Isomonodromic deformations through differential Galois theory

dc.contributor.advisorBlázquez Sanz, Davidspa
dc.contributor.advisorCasale, Guyspa
dc.contributor.authorDíaz Arboleda, Juan Sebastiánspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-05-07T22:23:43Zspa
dc.date.available2020-05-07T22:23:43Zspa
dc.date.issued2019-10-13spa
dc.description.abstractThe text begins with a brief description of differential Galois theory from a geometrical perspective. Then, parameterized Galois theory is developed by means of prolongation of partial connections to the jet bundles. The relation between the parameterized differential Galois groups and isomonodromic deformations is unfold as an application of Kiso-Cassidy theorem. It follows the computation of the parameterized Galois groups of the general fuchsian equation and Gauss hypergeometric equation. Finally, some non-linear applications are developed. By means of a non-linear analog, Kiso-Morimoto theorem, the Malgrange groupoid of Painlevé VI equation with variable parameters is calculated.spa
dc.description.abstractEl texto comienza con una breve descripción de la teoría de Galois diferencial desde una perspectiva geométrica. Luego la teoría de Galois con parámetros se presenta mediante las prolongaciones de conexiones parciales en los fibrados de jets. La relación entre el grupo de Galois con parámetros y las deformaciones isomonodrómicas se desarrolla como una aplicación del teorema de Kiso-Cassidy. Se calculan los grupos de Galois con parámetros de la ecuación fuchsiana general y de la ecuación hiper-geométrica de Gauss. Finalmente se desarrollan algunas aplicaciones no lineales. Mediante un análogo no lineal, a saber el teorema de Kiso–Morimoto, se calcula el grupoide de Malgrange de la ecuación de Painlevé VI con parámetros variables.spa
dc.description.degreelevelDoctoradospa
dc.format.extent123spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationDíaz Arboleda J. S. Isomonodromic deformations through differential Galois theory - phd Thesisspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77491
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de matemáticasspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesYves Andr ́e. Diff ́erentielles non commutatives et th ́eorie de galois diff ́erentielle ou aux diff ́erences. Ann. Sci. Ecole Norm. Sup., 34(5):685–739, 2001.spa
dc.relation.referencesC. E. Arreche. On the computation of the parameterized di erential Galois group for a second-order linear di erential equation with di erential parameters. J. Symbolic Comput., 75:25{55, 2016.spa
dc.relation.referencesDaniel Bertrand. Book review: Lectures on di erential galois theory, by andy r. magid. Bull. Amer. Math. Soc., 33(2):289{294, 1996.spa
dc.relation.referencesDavid Bl azquez-Sanz and Guy Casale. Parallelisms & Lie connections. SIGMA, 13(86):1{28, 2017.spa
dc.relation.referencesPierre Cartier. Groupo des de Lie et leurs alg ebro des. S eminaire Bourbaki, 60:2007{2008, 2008spa
dc.relation.referencesPhyllis Joan Cassidy. The classi cation of the semisimple di erential algebraic groups and the linear semisimple di erential algebraic Lie algebras. Journal of Algebra, 121(1):169{238, 1989spa
dc.relation.referencesGuy Casale. Sur le groupo de de Galois d'un feuilletage. PhD thesis, Universit e Paul Sabatier-Toulouse III, 2004.spa
dc.relation.referencesGuy Casale. Une preuve galoisienne de l'irr eductibilit e au sens de nishiokaumemura de la 1 ere equation de painlev e. Ast erisque, 323:83{100, 2009.spa
dc.relation.referencesFelipe Cano, Dominique Cerveau, and Julie D eserti. Th eorie el ementaire des feuilletages holomorphes singuliers. Belin, 2013spa
dc.relation.referencesTeresa Crespo and Zbigniew Hajto. Algebraic groups and di erential Galois theory, volume 122. American Mathematical Soc., 2011.spa
dc.relation.referencesSerge Cantat and Frank Loray. Dynamics on character varieties and malgrange irreducibility of painlev e vi equation. In Annales de l'institut Fourier, volume 59, pages 2927{2978, 2009.spa
dc.relation.referencesPhyllis J Cassidy and Michael F Singer. Galois theory of parameterized di erential equations and linear di erential algebraic groups. In C. Mitschi C. Sabbah R. Schaefke D. Bertrand, B. Enriquez, editor, IRMA Lectures in Mathematics and Theoretical Physics, volume 9, pages 113{157. EMS Publishing house, 2005.spa
dc.relation.referencesDamien Davy. Sp ecialisation du pseudo-groupe de Malgrange et irr eductibilit e. PhD thesis, Universit e Rennes 1, 2016.spa
dc.relation.referencesMichel Demazure and Alexandre Grothendieck. Sch emas en groupes. Tome III, Structure des sch emas en groupes r eductifs: S eminaire du Bois Marie, 1962/64, SGA 3. Springer-Verlag, 1970.spa
dc.relation.referencesJules Drach. Essai sur une th eorie g en erale de l'int egration et sur la classi cation des transcendantes. In Annales scienti ques de l' Ecole Normale Sup erieure, volume 15, pages 243{384, 1898.spa
dc.relation.referencesT. Dreyfus. A density theorem in parametrized di erential Galois theory. Paci c J. Math., 271(1):87{141, 2014spa
dc.relation.referencesH. Gillet, S. Gorchinskiy, and A. Ovchinnikov. Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math., 238:322{411, 2013.spa
dc.relation.referencesXavier G omez-Mont. Integrals for holomorphic foliations with singularities having all leaves compact. Ann. Inst. Fourier (Grenoble), 39(2):451{458, 1989.spa
dc.relation.referencesS. Gorchinskiy and A. Ovchinnikov. Isomonodromic di erential equations and di erential categories. J. Math. Pures Appl., 102(1):48{78, 2014.spa
dc.relation.referencesHans Grauert. On meromorphic equivalence relations. In Contributions to several complex variables, pages 115{147. Springer, 1986.spa
dc.relation.referencesC. Hardouin, A. Minchenko, and A. Ovchinnikov. Calculating di erential Galois groups of parametrized di erential equations, with applications to hypertranscendence. Math. Ann., 368(1-2):587{632, 2017.spa
dc.relation.referencesKatsunori Iwasaki, Hironobu Kimura, Shun Shimemura, and Masaaki Yoshida. From Gauss to Painlev e: a modern theory of special functions, volume 16. Springer Science & Business Media, 2013.spa
dc.relation.referencesKatsunori Iwasaki. Finite branch solutions to painlev e vi around a xed singular point. Advances in Mathematics, 217(5):1889{1934, 2008.spa
dc.relation.referencesN. Katz. A conjecture in the arithmetic theory of di erential equations. Bull. Soc. Math. France, 110:203{239, 1982spa
dc.relation.referencesTosihusa Kimura. On riemann's equations which are solvable by quadratures. Funkcial. Ekvac, 12(269-281):1970, 1969.spa
dc.relation.referencesKazuhiro Kiso. Local properties of intransitive in nite Lie algebra sheaves. Japanese journal of mathematics. New series, 5(1):101{155, 1979.spa
dc.relation.referencesEllis Kolchin. Algebraic groups and algebraic dependence. Amer. J. Math., 90(4):1151{1164, 1968spa
dc.relation.referencesEllis Kolchin. Di erential algebra and algebraic groups. Academic press, 1973.spa
dc.relation.referencesEllis Kolchin. Di erential algebraic groups. Academic press, 1985.spa
dc.relation.referencesIvan Kol ar, Jan Slov ak, and Peter W Michor. Natural operations in di erential geometry. 1999.spa
dc.relation.referencesPeter Landesman. Generalized di erential galois theory. Transactions of the American Mathematical Society, 360(8):4441{4495, 2008.spa
dc.relation.referencesO. Le on S anchez and J. Nagloo. On parameterized di erential Galois extensions. J. Pure Appl. Algebra, 220(7):2549{2563, 2016.spa
dc.relation.referencesOleg Lisovyy and Yuriy Tykhyy. Algebraic solutions of the sixth painlev e equation. Journal of Geometry and Physics, 85:124{163, 2014.spa
dc.relation.referencesKirill C Mackenzie. General theory of Lie groupoids and Lie algebroids, volume 213. Cambridge University Press, 2005.spa
dc.relation.referencesA. R. Magid. Lectures on di erential Galois theory, volume 7 of University Lecture Series. American Mathematical Society, 1994.spa
dc.relation.referencesBernard Malgrange. Le groupo de de Galois d'un feuilletage. L'enseignement math ematique, 38(2):465{501, 2001.spa
dc.relation.referencesBernard Malgrange. Di erential algebraic groups. In Algebraic Approach to Di erential Equations (Ed. L^e, D~ung Tr ang), pages 292{312. World Scienti c, 2010.spa
dc.relation.referencesBernard Malgrange. Pseudogroupes de Lie et th eorie de Galois di erentielle. IHES, 2010.spa
dc.relation.referencesIeke Moerdijk and Janez Mrcun. Introduction to foliations and Lie groupoids, volume 91. Cambridge University Press, 2003spa
dc.relation.referencesJ Mu~noz, Josemar Rodr guez, and FJ Muriel. Weil bundles and jet spaces. Czechoslovak Mathematical Journal, 50(4):721{748, 2000.spa
dc.relation.referencesA. Minchenko, A. Ovchinnikov, and M. F. Singer. Reductive linear di erential algebraic groups and the Galois groups of parameterized linear di erential equations. Int. Math. Res. Not. IMRN, (7):1733{1793, 2015.spa
dc.relation.referencesA. Minchenko, A. Ovchinnikov and M. F. Singer. Unipotent di erential algebraic groups as parameterized di erential Galois groups. J. Inst. Math. Jussieu, 13(4):671{700, 2014.spa
dc.relation.referencesMasatoshi Noumi and Yasuhiko Yamada. A new lax pair for the sixth painlev e equation associated with. In Microlocal analysis and complex Fourier analysis, pages 238{252. World Scienti c, 2002.spa
dc.relation.referencesKazuo Okamoto et al. Polynomial hamiltonians associated with painlev e equations, i. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 56(6):264{268, 1980.spa
dc.relation.referencesEmile Picard. Sur les equations di erentielles lin eaires et les groupes alg ebriques de transformations. In Annales de la Facult e des sciences de Toulouse: Math ematiques, volume 1, pages A1{A15, 1887.spa
dc.relation.referencesAnand Pillay. Algebraic D-groups and di erential Galois theory. Paci c J. of Math., 216(2):343{360, 2004.spa
dc.relation.referencesHA Schwartz. Uber diejenigen f alle in welchen die gaussische hypergeometrische reihe einer algebraische funktion iheres vierten elementes darstellit. Crelle J, 75:292{335, 1873.spa
dc.relation.referencesJ-P Serre. Espaces br es alg ebriques. S eminaire Claude Chevalley, 3:1{37, 1958.spa
dc.relation.referencesShlomo Sternberg. Lectures on di erential geometry, volume 316. American Mathematical Soc., 1999.spa
dc.relation.referencesHiroshi Umemura. Di erential galois theory of in nite dimension. Nagoya Mathematical Journal, 144:59{135, 1996.spa
dc.relation.referencesMarius Van der Put and Michael F Singer. Galois theory of linear di erential equations, volume 328. Springer Science & Business Media, 2012.spa
dc.relation.referencesErnest Vessiot. Sur la th eorie de galois et ses diverses g en eralisations. In Annales scienti ques de l' Ecole Normale Sup erieure, volume 21, pages 9{85, 1904.spa
dc.relation.referencesErnest Vessiot. Sur l'int egration des syst emes di erentiels qui admettent des groupes continus de transformations. Acta mathematica, 28(1):307{349, 1904spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.proposalGrupos algebraicosspa
dc.subject.proposalAlgebraic groupseng
dc.subject.proposalfibrados de jetsspa
dc.subject.proposalJet bundleseng
dc.subject.proposalTeoría de Galois paramétrica diferencialspa
dc.subject.proposalParameterized differential Galois theoryeng
dc.subject.proposalEcuación hipergeométrica de Gaussspa
dc.subject.proposalGauss hypergeometric equationeng
dc.subject.proposalEcuación de Painlevé vispa
dc.subject.proposalPainlevé VI equationeng
dc.titleIsomonodromic deformations through differential Galois theoryspa
dc.title.alternativeDeformaciones isomonodrómicas a través de la teoría de Galois diferencialspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037595286.2019.pdf
Tamaño:
5.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctor en Ciencias Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: