Estudio termodinámico de la solubilidad de sulfadiazina en mezclas acuosas de Carbitol y N-Metil-Pirrolidona

dc.contributor.advisorMartínez Rodríguez, Fleming
dc.contributor.authorOsorio Amado, Irmis Patricia
dc.contributor.researchgroupGrupo de Investigaciones Farmacéutico-Fisicoquímicasspa
dc.date.accessioned2021-09-16T15:41:16Z
dc.date.available2021-09-16T15:41:16Z
dc.date.issued2021-02
dc.descriptionIlustraciones y tablasspa
dc.description.abstractIn the present study, the solubility of sulfadiazine in aqueous mixtures of Carbitol and N-methyl-2-pyrrolidone (NMP) at 278.15 K - 313.15 K was analyzed. It was found that the solubility of sulfadiazine in aqueous Carbitol mixtures did not vary with temperature. For aqueous mixtures of NMP, it was found that the trend of the increase in solubility was different for rich mixtures in NMP. This could be by a possible phase change of the crystalline structure of sulfadiazine. The thermodynamic properties of solution, mixture and transfer were calculated. The preferential solvation parameters of sulfadiazine were determined using the experimental solubility values and the thermodynamic functions of solution by means of the inverse Kirkwood-Buff integrals (IKBI) method. For both cosolvent systems, it was found that sulfadiazine is preferentially solvated by water in water-rich mixtures, probably due to the hydrophobic hydration phenomenon, but preferentially solvated by Carbitol or NMP in cosolvent-rich mixtures, probably due to the behavior of sulfadiazine as Lewis acid in front of the cosolvent molecules. The enthalpy-entropy relationship of the (NMP + water) system was analyzed, finding a non-linear relationship by plotting the enthalpy of solution as a function of the Gibbs energy of solution. Finally, when evaluating the sulfadiazine solubility values calculated using the semi-empirical Jouyban-Acree and the extended Hildebrand models, notable deviations were obtained with respect to the experimental values. The smallest mean percentage deviations % MPD were achieved with the extended Hildebrand model using an order 5 polynomial, obtaining a value of 0.88% for the (Carbitol + water) system and 1.47% for the (NMP + water) system, both at 313.15 K.eng
dc.description.abstractEn el presente estudio se determinó la solubilidad de la sulfadiazina en mezclas acuosas de Carbitol y N-metil-pirrolidona (NMP) en el rango de temperaturas de 278,15 K a 313,15 K. Se encontró que la solubilidad de la sulfadiazina en mezclas acuosas de Carbitol no varió con la temperatura. Para la solubilidad de sulfadiazina en mezclas acuosas de NMP se encontró que la tendencia del aumento de solubilidad era diferente para mezclas ricas en NMP, lo que podría ser explicado por un posible cambio de fase de la estructura cristalina de la sulfadiazina. Se calcularon además las funciones termodinámicas aparentes de solución, mezcla y transferencia de dichos sistemas. Los parámetros de solvatación preferencial de la sulfadiazina se hallaron utilizando los valores de solubilidad experimentales y las funciones termodinámicas de solución por medio del método de las integrales inversas de Kirkwood-Buff (IKBI, Inverse Kirkwood-Buff Integrals). Para ambos sistemas de cosolventes, se encontró que la sulfadiazina es solvatada preferencialmente por agua en mezclas ricas en agua, debido probablemente al fenómeno de hidratación hidrofóbica, pero solvatada preferencialmente por Carbitol o NMP en mezclas ricas en cosolvente, debido probablemente al comportamiento de la sulfadiazina como ácido de Lewis frente a las moléculas de los cosolventes. Se analizó la relación entálpica-entrópica del sistema (NMP + agua) encontrando una relación no lineal al graficar la entalpía de solución en función de la energía de Gibbs de solución. Finalmente, al evaluar los valores de solubilidad de sulfadiazina calculados mediante los modelos semiempíricos de Jouyban-Acree y el modelo extendido de Hildebrand se obtuvieron desviaciones notables con respecto a los valores experimentales. Las menores desviaciones promedio porcentuales se lograron con el modelo extendido de Hildebrand utilizando un polinomio de orden 5 para calcular el factor W, obteniendo un porcentaje de 0,88% para el sistema (Carbitol + agua) y de 1,47% para el sistema (NMP + agua), ambos a 313,15 K. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.notesIncluye anexos
dc.format.extentxvi, 131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80215
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAcree, W. E. (1992). Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochimica Acta, 198(1), 71–79. https://doi.org/10.1016/0040-6031(92)85059-5spa
dc.relation.referencesAdjei, A., Newburger, J., & Martin, A. (1980). Extended hildebrand approach: Solubility of caffeine in dioxane–water mixtures. Journal of Pharmaceutical Sciences, 69(6), 659–661. https://doi.org/10.1002/jps.2600690613spa
dc.relation.referencesAEFI. (2001). Selectividad. In Validación de Métodos Analíticos (pp. 46–55). Asociación española farmacéutica de la industria - AEFI.spa
dc.relation.referencesAmidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288spa
dc.relation.referencesÁvila, C. M., & Martínez, F. (2002). Thermodynamic study of the solubility of benzocaine in some organic and aqueous solvents. Journal of Solution Chemistry, 31(12), 975–985. https://doi.org/10.1023/A:1021825509697spa
dc.relation.referencesBarton, A. F. M. (1991a). Calculated Cohesion Parameter. In Hansen Solubility Parameters: A Users Handbook (2nd ed., pp. 157–185). Boca Raton,Fl: CRC Press.spa
dc.relation.referencesBarton, A. F. M. (1991b). Handbook of Solubility Parameters and Other Cohesion Parameters (2nd ed.). New York: CRC Press.spa
dc.relation.referencesBarzegar-Jalali, M., Mazaher Haji Agha, E., Adibkia, K., Martinez, F., & Jouyban, A. (2020). The solubility of ketoconazole in binary Carbitol + water mixtures at T = (293.2–313.2) K. Journal of Molecular Liquids, 297, 111756. https://doi.org/10.1016/j.molliq.2019.111756spa
dc.relation.referencesBarzegar-Jalali, M., Mohammadzade, M., Martinez, F., & Jouyban, A. (2016). Solubility of naproxen in some aqueous mixtures of N-methyl-2-pyrrolidone at various temperatures. Journal of Molecular Liquids, 220, 484–488. https://doi.org/10.1016/j.molliq.2016.04.120spa
dc.relation.referencesBarzegar-Jalali, M., Rahimpour, E., Martinez, F., & Jouyban, A. (2019). Solubility and thermodynamics of lamotrigine in Carbitol + water mixtures from T = (293.2 to 313.2) K. Chemical Engineering Communications, 206(2), 182–192. https://doi.org/10.1080/00986445.2018.1477765spa
dc.relation.referencesBen-Naim, A. (1998). Theory of preferential solvation of nonelectrolytes. Cell Biophysics, 12(1), 255–269. https://doi.org/10.1007/bf02918361spa
dc.relation.referencesBlanco, A., García-Abuín, A., Gómez-Díaz, D., & Navaza, J. M. (2012). Density, speed of sound, viscosity, refractive index, and excess volume of n -methyl-2-pyrrolidone (NMP) + water + ethanol from T = (293.15 to 323.15) K. Journal of Chemical and Engineering Data, 57(4), 1009–1014. https://doi.org/10.1021/je201152jspa
dc.relation.referencesBustamante, P., Romero, S., Peña, A., Escalera, B., & Reillo, A. (1998). Enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane–water. Journal of Pharmaceutical Sciences, 87(12), 1590–1596. https://doi.org/10.1021/js980149xspa
dc.relation.referencesBustamante, Pilar, Escalera, B., Martin, A., & Selles, E. (1993). A Modification of the Extended Hildebrand Approach to Predict the Solubility of Structurally Related Drugs in Solvent Mixtures. Journal of Pharmacy and Pharmacology, 45(4), 253–257. https://doi.org/10.1111/j.2042-7158.1993.tb05548.xspa
dc.relation.referencesCárdenas, Z. J., Jiménez, D. M., & Martínez, F. (2015). Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures. Journal of Molecular Liquids, 211, 233–238. https://doi.org/10.1016/j.molliq.2015.07.013spa
dc.relation.referencesConnors, K. A. (2002a). Energy and the First Law of Thermodynamics. In Thermodynamics of Pharmaceutical Systems (pp. 3–17). New Jersey: John Wiley and Sons Inc.spa
dc.relation.referencesConnors, K. A. (2002b). Solubility. In Thermodynamics of Pharmaceutical Systems (pp. 116–135). New Jersey: John Wiley and Sons Inc.spa
dc.relation.referencesConnors, K. A. (2002c). The Entropy Concept. In Thermodynamics of Pharmaceutical Systems (pp. 17–30). New Jersey: John Wiley and Sons Inc.spa
dc.relation.referencesConnors, K. A. (2002d). The Free Energy. In Thermodynamics of Pharmaceutical Systems (pp. 30–42). New Jersey: John Wiley and Sons Inc.spa
dc.relation.referencesConnors, K. A. (2002e). Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy. New Jersey: John Wiley & Sons.spa
dc.relation.referencesCruz-González, A. M., Vargas-Santana, M. S., Ortiz, C. P., Cerquera, N. E., Delgado, D. R., Martínez, F., … Acree, W. E. (2021). Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation. Journal of Molecular Liquids, 323, 115058. https://doi.org/10.1016/j.molliq.2020.115058spa
dc.relation.referencesde Araújo, M. V. G., Vieira, E. K. B., Silva Lázaro, G., Conegero, L. S., Almeida, L. E., Barreto, L. S., … Gimenez, I. F. (2008). Sulfadiazine/hydroxypropyl-β-cyclodextrin host-guest system: Characterization, phase-solubility and molecular modeling. Bioorganic and Medicinal Chemistry, 16(10), 5788–5794. https://doi.org/10.1016/j.bmc.2008.03.057spa
dc.relation.referencesDel Mar Muñoz, M., Delgado, D. R., Peña, M. Á., Jouyban, A., & Martínez, F. (2015). Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. Journal of Molecular Liquids, 204, 132–136. https://doi.org/10.1016/j.molliq.2015.01.047spa
dc.relation.referencesDelgado, Daniel R., & Martínez, F. (2013). Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. Journal of Molecular Liquids, 187, 99–105. https://doi.org/10.1016/j.molliq.2013.06.011spa
dc.relation.referencesDelgado, Daniel R., & Martínez, F. (2014a). Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures. Fluid Phase Equilibria, 379, 128–138. https://doi.org/10.1016/j.fluid.2014.07.013spa
dc.relation.referencesDelgado, Daniel R., & Martínez, F. (2014b). Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. Journal of Solution Chemistry, 43(5), 836–852. https://doi.org/10.1007/s10953-014-0169-0spa
dc.relation.referencesDelgado, Daniel R., Peña, M., & Martínez, F. (2019). Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Physics and Chemistry of Liquids, 57(3), 388–400. https://doi.org/10.1080/00319104.2018.1476976spa
dc.relation.referencesDelgado, Daniel Ricardo, Caviedes-Rubio, D. I., Ortiz, C. P., Parra-Pava, Y. L., Peña, M. Á., Jouyban, A., … Acree, W. E. (2020). Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation. Physics and Chemistry of Liquids, 58(3), 381–396. https://doi.org/10.1080/00319104.2019.1594227spa
dc.relation.referencesDelgado, Daniel Ricardo, & Martínez, F. (2014). Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. Journal of Molecular Liquids, 193, 152–159. https://doi.org/10.1016/j.molliq.2013.12.021spa
dc.relation.referencesDu, W., Yin, Q., Hao, H., Bao, Y., Zhang, X., Huang, J., … Gong, J. (2014). Solution-mediated polymorphic transformation of prasugrel hydrochloride from form II to form i. Industrial and Engineering Chemistry Research, 53(14), 5652–5659. https://doi.org/10.1021/ie404245sspa
dc.relation.referencesDumitriu, R. P., Profire, L., Nita, L. E., Dragostin, O. M., Ghetu, N., Pieptu, D., & Vasile, C. (2015). Sulfadiazine-chitosan conjugates and their polyelectrolyte complexes with hyaluronate destined to the management of burn wounds. Materials, 8(1), 317–338. https://doi.org/10.3390/ma8010317spa
dc.relation.referencesElworthy, P. H., & Worthington, H. E. C. (1968). The solubility of sulphadiazine in water-dimethylformamide mixtures. Journal of Pharmacy and Pharmacology, 20(11), 830–835. https://doi.org/10.1111/j.2042-7158.1968.tb09656.xspa
dc.relation.referencesFedors, R. F. (1974). A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Engineering & Science, 14(2), 147–154. https://doi.org/10.1002/pen.760140211spa
dc.relation.referencesGanbavale, G., Marcolli, C., Krieger, U. K., Zuend, A., Stratmann, G., & Peter, T. (2014). Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions. Atmospheric Chemistry and Physics, 14(18), 9993–10012. https://doi.org/10.5194/acp-14-9993-2014spa
dc.relation.referencesGodavarthy, S. S., Yerramsetty, K. M., Rachakonda, V. K., Neely, B. J., Madihally, S. V., Robinson, R. L., & Gasem, K. A. M. (2010, January 1). Design of improved permeation enhancers for transdermal drug delivery. Journal of Pharmaceutical Sciences, Vol. 99, p. 563. https://doi.org/10.1002/jps.21681spa
dc.relation.referencesGrant, D. J. W., & Higuchi, T. (1990). Solubility Behavior of Organic Compounds. New York: Wiley-Interscience. Hansen, C. M. (2007). Hansen Solubility Parameters: A Users Handbook, Second Edition. In Hansen Solubility Parameters: A Users Handbook, Second Edition (2nd ed., pp. 5–6). https://doi.org/10.1201/9781420006834spa
dc.relation.referencesHatefi, A., Rahimpour, E., Ghafourian, T., Martinez, F., Barzegar-Jalali, M., & Jouyban, A. (2019). Solubility of ketoconazole in N-methyl-2-pyrrolidone + water mixtures at T = (293.2 to 313.2) K. Journal of Molecular Liquids, 281, 150–155. https://doi.org/10.1016/j.molliq.2019.02.038spa
dc.relation.referencesHiguchi, T., & Connors, K. A. (1965). Phase Solubility Techniques. Advances in Analytical Chemistry and Instrumentation, 4, 117–212.spa
dc.relation.referencesHildebrand, J.H.; Scott, R. . (1950). The Solubility of Nonelectrolytes (3rd ed.). New York: Reinhold. International Conference on Harmonisation. (1994). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Validation of Analytical Procedures: Text and Methodology Q2(R1): Q2A: Validation of Analytical Methods (De Nitions and Terminology).spa
dc.relation.referencesJiménez, D. M., Cárdenas, Z. J., Delgado, D. R., Peña, M. T., & Martínez, F. (2015). Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane+water co-solvent mixtures. Fluid Phase Equilibria, 397, 26–36. https://doi.org/10.1016/j.fluid.2015.03.046spa
dc.relation.referencesJouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B. J., & Acree, W. E. (1999). Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. International Journal of Pharmaceutics, 177(1), 93–101. https://doi.org/10.1016/S0378-5173(98)00333-0spa
dc.relation.referencesJouyban, A, & Acree, W. E. (2006). In silico prediction of drug solubility in water-ethanol mixtures using Jouyban-Acree model. Journal of Pharmacy & Pharmaceutical Sciences : A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 9(2), 262–269. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16959195spa
dc.relation.referencesJouyban, Abolghasem. (2008). Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. Journal of Pharmacy and Pharmaceutical Sciences, Vol. 11, pp. 32–58. https://doi.org/10.18433/J3PP4Kspa
dc.relation.referencesJouyban, Abolghasem. (2010). Handbook of Solubility Data for Pharmaceuticals. Boca Raton: CRC Press.spa
dc.relation.referencesJouyban, Abolghasem, Acree, W. E., & Martínez, F. (2020). Preferential solvation of apremilast in some (Transcutol® + water) mixtures. Journal of Molecular Liquids, 316, 113905. https://doi.org/10.1016/j.molliq.2020.113905spa
dc.relation.referencesJouyban, K., Mazaher Haji Agha, E., Hemmati, S., Martinez, F., Kuentz, M., & Jouyban, A. (2020). Solubility of 5-aminosalicylic acid in N-methyl-2-pyrrolidone + water mixtures at various temperatures. Journal of Molecular Liquids, 310, 113143. https://doi.org/10.1016/j.molliq.2020.113143spa
dc.relation.referencesJung, E., Kang, Y. P., Yoon, I. S., Kim, J. S., Kwon, S. W., Chung, S. J., … Kim, D. D. (2013). Effect of permeation enhancers on transdermal delivery of fluoxetine: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 456(2), 362–369. https://doi.org/10.1016/j.ijpharm.2013.08.080spa
dc.relation.referencesKhajir, S., Shayanfar, A., Acree, W. E., & Jouyban, A. (2019). Effects of N-methylpyrrolidone and temperature on phenytoin solubility. Journal of Molecular Liquids, 285, 58–61. https://doi.org/10.1016/j.molliq.2019.04.049spa
dc.relation.referencesKhoubnasabjafari, M., Shayanfar, A., Martinez, F., Acree, W. E., & Jouyban, A. (2016). Generally trained models to predict solubility of drugs in Carbitol + water mixtures at various temperatures. Journal of Molecular Liquids, 219, 435–438. https://doi.org/10.1016/j.molliq.2016.03.043spa
dc.relation.referencesKrug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341–2351. https://doi.org/10.1021/j100562a007spa
dc.relation.referencesLee, P. J., Langer, R., & Shastri, V. P. (2005). Role of n-methyl pyrrolidone in the enhancement of aqueous phase transdermal transport. Journal of Pharmaceutical Sciences, 94(4), 912–917. https://doi.org/10.1002/jps.20291spa
dc.relation.referencesLee, S. K., Sim, W. Y., Ha, E. S., Park, H., Kim, J. S., Jeong, J. S., & Kim, M. S. (2020). Solubility of bisacodyl in fourteen mono solvents and N-methyl-2-pyrrolidone + water mixed solvents at different temperatures, and its application for nanosuspension formation using liquid antisolvent precipitation. Journal of Molecular Liquids, 310, 113264. https://doi.org/10.1016/j.molliq.2020.113264spa
dc.relation.referencesLi, A., & Yalkowsky, S. H. (1994). Solubility of organic solutes in ethanol/water mixtures. Journal of Pharmaceutical Sciences, 83(12), 1735–1740. https://doi.org/10.1002/jps.2600831217spa
dc.relation.referencesLi, X., Xu, G., Wang, Y., & Hu, Y. (2009). Density, Viscosity, and Excess Properties for Binary Mixture of Diethylene Glycol Monoethyl Ether + Water from 293.15 to 333.15 K at Atmospheric Pressure. Chinese Journal of Chemical Engineering, 17(6), 1009–1013. https://doi.org/10.1016/S1004-9541(08)60309-2spa
dc.relation.referencesMacaringue, E. G. J., Wu, S., Liu, S., Xu, S., & Gong, J. (2019). Influence of the Solvent Content on the Phase Transformation of Sulfadiazine N-Methyl Pyrrolidone Solvate. Chemical Engineering and Technology, 42(7), 1435–1445. https://doi.org/10.1002/ceat.201800738spa
dc.relation.referencesMarcus, Y. (1998). The Properties of Solvents. Chichester: John Wiley & Sons.spa
dc.relation.referencesMarcus, Y. (2002a). Preferential solvation in binary solvent mixtures. In Solvent mixtures properties and selective solvation (pp. 142–178). New York: Marcel Dekker.spa
dc.relation.referencesMarcus, Y. (2002b). Properties of Binary Solvent Mixture. In Solvent mixtures properties and selective solvation (pp. 16–118). New York: Marcel Dekker.spa
dc.relation.referencesMarcus, Y. (2008). On the preferential solvation of drugs and PAHs in binary solvent mixtures. Journal of Molecular Liquids, 140(1–3), 61–67. https://doi.org/10.1016/j.molliq.2008.01.005spa
dc.relation.referencesMartin, A. N., Bustamante, P., & Chun, A. (1993). Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.). Philadelphia: Lea & Febiger.spa
dc.relation.referencesMartin, A., Newburger, J., & Adjei, A. (1980). Extended hildebrand solubility approach: Solubility of theophylline in polar binary solvents. Journal of Pharmaceutical Sciences, 69(5), 487–491. https://doi.org/10.1002/jps.2600690503spa
dc.relation.referencesMartin, A., Wu, P. L., Adjei, A., Lindstrom, R. E., & Elworthy, P. H. (1982). Extended hildebrand solubility approach and the log linear solubility equation. Journal of Pharmaceutical Sciences, 71(8), 849–856. https://doi.org/10.1002/jps.2600710803spa
dc.relation.referencesMartin, A., Wu, P. L., & Velasquez, T. (1985). Extended hildebrand solubility approach: Sulfonamides in binary and ternary solvents. Journal of Pharmaceutical Sciences, 74(3), 277–282. https://doi.org/10.1002/jps.2600740311spa
dc.relation.referencesMartínez, F., & Gómez, A. (2002). Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Physics and Chemistry of Liquids, 40(4), 411–420. https://doi.org/10.1080/0031910021000017735spa
dc.relation.referencesMartínez, F., Jouyban, A., & Acree, W. E. (2016). Comments on “solubility and thermodynamic function of a new anticancer drug ibrutinib in {2-(2-ethoxyethoxy)ethanol + water} mixtures at different temperatures.” Journal of Chemical Thermodynamics, 95, 180–182. https://doi.org/10.1016/j.jct.2015.11.031spa
dc.relation.referencesMillard, J. W., Alvarez-Núñez, F. A., & Yalkowsky, S. H. (2002). Solubilization by cosolvents: Establishing useful constants for the log-linear model. International Journal of Pharmaceutics, 245(1–2), 153–166. https://doi.org/10.1016/S0378-5173(02)00334-4spa
dc.relation.referencesMora, C. P., & Martínez, F. (2006). Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4. Physics and Chemistry of Liquids, 44(5), 585–596. https://doi.org/10.1080/00319100600889715spa
dc.relation.referencesMozo, I., De La Fuente, I. G., González, J. A., & Cobos, J. C. (2007). Thermodynamics of mixtures containing alkoxyethanols. XXIV. Densities, excess molar volumes, and speeds of sound at (293.15, 298.15, and 303.15) K and isothermal compressibilities at 298.15 K for 2-(2-alkoxyethoxy)ethanol + 1-butanol systems. Journal of Chemical and Engineering Data, 52(5), 2086–2090. https://doi.org/10.1021/je700281zspa
dc.relation.referencesNakayama, H., & Shinoda, K. (1971). Enthalpies of mixing of water with some cyclic and linear ethers. The Journal of Chemical Thermodynamics, 3(3), 401–405. https://doi.org/10.1016/S0021-9614(71)80057-5 National Center for Biotechnology Information. (2020). 1-Methyl-2-pyrrolidinone | C5H9NO - PubChem. Retrieved December 4, 2020, from PubChem Compound Summary for CID 13387, 1-Methyl-2-pyrrolidinone website: https://pubchem.ncbi.nlm.nih.gov/compound/1-methyl-2-pyrrolidinonespa
dc.relation.referencesNewman, K. E. (1994). Kirkwood-Buff solution theory: Derivation and applications. Chemical Society Reviews, Vol. 23, pp. 31–40. https://doi.org/10.1039/CS9942300031spa
dc.relation.referencesNorouzi, F., Jouyban, A., Martinez, F., Barzegar-Jalali, M., & Rahimpour, E. (2019). Solubility of celecoxib in Carbitol + water mixtures at various temperatures: experimental data and mathematical modelling. Physics and Chemistry of Liquids, 57(6), 755–767. https://doi.org/10.1080/00319104.2018.1519712spa
dc.relation.referencesNozohouri, S., Shayanfar, A., Cárdenas, Z. J., Martinez, F., & Jouyban, A. (2017). Solubility of celecoxib in N-methyl-2-pyrrolidone+water mixtures at various temperatures: Experimental data and thermodynamic analysis. Korean Journal of Chemical Engineering, 34(5), 1435–1443. https://doi.org/10.1007/s11814-017-0028-yspa
dc.relation.referencesOchsner, A. B., Belloto, R. J., & Sokoloski, T. D. (1985). Prediction of Xanthine Solubilities Using Statistical Techniques. Journal of Pharmaceutical Sciences, 74(2), 132–135. https://doi.org/10.1002/JPS.2600740206spa
dc.relation.referencesOsborne, D. W. (2011). Diethylene glycol monoethyl ether: An emerging solvent in topical dermatology products. Journal of Cosmetic Dermatology, 10(4), 324–329. https://doi.org/10.1111/j.1473-2165.2011.00590.xspa
dc.relation.referencesParuta, A. N., Sciarrone, B. J., & Lordi, N. G. (1964). Solubility of Salicylic Acid as a Function of Dielectric Constant. Journal of Pharmaceutical Sciences, 53(11), 1349–1353. https://doi.org/10.1002/jps.2600531114spa
dc.relation.referencesPetri, W. A. (2007). Sulfonamidas, trimetoprim-sulfametoxazol, quinolonas y fármacos contra infecciones de las vías urinarias. In L. L. Brunton (Ed.), Las Bases Farmacológicas de la Terapéutica (Undecima, pp. 1111–1126). Mexico D.F: Goodman & Gilman.spa
dc.relation.referencesPoe, W. A., Mak, J. K., & Mokhatab, S. (2019). Natural Gas Treatment. In Handbook of Natural Gas Transmission and Processing; Principles and Practices (4th ed., pp. 231–269). Cambridge, MA: Elsevier.spa
dc.relation.referencesPrausnitz, J. M., Lichtenhaler, R. N., & Gomez, E. (2000a). Fugacidades en mezclas liquidas. Funciones de exceso. In Termodinámica Molecular de los Equilibrios de Fase (Tercera ed, pp. 171–243). Madrid: Prentice Hall.spa
dc.relation.referencesPrausnitz, J. M., Lichtenhaler, R. N., & Gomez, E. (2000b). Fugacidades en mezclas liquidas. Modelos y teorias de disoluciones. In Termodinámica Molecular de los Equilibrios de Fase (Tercera ed, pp. 249–332). Madrid: Prentice Hall.spa
dc.relation.referencesRegosz, A., Pelpliñska, T., Kowalski, P., & Thiel, Z. (1992). Prediction of solubility of sulfonamides in water and organic solvents based on the extended regular solution theory. International Journal of Pharmaceutics, 88(1–3), 437–442. https://doi.org/10.1016/0378-5173(92)90344-2spa
dc.relation.referencesReillo, A., Bustamante, P., Escalera, B., Jiménez, M. M., & Sellés, E. (1995). Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Development and Industrial Pharmacy, 21(18), 2073–2084. https://doi.org/10.3109/03639049509065891spa
dc.relation.referencesRosenholm, J. B. (2009, February 28). Solubility and interaction parameters as references for solution properties. I. Exceptional mixing and excess functions. Advances in Colloid and Interface Science, Vol. 146, pp. 31–41. https://doi.org/10.1016/j.cis.2008.09.007spa
dc.relation.referencesRoyal Society of Chemistry. (n.d.). 2-(2-Ethoxyethoxy)ethanol | C6H14O3. Retrieved December 8, 2020, from http://www.chemspider.com/Chemical-Structure.13839107.htmlspa
dc.relation.referencesRubino, J. T. (2006). Cosolvents and Cosolvency. In J. Swarbrick (Ed.), Encyclopedia of Pharmaceutical Technology (Third, pp. 806–819). New York: Informa Healthcare.spa
dc.relation.referencesSanches, B. M. A., & Ferreira, E. I. (2019). Is prodrug design an approach to increase water solubility? International Journal of Pharmaceutics, 568. https://doi.org/10.1016/j.ijpharm.2019.118498spa
dc.relation.referencesSánchez de Dios, A. B. (2013). Mecanismo de acción y óptima selección de codisolventes en formas farmacéuticas. Tesis doctoral, Universidad de Alcala de Henares, Madrid, España.spa
dc.relation.referencesSanghvi, R., Narazaki, R., Machatha, S. G., & Yalkowsky, S. H. (2008). Solubility improvement of drugs using N-methyl pyrrolidone. AAPS PharmSciTech, 9(2), 366–376. https://doi.org/10.1208/s12249-008-9050-zspa
dc.relation.referencesShakeel, F., Bhat, M. A., & Haq, N. (2016). Solubility and thermodynamics of 4-(4-ethoxyphenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one in various pure solvents at different temperatures. Journal of Molecular Liquids, 224, 624–628. https://doi.org/10.1016/j.molliq.2016.10.047spa
dc.relation.referencesShakeel, F., Haq, N., Alanazi, F. K., Alanazi, S. A., & Alsarra, I. A. (2020). Solubility of sinapic acid in various (Carbitol + water) systems: computational modeling and solution thermodynamics. Journal of Thermal Analysis and Calorimetry, 1–10. https://doi.org/10.1007/s10973-020-09451-yspa
dc.relation.referencesShakeel, F., Haq, N., El-Badry, M., Alanazi, F. K., & Alsarra, I. A. (2014). Thermodynamics and solubility of tadalafil in diethylene glycol monoethyl ether + water co-solvent mixtures at (298.15 to 333.15) K. Journal of Molecular Liquids, 197, 334–338. https://doi.org/10.1016/j.molliq.2014.06.010spa
dc.relation.referencesShakeel, F., Haq, N., & Salem-Bekhit, M. M. (2015). Thermodynamics of solubility of isatin in Carbitol + water mixed solvent systems at different temperatures. Journal of Molecular Liquids, 207, 274–278. https://doi.org/10.1016/j.molliq.2015.03.038spa
dc.relation.referencesShakeel, F., Haq, N., Siddiqui, N. A., Alanazi, F. K., & Alsarra, I. A. (2015). Solubility and thermodynamics of vanillin in Carbitol-water mixtures at different temperatures. LWT - Food Science and Technology, 64(2), 1278–1282. https://doi.org/10.1016/j.lwt.2015.07.043spa
dc.relation.referencesShulgin, I., & Ruckenstein, E. (1999a). Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Comparison between Thermodynamic Calculations and X-Ray Scattering Experiments. The Journal of Physical Chemistry B, 103(13), 2496–2503. https://doi.org/10.1021/jp983387pspa
dc.relation.referencesShulgin, I., & Ruckenstein, E. (1999b). Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Aggregation, Correlation Volume, and Local Composition. The Journal of Physical Chemistry B, 103(5), 872–877. https://doi.org/10.1021/jp983690qspa
dc.relation.referencesSingh, S. and. (2011). Martins Physical pharmacy and Pharmaceutical Science- Physical chemical and Biopharmaceutical Principle in the Pharmaceutical science 6th edition. Philadelphia: Lippincot Williams & Wilkins , a Wolters Kluwer bussines. In Thyroid. https://doi.org/10.1201/9780203644478.ch8spa
dc.relation.referencesSoltanpour, S., & Jouyban, A. (2011). Solubility of acetaminophen and ibuprofen in polyethylene glycol 600, N-methyl pyrrolidone and water mixtures. Journal of Solution Chemistry, 40(12), 2032–2045. https://doi.org/10.1007/s10953-011-9767-2spa
dc.relation.referencesSoltanpour, S., & Jouyban, A. (2013). Solubility of lamotrigine in binary and ternary mixtures of N-methyl pyrrolidone and water with polyethylene glycols 200, 400, and 600 at 298.2 K. Journal of Molecular Liquids, 180, 1–6. https://doi.org/10.1016/j.molliq.2012.12.029spa
dc.relation.referencesStella, V. J., & Nti-Addae, K. W. (2007, July 30). Prodrug strategies to overcome poor water solubility. Advanced Drug Delivery Reviews, Vol. 59, pp. 677–694. https://doi.org/10.1016/j.addr.2007.05.013spa
dc.relation.referencesStrickley, R. G. (2004, February). Solubilizing Excipients in Oral and Injectable Formulations. Pharmaceutical Research, Vol. 21, pp. 201–230. https://doi.org/10.1023/B:PHAM.0000016235.32639.23spa
dc.relation.referencesSullivan, D. W., Gad, S. C., & Julien, M. (2014). A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food and Chemical Toxicology, Vol. 72, pp. 40–50. https://doi.org/10.1016/j.fct.2014.06.028spa
dc.relation.referencesSweetman, S. C. (2009a). Sulfadiazine. In S. C. Sweetman (Ed.), Martindale. The Complete Drug Reference (Thirty-six, p. 336). London: Pharmaceutical Press.spa
dc.relation.referencesSweetman, S. C. (2009b). Sulfonamides and diaminopyrimidines. In S. C. Sweetman (Ed.), Martindale. The Complete Drug Reference (Thirty-six, pp. 161–162). London: Pharmaceutical Press.spa
dc.relation.referencesTakagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L. X., & Amidon, G. L. (2006). A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Molecular Pharmaceutics, 3(6), 631–643. https://doi.org/10.1021/mp0600182spa
dc.relation.referencesUSP-NF. (2016). Solubility Measurements. Retrieved November 15, 2019, from https://www.uspnf.com/notices/solubility-measurementsspa
dc.relation.referencesWilliams, N. A., & Amidon, G. L. (1984). Excess free energy approach to the estimation of solubility in mixed solvent systems I: Theory. Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.2600730104spa
dc.relation.referencesYalkowsky, S. H. (1999). Solubility and partial Miscibility. In Solubility and Solubilization in Aqueous Media (pp. 49–76). New York: Oxford University Press.spa
dc.relation.referencesYalkowsky, S.H., Flynn, G. L., & Amidon, G. L. (1972). Solubility of Nonelectrolytes in Polar Solvents. Journal of Pharmaceutical Sciences, 61(6), 983–984. https://doi.org/10.1002/jps.2600610643spa
dc.relation.referencesYalkowsky, Samuel H. (1999). Solubilization by Cosolvents. In Solubility and Solubilization in Aqueous Media (pp. 180–235). New York: Oxford.spa
dc.relation.referencesZhang, C. L., Li, B. Y., & Wang, Y. (2010). Solubilities of sulfadiazine in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform from (294.15 to 318.15) K. Journal of Chemical and Engineering Data, 55(6), 2338–2339. https://doi.org/10.1021/je900742pspa
dc.relation.referencesZhang, C. L., Wang, F. A., & Wang, Y. (2007). Solubilities of sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine, sulfamethoxazole, and sulfachloropyrazine in water from (298.15 to 333.15) K. Journal of Chemical and Engineering Data, 52(5), 1563–1566. https://doi.org/10.1021/je0603978spa
dc.relation.referencesZhao, X., Farajtabar, A., Han, G., & Zhao, H. (2020). Griseofulvin dissolved in binary aqueous co-solvent mixtures of N,N-dimethylformamide, methanol, ethanol, acetonitrile and N-methylpyrrolidone: Solubility determination and thermodynamic studies. Journal of Chemical Thermodynamics, 151, 106250. https://doi.org/10.1016/j.jct.2020.106250spa
dc.relation.referencesZhu, C., Xu, R., Zhou, Y., & Zhao, H. (2020). Biapenem in binary aqueous mixtures of N,N-dimethylformamide, N-methyl-2-pyrrolidone, isopropanol and ethanol: Solute-solvent and solvent-solvent interactions, solubility determination and preferential solvation. Journal of Chemical Thermodynamics, 149, 106190. https://doi.org/10.1016/j.jct.2020.106190spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsSolutionseng
dc.subject.decsSolucionesspa
dc.subject.lemPhysical and theoretical chemistryeng
dc.subject.lembFisicoquímicaspa
dc.subject.lembAntibioticseng
dc.subject.lembAntibióticosspa
dc.subject.proposalN-metil-pirrolidonaspa
dc.subject.proposalCarbitolspa
dc.subject.proposalSolubilidadspa
dc.subject.proposalSulfadiazinaspa
dc.subject.proposalSolvatación preferencialspa
dc.subject.proposalSulfadiazineeng
dc.subject.proposalCarbitoleng
dc.subject.proposalWater solubilityeng
dc.subject.proposalCosolvencyeng
dc.subject.proposalPreferential solvationeng
dc.subject.proposalSolubilityeng
dc.titleEstudio termodinámico de la solubilidad de sulfadiazina en mezclas acuosas de Carbitol y N-Metil-Pirrolidonaspa
dc.title.translatedThermodynamic study of the solubility of sulfadiazine in aqueous mixtures of Carbitol and N-Methyl-Pyrrolidoneeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098715256.2021.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: