation.references172. Infantino V, Convertini P, Cucci L, et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 2011; 438: 433–436.spa
dc.relation.references173. Infantino V, Iacobazzi V, Menga A, et al. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochimica et biophysica acta 2014; 1839:1217-1225.spa
dc.relation.references174. Cimen H, Han MJ, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010; 49: 304-311.spa
dc.relation.references175. Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol 2014; 24:313-320.spa
dc.relation.references176. Rubic T, Lametschwandtner G, Hinteregger S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 2008; 9: 1261-1269.spa
dc.relation.references177. Zhang Z1, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011; 7: 58-63.spa
dc.relation.references178. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF- prolylhydroxylase. Cancer Cell 2005;7: 77-85.spa
dc.relation.references179. Reisz JA, Wither MJ, Moore EE, Slaughter AL, Moore HB, Ghasabyan A, et al. All animals are equal but some animals are more equal than others: plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. J Trauma Acute Care Surg. 2018;84(3):537–41.spa
dc.relation.references180. Hatib F, Jansen JRC, Pinsky MR. Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol. 2011; 111:853–60.spa
dc.relation.references181. Parkin WG, Leaning MS. Therapeutic control of the circulation. J Clin Comput Monit. 2008; 22:391.spa
dc.relation.references182. Forni LG, McKinnon W, Lord GA, et al. Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care. 2005; 9: R591-R595.spa
dc.relation.references183. McKinnon W, Lord GA, Forni LG, et al: A rapid LC-MS method for determination of plasma anion profiles of acidotic patients. J Chromatogr 2006, B833: 179-185.spa
dc.relation.references184. Shurubor YI, Cooper AJ, Isakova EP, Deryabina YI, Beal MF, Krasnikov BF. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection. Analytical Biochemistry. 2017; 503: 8-10.spa
dc.relation.references185. Mycielska ME, Patel A, Rizaner A, Mazurek MP, Keun H, Patel A, et al. Citrate transport and metabolism in mammalian cells: prostate epithelial cells and prostate cancer. Bioessays 2009; 31 (1): 10–20.spa
dc.relation.references186. Dabek M, Kruszewska D, Filip R, Hotowy A, Pierzynowski L, Wojtasz-Pajak A, et al. Alpha-Ketoglutarate (AKG) absorption from pig intestine and plasma pharmacokinetics. J. Anim. Physiol. Anim. Nutr. 2005; 89: 419–426.spa
dc.relation.references187. Hofmann GF, Meier-Augenstein W, Stöckler S, Surtees R, Rating D, Nyhan WL. Physiology and pathophysiology of organic acids in cerebrospinal fuid. Journal of Inherited Metabolic Disease 1993; 16 (4): 648–669.spa
dc.relation.references188. Mongan, PD, Fontana, JL, Chen, R, Bünger, R. Intravenous pyruvate prolongs survival during hemorrhagic shock in swine. Am J Physiol Heart Circ Physiol 1999; 277: H2253–63.spa
dc.relation.references189. Hofmaier F., Dinger K., Braun R., Sterner-Kock A. Range of blood lactate values in farm pigs prior to experimental surgery. Lab. Anim. 2013; 47: 130–132.spa
dc.relation.references190. Jakob SM, Suistomaa M, Takala J. Lactate, Lactate/Pyruvate Ratio, Low Tissue Perfusion and Outcome. En: Vincent JL editor, Yearbook of Intensive Care and Emergency Medicine 2001. Berlin, Heidelberg: Springer; 2001:268-277.spa
dc.relation.references191. Hess M, Hastillo A, Greenfield L. Spectrum of cardiovascular function during gram negative sepsis. Progress in cardiovascular diseases. 1980;23(4):279-289spa
dc.relation.references192. Pinsky M Rico P. Cardiac Contractility Is Not Depressed in Early Canine Endotoxic Shock. Am. J. Respir. 1999; 161:4spa
dc.relation.references193. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J. Surg. Res. 1990; 49: 186–196.spa
dc.relation.references194. Schmidhammer R, Wassermann E, Germann P, Redl H, Ullrich R. Infusion of increasing doses of endotoxin induces progressive acute lung injury but prevents early pulmonary hypertension in pigs. Shock 2006;25(4):389-94.spa
dc.relation.references195. Houser B, Vogt J, Wachter U, Brückner UB, Fink MP. Ethyl pyruvate improves systemic and hepatosplanchnic hemodynamics and prevents lipid peroxidation in a porcine model of resuscitated hyperdynamic endotoxemia. Crit Care Med 2005;33(9):2034-42.spa
dc.relation.references196. Cunha-Goncalves, Perez-de-sa V. Inotropic support during experimental endotoxemic shock: part I. The effects of levosimendan on splanchnic perfusion. Anesth Analg 2009;109(5):1568-75.spa
dc.relation.references197. Udhoji VN, Weil MH. Hemodynamic and metabolic studies on shock associated with bacteremia. Ann Intern Med. 1985; 62: 966-978.spa
dc.relation.references198. van Genderen, J De Jonge, Visser SS, Voorbeijtel J. Microvascular Perfusion as a Target for Fluid Resuscitation in Experimental Circulatory Shock. Crit Care Med 2014;42(2):e96-e105.spa
dc.relation.references199. Byrne L, Obonyo NG, Diab S, Dunster K, Passmore M. An ovine model of hyperdynamic endotoxemia and vital organ metabolism. Shock 2018;49(1):99-107.spa
dc.relation.references200. Cunha-Goncalves Perez-de-sa V. Inotropic support during experimental endotoxemic shock: part II. A comparison of levosimendan with dobutamine Anesth Analg 2009 Nov;109(5):1576-83.spa
dc.relation.references201. Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin JJ, Parrillo JE. Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am J Physiol. 1988; 254: H558-H569.spa
dc.relation.references202. Shoemaker WC. Cardiorespiratory patterns in complicated uncomplicated septic shock. Ann Surg. 1971; 174: 119-125.spa
dc.relation.references203. Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest. 1986;78(1):259-270.spa
dc.relation.references204. Chittock DR, Ronco JJ, Rusell JA. Monitoring of oxygen transport and oxygen consumption. En: Tobin JM editor, Principles and practice of intensive care monitoring. New York: McGraw-Hill; 1998. 317-344.spa
dc.relation.references205. Chemla D, Coirault C, Hebert JL, Lecarpentier Yves. Mechanics of relaxation of the human heart. Physiology 2000; 15: 2: 78-83.spa
dc.relation.references206. Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med 1987; 13: 223–9.spa
dc.relation.references207. Friedman G, De Backer D, Shahla M, Vincent JL. Oxygen supply dependency can characterize septic shock Intensive Care Medicine 1998; 24 (2): 118–123.spa
dc.relation.references208. Walley KR. Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol 1996; 81: 885–894.spa
dc.relation.references209. Grist G. Oxygen pressure field theory: a detailed description of vital gas exchange, at the capillary level for perfusionist. Progress in Pediatric Cardiology; 24 (2): 89-99spa
dc.relation.references210. Donati A, Damiani E, Domizi R, Romano R, Adrario E, Pelaia P, et al. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res. 2013; 90: 86-89.spa
dc.relation.references211. Siegemund M, van Bommel J, Schwarte LA, Studer W, Girard T, Marsch S, Radermacher P, Ince C. Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 2005; 31: 985–992,spa
dc.relation.references212. Stratton HH, Feustel PJ, Newell JC: Regression of calculated variables in the presence of shared measurement error. J Appl Physiol. 1987; 62: 2083-2093.spa
dc.relation.references213. Ronco JJ, Phang PT, Walley KR, et al: Oxygen consumption is independent of changes in oxygen delivery in severe adult respiratory distress syndrome. Am Rev Respir Dis. 1991; 143:1267-1273.spa
dc.relation.references214. Vincent JL, Roman A, De Backer D, Kahn RJ. Oxygen uptake/supply dependency: effects of short-term dobutamine infusion. Am Rev Respir Dis. 1990; 142: 2–8.spa
dc.relation.references215. Liu MS, GF Kang. Liver glycogen metabolism in endotoxin shock. I. Endotoxin administration decreases glycogen synthase activities in dog livers. Biochem. Med. Metab. Biol 1987; 37: 61–72.spa
dc.relation.references216. van der Crabben SN, Blümer RM, Stegenga ME, Ackermans MT, Endert E, Tanck MW, et al. Early endotoxemia increases peripheral and hepatic insulin sensitivity in healthy humans. J Clin Endocrinol Metab. 2009 Feb; 94 (2): 463-8.spa
dc.relation.references217. Hagar JA, Edin ML, Lih FB, Thurlow LR, Koller BH, Cairns BA, et al. Lipopolysaccharide potentiates insulin-driven hypoglycemic shock. The Journal of Immunology. 2017; 199 (10): 3634-3643.spa
dc.relation.references218. Breadley D, Singer M. Hyperglicemia in critical illness: A review J Diabetes Sci Technol 2009; 3 (6):1250-1260.spa
dc.relation.references219. Kvidera SK, Horst EA, Mayorga EJ, Sanz-Fernandez MV, Abuajamieh M, Baumgard LH. Estimating glucose requirements of an activated immune system in growing pigs. J Anim Sci. 2017; 11: 5020-5029.spa
dc.relation.references220. Raetzsch CF, Brooks NL, Alderman JM, Moore KS, Hosick PA, Klebanov S, et al. Lipopolysaccharide inhibition of glucose production through the Toll-like receptor-4, myeloid differentiation factor 88, and nuclear factor kappa b pathway Hepatology 2009; 50: 592–600.spa
dc.relation.references221. Tanaka H, Nishikawa Y, Fukushima T, Taniguchi A, Fujita Y, Tsuda K, et al. Lipopolysaccharide inhibits hepatic gluconeogenesis in rats: The role of immune cells. Journal of diabetes investigation 2017; 9 (3): 494–504.spa
dc.relation.references222. Lv S, Qiu X, Li J, Li W, Zhang C, Zhang ZN et al. Suppression of CRTC2-mediated hepatic gluconeogenesis by TRAF6 contributes to hypoglicemia in septic shock. Cell Discov 2016; 2: 16046.spa
dc.relation.references223. Clendenen N, Nunns GR, Moore EE, Reisz JA, Gonzalez E, Peltz E, et al. Hemorrhagic shock and tissue injury drive distinct plasma metabolome derangements in swine. J Trauma Acute Care Surg. 2017; 83(4): 635–642.spa
dc.relation.references224. Varvarousis D, Xanthos T, Ferino G, Noto A, Iacovidou N, Mura M, Scano P, Chalkias A, Papalois A, De-Giorgio F, Baldi A, Mura P, Staikou C, Stocchero M, Finco G, d'Aloja E, Locci E. Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci Rep 2017; 7:16575.spa
dc.relation.references225. Solberg R, Enot D, Deigner HP, Koal T, Scholl-Bürgi S, Saugstad OD,Matthias K. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS One. 2010; 5: e9606.spa
dc.relation.references226. Chinopoulos C. Succinate in ischemia: Where does it come from? Int J Biochem Cell Biol. 2019; 115:105580.spa
dc.relation.references227. Lukyanova LD, Kirova YI, Germanova, EL. The Role of Succinate in Regulation of Immediate HIF-1α Expression in Hypoxia. Bulletin of Experimental Biology and Medicine, 2018; 164(3): 298–303.spa
dc.relation.references228. Zhang J, Wang YT, MillerJH, DayMM, Munger JC, Brookes PS. Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell Rep. 2018; 23: 2617 - 2628.spa
dc.relation.references229. Hunter FE. Anaerobic phosphorylation due to a coupled oxidation-reduction between alpha-ketoglutaric acid and oxalacetic acid. J. Biol. Chem. 1949; 177: 361–372.spa
dc.relation.references230. Kiss G, Konrad C, Pour-Ghaz I, Mansour JJ, Nemeth B, Starkov AA, et al. Mitochondrial diaphorases as NAD(+) donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. FASEB J. 2014; 28: 1682–1697.spa
dc.relation.references231. Tugtekin IF, Radermacher P, Theisen M, Matejovic M, Stehr A, Ploner K, et al. Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med. 2001; 27:757-766.spa
dc.relation.references232. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int 2006; 69: 1996–2002.spa
dc.relation.references233. Cossu AP, Suelzu S, Piu P, Orecchioni M, Bazzu G, Padua G. Do on- and off-pump coronary bypass surgery differently affect perioperative peripheral tissue metabolism? Minerva Anestesiol 2012;78(1):26-33.spa
dc.relation.references234. Sahuquillo J, Merino M-A, Sánchez-Guerrero A, Arikan F, Vidal-Jorge M, Martínez-Valverde T. Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries. PLoS ONE 9(7): e102540.spa
dc.relation.references235. von Platen A, D`Souza M. Evaluation of Intrahepatic Lactate / Pyruvate Ratio As a Marker for Ischemic Complications. Transplant Direct. 2019; 5(12): e505spa
dc.relation.references236. Kilgour E, Vernon RG. Catecholamine activation of pyruvate dehydrogenase in white adipose tissue of the rat in vivo. Biochem J 1987;241:415–9.spa
dc.relation.references237. Kuyper AC, Mattill HA. Some aspects of citric acid metabolism. J. Biol. Chem. 103: 51-60.spa
dc.relation.references238. Costello LC, Franklin RB. Plasma citrate homeostasis, how it is regulated, and its physiological and clinical implications. An important, but neglected, relationship in medicine. HSOA J. Hum. Endocrinol. 2016; 1: 5.spa
dc.relation.references239. Mycielska ME, Milenkovic VM, Wetzel CH, Rümmele P, Geissler E.K. Extracellular Citrate in Health and Disease. Curr. Mol. Med. 2015; 15: 884–891.spa
dc.relation.references240. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.Immunity. 2015; 42: 419-430.spa
dc.relation.references241. Williams NC, O’Neill LA. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 2018: 9: 141.spa
dc.relation.references242. Fensterheim BA, Young JD, Luan L, Kleinbard RR, Stothers CL, Patil NK, et al. The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. J Immunol 2018;200(11):3777-3789.spa
dc.relation.references243. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016; 24: 158–166.spa
dc.relation.references244. Mcbride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, et al. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020;11:1–21.spa
dc.relation.references245. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H: Effect of sepsis on the activity of the pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986; 250: E634-E640.spa
dc.relation.references246. Beloborodova NV, Pautova AK, Sergeev, Fedotcheva NI. Serum Levels of Mitochondrial and Microbial Metabolites Reflect Mitochondrial Dysfunction in Different Stages of Sepsis. Metabolites. 2019; 9 (10):196.spa
dc.relation.references247. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303: 739-46.spa
dc.relation.references248. Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Heffner AC, Kline JA, et al. Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Acad Emerg Med. 2012; 19: 252-258.spa
dc.relation.references249. Hernandez G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019; 321: 654-64.spa
dc.relation.references250. Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019; 45 (1): 82-85.spa
dc.relation.references251. Huckabee WE. Relationships of pyruvate and lactate during anaerobic metabolism. 1. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest. 1958; 37:244-254spa
dc.relation.references252. Broder G, Weil MH. Excess Lactate: An Index of Reversibility of Shock in Human Patients. Science. 1964; 143:1457–1459.spa
dc.relation.references253. Howell MD, Donnino M, Clardy P, Talmor D, Shapiro NI. Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Med. 2007 Nov; 33(11): 1892–1899.spa
dc.relation.references254. Gattinoni L, Vasques F, Camporota L, Meessen J, Romitti F, Pasticci I, et al. Understanding lactatemia in human sepsis: potential impact for early management. Am J Respir Crit Care Med. 2019; 200: 582–589.spa
dc.relation.references255. Takala J, Uusaro A, Parviainen I, Ruokonen E. Lactate metabolism and regional lactate exchange after cardiac surgery. New Horiz 1996; 4: 483-492.spa
dc.relation.references256. Mizock BA. The hepatosplanchnic area and hyperlactatemia: A tale of two lactates. Crit Care Med. 2001; 29 (2): 447–449.spa
dc.relation.references257. Bellomo R. Bench-to-bedside review: Lactate and the kidney. Crit Care. 2002; 6(4): 322-326.spa
dc.relation.references258. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, et al. Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med. 2005; 33: 2235-40.spa
dc.relation.references259. Myburgh JA, Higgins A, Jovanovska A, Lipman J, Ramakrishnan N, Santamaria J CAT Study Investigators. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34:2226–2234.spa
dc.relation.references260. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A: Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med. 2000; 28: 114-119.spa
dc.relation.references261. Rimachi R, De Carvahlo FB, Orellano-Jimenez C, Cotton F, Vincent JL, De Backer D. Lactate/Pyruvate Ratio as a Marker of Tissue Hypoxia in Circulatory and Septic Shock. Anaesthesia and Intensive Care. 2012; 40 (3): 427-432.spa
dc.relation.references262. Huckabee W. Abnormal resting blood lactate. Am. J. Med 1961;30: 833-839spa
dc.relation.references263. Brandt S, Regueira T, Bracht H, Porta F, Djafarzadeh S, Takala J, et al. Effect of fluid resuscitation on mortality and organ function in experimental sepsis models Crit Care. 2009; 13(6): R186.spa
dc.relation.references264. Khodakova A, Beloborodova N. Mitochondrial metabolites in the blood patients with sepsis. Crit Care 2007; 11 (4): P5.spa
dc.relation.references265. Fedotcheva NI, Kazakov RE, Kondrashova MN, Beloborodova NV. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxycol. Lett. 2008; 180: 182-188.spa
dc.relation.references266. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 2016; 291: 14274-14284.spa
dc.relation.references267. Meiser J, Kraemer L, Jaeger C,Madry H, Link A, Lepper PM, Hiller K, Schneider JG. Itaconic acid indicates cellular but not systemic immune system activation. Oncotarget. 2018; 9: 32098-32107.spa
dc.relation.references268. Liu MS, Zhang JN. Glycolytic and tricarboxylic acid cycle intermediates in dog livers during endotoxic shock. Biochemical medicine 1985; 34 (3): 335-343.spa
dc.relation.references269. Plummer MP, Deane AM. Dysglycemia and Glucose Control During Sepsis. Clinics in Chest Medicine 2016; 37(2): 309-319.spa
dc.relation.references270. Ferreira FBD, dos Santos C, Bruxel MA, Nunes EA, Spiller F, Rafacho A. Glucose homeostasis in two degrees of sepsis lethality induced by caecum ligation and puncture in mice. Int J Exp Pathol 2017; 98: 98-40.spa
dc.relation.references271. Yang S, Cioffi WG, Bland KI, Chaudry IH, Wang P. Differential alterations in systemic and regional oxygen delivery and consumption during the early and late stages of sepsis. J Trauma 1999; 47: 706-12.spa
dc.relation.references272. Morita Y, Chin-Yee I, Yu P, Sibbald WJ, Martin CM. Critical Oxygen Delivery in Conscious Septic Rats under Stagnant or Anemic Hypoxia. American Journal of Respiratory and Critical Care Medicine 2003; 167(6): 868–872.spa
dc.relation.references273. Tao W, Deyo DJ, Traber DL, Johnston WE, Sherwood ER. Hemodynamic and Cardiac Contractile Function During Sepsis Caused by Cecal Ligation and Puncture in Mice. Shock 2004; 21(1): 31–37.spa
dc.relation.references274. Hotchkiss RS, Song SK, Neil JJ, Chen RD, Manchester JK, Karl IE, et al. Sepsis does not impair tricarboxylic acid cycle in the heart. Am J Physiol Cell Physiol 1991; 260 (1):C50–C57.spa
dc.relation.references275. Lado-Abeal J, Martinez-Sánchez N, Cocho JA, Martín-Pastor M, Castro-Piedras I, Couce-Pico ML, et al. Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics 2018; 14 (10): 131.spa
dc.relation.references276. Liu Z, Yin P, Amathieu R, Savarin P, Xu G. Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Analytical and Bioanalytical Chemistry 2016; 408 (27): 7641-7649.spa
dc.relation.references277. Cerra FB. The hypermetabolism organ failure complex. World J. Surg. 1987; 11: 173-181.spa
dc.relation.references278. Muleme HM, Walpole AC, Staples JF. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol Biochem Zool 2006; 79: 474-483.spa
dc.relation.references279. Fedotcheva NI, Litvinova EG, Kamzolova SV, Morguno IG, Amerkhanov ZG. Mitochondrial metabolites in tissues as indicators of metabolic alterations during hibernation. Cryo Lett 2010; 31: 392-400.spa
dc.relation.references280. Zhao Z, Oort A, Tao Z, O’Brien WG, Lee CC. Metabolite profiling of 5′-AMP induced hypometabolism. Metabolomics. 2014; 10: 63-76.spa
dc.relation.references281. Lei Z, Huhman DV, Sumner L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011; 286: 25435–25442.spa
dc.relation.references282. Al Kadhi O, Melchini A, Mithen R, Saha S. Development of a LC-MS-MS method for the simultaneous detection of tricarboxylic acid cycle intermediates in a range of biological matrices.Journal of Analytical Methods in Chemistry. 2017, 5391832.spa
dc.relation.references283. Beloborodova NV, Sarshor YN, Bedova AY, Chernevskaya EA, Pautova AK. Involvement of aromatic metabolites in the pathogenesis of septic shock. Shock 2018, 50, 273–279.spa
dc.relation.references284. Ospina-Tascón GA, Umaña M, Bermudez W, Bautista-Rincon DF, Hernandez G, Bruhn A. et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 2015; 41: 796-805spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsRespiración de la célulaspa
dc.subject.decsRespiração Celulareng
dc.subject.decsÁcidos tricarboxilicosspa
dc.subject.decsTricarboxylic Acidseng
dc.subject.proposalCiclo de krebsspa
dc.subject.proposalKrebs cycleeng
dc.subject.proposalTricarboxylic acid cycleeng
dc.subject.proposalCiclo de los ácidos tricarboxílicosspa
dc.subject.proposalSepsiseng
dc.subject.proposalSepsisspa
dc.subject.proposalSeptic shockeng
dc.subject.proposalChoque sépticospa
dc.subject.proposalMetabolic reprogrammingeng
dc.subject.proposalReprogramación metabolicaspa
dc.subject.proposalCromatografía líquidaspa
dc.subject.proposalLiquid chromatographyeng
dc.titleAnálisis de los intermediarios del ciclo de krebs durante las primeras 6 horas de endotoxemia inducida por lipopolisacárido en un modelo de sepsis porcina.spa
dc.title.translatedKrebs cycle intermediates during the first 6 hours of lipopolysaccharide-induced endotoxemia in a swine sepsis modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085293707.2021.pdf
Tamaño:
2.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: