Parámetros de atrofia muscular como predictores de desenlaces clínicos en pacientes de Unidad de Cuidados Intensivos

dc.contributor.advisorHernández-Álvarez, Edgar Debray
dc.contributor.authorGuzmán-David, Cristian Arvey
dc.contributor.cvlac0001535680spa
dc.contributor.orcid0000-0001-6259-8210spa
dc.contributor.researchgroupProfundización en Kinesioterapiaspa
dc.date.accessioned2023-07-05T14:51:26Z
dc.date.available2023-07-05T14:51:26Z
dc.date.issued2023-07-04
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractLa atrofia muscular implica alteraciones de tipo estructural y funcional relacionadas con la producción de fuerza muscular y movimiento. Esta condición se ha informado como la principal razón de la presencia de debilidad muscular generalizada; refleja la gravedad de la enfermedad y puede tener un impacto profundo en los resultados clínicos a corto y largo plazo, tales como: prolongación del tiempo con soporte ventilatorio, aumento de la estancia en Unidad de Cuidados Intensivos (UCI), disminución del estado funcional, extensión en las cifras de mortalidad, entre otras. Objetivo: Determinar si los parámetros de atrofia muscular mediante ecografía predicen tempranamente la debilidad muscular, morbilidad (días en Ventilación Mecánica (VM), días libres de VM y días de estancia en UCI), y mortalidad a 28 días en pacientes de la UCI del Hospital Universitario Nacional de Colombia. Tipo de estudio: Estudio observacional analítico tipo cohorte prospectiva. Metodología: Se incluyeron pacientes mayores de 18 años con patologías médicas o quirúrgicas, que requerían ventilación mecánica por más de 24 horas. Se excluyeron sujetos con comorbilidades que impedían la valoración de la fuerza muscular. Se registraron variables demográficas, diagnóstico, y factores de riesgo para debilidad muscular. El factor de exposición fue la atrofia muscular medida por ecografía. Los desenlaces considerados fueron fuerza muscular mediante Medical Research Council (MRC), fuerza muscular respiratoria, dinamometría manual y morbimortalidad. El análisis estadístico fue efectuado con el programa IBM-SPSS-Versión 19. Resultados: Se analizaron los resultados de 31 pacientes, 54.8% fue del sexo masculino, la edad promedio fue de 62.52 ±15,39. Las medidas de Área de Sección Transversal (AST) al inicio para cuádriceps derecho e izquierdo fue de 3,89 ±1,48 y 3,78 ±1,44cm2, mientras que el espesor muscular (EM) fue de 1,08 ±0,37 y 1,06 ±0,32cm respectivamente. A las 72 horas todas estas medidas presentaron disminución que osciló entre 5,39 a 16,96%. La atrofia mayor al 10% se presentó en el 58% del total de la cohorte. Se identificaron Odds Ratios (OR) que sugieren riesgo clínico de desenlaces como Debilidad Muscular Adquirida en la Unidad de Cuidados Intensivos (DAUCI) o morbilidad. Conclusión: Los pacientes analizados presentaron una pérdida consistente de la masa muscular en un periodo relativamente temprano. La ecografía muscular puede ser considerada como herramienta para el seguimiento temprano de la pérdida de masa muscular. La presencia de atrofia muscular confiere un mayor riesgo clínico para el desarrollo de DAUCI de extremidades y prensión manual. (Texto tomado de la fuente)spa
dc.description.abstractMuscle atrophy involves structural and functional alterations related to muscle strength production and movement. This condition has been reported as the main reason for the presence of generalized muscle weakness; it reflects the severity of the disease and can have a profound impact on short- and long-term clinical outcomes, such as: prolongation of time on ventilatory support, increased Intensive Care United (ICU) stay, decreased functional status, increased mortality, among others. Objective: To determine whether muscle atrophy parameters by ultrasound predict early muscle weakness, morbidity (days in Mechanical Ventilation (MV), days free of MV and days of ICU stay), and 28-day mortality in patients in the ICU of the Hospital Universitario Nacional de Colombia. Type of study: Analytical observational prospective cohort study. Methodology: Patients older than 18 years with medical or surgical pathologies that requiring mechanical ventilation for more than 24 hours were included. Subjects with comorbidities that prevented the assessment of muscle strength were excluded. Demographic variables, diagnosis, and risk factors for muscle weakness were recorded. The exposure factor was muscle atrophy measured by ultrasound. The outcomes considered were muscle strength by Medical Research Council (MRC), respiratory muscle strength, manual dynamometry, morbidity and mortality. Statistical analysis was performed with IBM-SPSS-Version 19. Results: The results of 31 patients were analyzed, 54.8% were male, the average age was 62.52 ±15.39. The cross-sectional area (CSA) measurements at baseline for right and left quadriceps were 3.89 ±1.48 and 3.78 ±1.44cm2, while muscle thickness (MT) was 1.08 ±0.37 and 1.06 ±0.32cm respectively. At 72 hours all these measurements showed a decrease ranging from 5.39 to 16.96%. Atrophy greater than 10% was present in 58% of the total cohort. Odds Ratios (OR) were identified suggesting clinical risk of outcomes such as Intensive Care Unit Acquired Muscle Weakness (ICUAW) or morbidity. Conclusion: The patients analyzed presented a consistent loss of muscle mass in a relatively early period. Muscle ultrasound can be considered as a tool for early monitoring of muscle wasting. The presence of muscle atrophy confers an increased clinical risk for the development of limb ICUAW and manual grip.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.researchareaSalud Muscular, Cuidado Crítico y Biomarcadoresspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84141
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.referencesHermans G, Van den Berghe G. Clinical review: Intensive care unit acquired weakness. Crit Care. 2015;19(1):1-9.spa
dc.relation.referencesVanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637-53.spa
dc.relation.referencesParry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30(5):1151.e9-1151.e14.spa
dc.relation.referencesKress J, Hall J. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 24 de abril de 2014;370(17):1626-35.spa
dc.relation.referencesWieske L, Dettling-Ihnenfeldt DS, Verhamme C, Nollet F, van Schaik IN, Schultz MJ, et al. Impact of ICU-acquired weakness on post-ICU physical functioning: a follow-up study. Crit Care. 27 de diciembre de 2015;19(1):196.spa
dc.relation.referencesN L. Critical illness polyneuropathy and myopathy 20 years later. No man’s land? No, it is our land! Intensive Care Med. 1 de noviembre de 2016;42(11):1790-3.spa
dc.relation.referencesFriedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. 2015;95(3):1025-109.spa
dc.relation.referencesFormenti P, Umbrello M, Coppola S, Froio S, Chiumello D. Clinical review: peripheral muscular ultrasound in the ICU. Ann Intensive Care. 2019;9(1).spa
dc.relation.referencesDupont AC, Sauerbrei EE, Fenton P V., Shragge PC, Loeb GE, Richmond FJR. Real-time sonography to estimate muscle thickness: Comparison with MRI and CT. J Clin Ultrasound. 2001;29(4):230-6.spa
dc.relation.referencesCeniccola GD, Castro MG, Piovacari SMF, Horie LM, Corrêa FG, Barrere APN, et al. Current technologies in body composition assessment: advantages and disadvantages. Nutrition. 1 de junio de 2019;62:25-31.spa
dc.relation.referencesWeinel LM, Summers MJ, Chapple LA. Ultrasonography to measure quadriceps muscle in critically ill patients: A literature review of reported methodologies. Anaesth Intensive Care. 2019;47(5):423-34.spa
dc.relation.referencesXie Y, Liu S, Zheng H, Cao L, Liu K, Li X. Utility of Plasma GDF-15 for Diagnosis and Prognosis Assessment of ICU-Acquired Weakness in Mechanically Ventilated Patients: Prospective Observational Study. BioMed Res Int. 2020;2020.spa
dc.relation.referencesKress JP, Hall JB. ICU-Acquired Weakness and Recovery from Critical Illness. N Engl J Med. 17 de julio de 2014;371(3):287-8.spa
dc.relation.referencesGamrin-Gripenberg L, Sundström-Rehal M, Olsson D, Grip J, Wernerman J, Rooyackers O. An attenuated rate of leg muscle protein depletion and leg free amino acid efflux over time is seen in ICU long-stayers. Crit Care Lond Engl. 23 de enero de 2018;22(1):13.spa
dc.relation.referencesJoskova V, Patkova A, Havel E, Najpaverova S, Uramova D, Kovarik M, et al. Critical evaluation of muscle mass loss as a prognostic marker of morbidity in critically ill patients and methods for its determination. J Rehabil Med. 2018;50(8):696-704.spa
dc.relation.referencesFilippin LI, Teixeira VN de O, da Silva MPM, Miraglia F, da Silva FS. Sarcopenia: a predictor of mortality and the need for early diagnosis and intervention. Aging Clin Exp Res. 1 de junio de 2015;27(3):249-54.spa
dc.relation.referencesParry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, Koopman R, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 1 de octubre de 2015;30(5):1151.e9-1151.e14.spa
dc.relation.referencesAli N, O’Brien J, Hoffmann S, Phillips G, Garland A, Finley JCW, et al. Acquired Weakness, Handgrip Strength, and Mortality in Critically Ill Patients. Am J Respir Crit Care Med. 1 de agosto de 2008;178(3):261-8.spa
dc.relation.referencesZhang W, Wu J, Gu Q, Gu Y, Zhao Y, Ge X, et al. Changes in muscle ultrasound for the diagnosis of intensive care unit acquired weakness in critically ill patients. Sci Rep. 2021;11(1):1-11.spa
dc.relation.referencesHermans G, Van den BerHermans, Gghe G. Clinical review: intensive care unit acquired weakness. Crit Care Lond Engl. 2008;19(1):274.spa
dc.relation.referencesFarhan H, Moreno-Duarte I, Latronico N, Zafonte R, Eikermann M. Acquired Muscle Weakness in the Surgical Intensive Care Unit: Nosology, Epidemiology, Diagnosis, and Prevention. Anesthesiology. 1 de enero de 2016;124(1):207-34.spa
dc.relation.referencesStevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. noviembre de 2007;33(11):1876-91.spa
dc.relation.referencesIwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis. JAMA. 27 de octubre de 2010;304(16):1787-94.spa
dc.relation.referencesHermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness: A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 15 de agosto de 2014;190(4):410-20.spa
dc.relation.referencesJolley SE, Bunnell AE, Hough CL. ICU-Acquired Weakness. Chest. 2016;150(5):1129-40.spa
dc.relation.referencesNedergaard A, Karsdal MA, Sun S, Henriksen K. Serological muscle loss biomarkers: an overview of current concepts and future possibilities. J Cachexia Sarcopenia Muscle. marzo de 2013;4(1):1-17.spa
dc.relation.referencesLooijaard WGPM, Molinger J. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24(4).spa
dc.relation.referencesWischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care Lond Engl. 2015;19 Suppl 3(Suppl 3):S6.spa
dc.relation.referencesMourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultrasound in critical care: A tool in need of translation. Ann Am Thorac Soc. 2017;14(10):1495-503.spa
dc.relation.referencesLatronico N, Herridge M, Hopkins RO, Angus D, Hart N, Hermans G, et al. The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med. 2017;43(9):1270-81.spa
dc.relation.referencesToledo DO, Freitas BJ de, Dib R, Pfeilsticker FJ do A, Santos DM dos, Gomes BC, et al. Peripheral muscular ultrasound as outcome assessment tool in critically ill patients on mechanical ventilation: An observational cohort study. Clin Nutr ESPEN. 2021;43:408-14.spa
dc.relation.referencesWitteveen E, Sommers J, Wieske L, Doorduin J, van Alfen N, Schultz MJ, et al. Diagnostic accuracy of quantitative neuromuscular ultrasound for the diagnosis of intensive care unit-acquired weakness: a cross-sectional observational study. Ann Intensive Care. 2017;7(1).spa
dc.relation.referencesHarris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: Reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ. 2016;2016(2):1-23.spa
dc.relation.referencesTillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. J Parenter Enter Nutr. 2014;38(7):886-90.spa
dc.relation.referencesParis MT, Mourtzakis M, Day A, Leung R, Watharkar S, Kozar R, et al. Validation of Bedside Ultrasound of Muscle Layer Thickness of the Quadriceps in the Critically Ill Patient (VALIDUM Study). J Parenter Enter Nutr. 2017;41(2):171-80.spa
dc.relation.referencesPardo E, El Behi H, Boizeau P, Verdonk F, Alberti C, Lescot T. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol. 27 de diciembre de 2018;18(1).spa
dc.relation.referencesOhtake PJ, Lee AC, Scott JC, Hinman RS, Ali NA, Hinkson CR, et al. Physical impairments associated with post-intensive care syndrome: Systematic review based on the world health organization’s international classification of functioning, disability and health framework. Vol. 98, Physical Therapy. Oxford University Press; 2018. p. 631-45.spa
dc.relation.referencesWandrag L, Brett SJ, Frost GS, Bountziouka V, Hickson M. Exploration of muscle loss and metabolic state during prolonged critical illness: Implications for intervention? PLoS ONE. 2019;14(11):6-16.spa
dc.relation.referencesHermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute Outcomes and 1-Year Mortality of Intensive Care Unit–acquired Weakness. A Cohort Study and Propensity-matched Analysis. Am J Respir Crit Care Med. 15 de agosto de 2014;190(4):410-20.spa
dc.relation.referencesPuthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA. 16 de octubre de 2013;310(15):1591.spa
dc.relation.referencesKlaude M, Fredriksson K, Tjäder I, Hammarqvist F, Ahlman B, Rooyackers O, et al. Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci. 1 de mayo de 2007;112(9):499-506.spa
dc.relation.referencesWeijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Straaten HMO van, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. 2014;R12:1-7.spa
dc.relation.referencesSchefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. diciembre de 2010;1(2):147-57.spa
dc.relation.referencesMoisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17(5):1.spa
dc.relation.referencesCampbell IT, Watt T, Withers D, England R, Sukumar S, Keegan MA, et al. Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema. Am J Clin Nutr. 1995;62(3):533-9.spa
dc.relation.referencesMoukas M, Vassiliou MP, Amygdalou A, Mandragos C, Takis F, Behrakis PK. Muscular mass assessed by ultrasonography after administration of low-dose corticosteroids and muscle relaxants in critically ill hemiplegic patients. Clin Nutr. 2002;21(4):297-302.spa
dc.relation.referencesReid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr. 2004;23(2):273-80.spa
dc.relation.referencesPuthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA - J Am Med Assoc. 2013;310(15):1591-600.spa
dc.relation.referencesHeckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101(5):656-60.spa
dc.relation.referencesGrimm A, Teschner U, Porzelius C, Ludewig K, Zielske J, Witte OW, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care. 7 de octubre de 2013;17(5).spa
dc.relation.referencesCartwright MS, Kwayisi G, Griffin LP, Sarwal A, Walker FO, Harris JM, et al. Quantitative neuromuscular ultrasound in the intensive care unit. Muscle Nerve. febrero de 2013;47(2):255-9.spa
dc.relation.referencesGrimm A, Teschner U, Porzelius C, Ludewig K, Zielske J, Witte OW, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care. 7 de octubre de 2013;17(5).spa
dc.relation.referencesPuthucheary ZA, Phadke R, Rawal J, McPhail MJW, Sidhu PS, Rowlerson A, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43(8):1603-11.spa
dc.relation.referencesGreening NJ, Harvey-Dunstan TC, Chaplin EJ, Vincent EE, Morgan MD, Singh SJ, et al. Bedside assessment of quadriceps muscle by ultrasound after admission for acute exacerbations of chronic respiratory disease. Am J Respir Crit Care Med. 2015;192(7):810-6.spa
dc.relation.referencesMueller N, Murthy S, Tainter CR, Lee J, Riddell K, Fintelmann FJ, et al. Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients as well as frailty? a prospective, observational cohort study. Ann Surg. 2016;264(6):1116-24.spa
dc.relation.referencesTourel C, Burnol L, Lanoiselé J, Molliex S, Viallon M, Croisille P, et al. Reliability of standardized ultrasound measurement of quadriceps muscle thickness in critically ill neurological patients: Comparison with computed tomography measures. J Rehabil Med. 2020;52(3).spa
dc.relation.referencesLee ZY, Ong SP, Ng CC, Yap CSL, Engkasan JP, Barakatun-Nisak MY, et al. Association between ultrasound quadriceps muscle status with premorbid functional status and 60-day mortality in mechanically ventilated critically ill patient: A single-center prospective observational study. Clin Nutr. 2021;40(3):1338-47.spa
dc.relation.referencesEr B, Simsek M, Yildirim M, Halacli B, Ocal S, Ersoy EO, et al. Association of baseline diaphragm, rectus femoris and vastus intermedius muscle thickness with weaning from mechanical ventilation. Respir Med. 2021;185(May):106503.spa
dc.relation.referencesStevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. octubre de 2009;37(10 Suppl):S299-308.spa
dc.relation.referencesKramer CL. Intensive Care Unit–Acquired Weakness. Neurol Clin. 2017;35(4):723-36.spa
dc.relation.referencesVanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637-53.spa
dc.relation.referencesKlionsky DJ. Autophagy revisited: A conversation with Christian de Duve. Landes Biosci. 16 de agosto de 2008;4(6):740-3.spa
dc.relation.referencesVanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Güiza F, et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. abril de 2011;96(4).spa
dc.relation.referencesJiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017;34:1-6.spa
dc.relation.referencesHermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: A subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1(8):621-9.spa
dc.relation.referencesWalsh C, Batt J, Herridge M, Mathur S, Bader G, Hu P, et al. Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness. Sci Rep. 14 de julio de 2016;6.spa
dc.relation.referencesClarke C, Xiao R, Place E, Zhang Z, Sondheimer N, Bennett M, et al. Mitochondrial respiratory chain disease discrimination by retrospective cohort analysis of blood metabolites. Mol Genet Metab. 2013;110(0).spa
dc.relation.referencesDempsey AF, Mehl J. Critical Care Ultrasound. Vol. 123, Anesthesia & Analgesia. 2016. 251 p.spa
dc.relation.referencesSilvestri E, Muda A, Orlandi D. Ultrasound Anatomy of Lower Limb Muscles. Ultrasound Anatomy of Lower Limb Muscles. 2015.spa
dc.relation.referencesSeymour JM, Ward K, Sidhu PS, Puthucheary Z, Steier J, Jolley CJ, et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 1 de mayo de 2009;64(5):418-23.spa
dc.relation.referencesAbe T, Loenneke JP, Thiebaud RS, Fukunaga T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age. 2014;36(2):813-21.spa
dc.relation.referencesTandon P, Low G, Mourtzakis M, Zenith L, Myers RP, Abraldes JG, et al. A Model to Identify Sarcopenia in Patients With Cirrhosis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 1 de octubre de 2016;14(10):1473-1480.e3.spa
dc.relation.referencesPardo E, Behi H El, Boizeau P, Verdonk F, Alberti C, Lescot T. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol. 2018;18(205):1-8.spa
dc.relation.referencesSarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, et al. Interobserver Reliability of Quantitative Muscle Sonographic Analysis in the Critically Ill Population. J Ultrasound Med. 1 de julio de 2015;34(7):1191-200.spa
dc.relation.referencesUmbrello M, Guglielmetti L, Formenti P, Antonucci E, Cereghini S, Filardo C, et al. Qualitative and quantitative muscle ultrasound changes in patients with COVID-19–related ARDS. Nutrition. 2021;91-92:111449.spa
dc.relation.referencesVon Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. octubre de 2007;4(10):1623-7.spa
dc.relation.referencesWang X, Kattan MW. Cohort Studies: Design, Analysis, and Reporting. Chest. 1 de julio de 2020;158(1):S72-8.spa
dc.relation.referencesBerndt AE. Sampling Methods. J Hum Lact. 2020;36(2):224-6.spa
dc.relation.referencesColimon KM. Fundamentos de Epidemiología. Statewide Agricultural Land Use Baseline 2015. 2015.spa
dc.relation.referencesHorn J, Hermans G. Intensive care unit-acquired weakness. 1.a ed. Vol. 141, Handbook of Clinical Neurology. Elsevier B.V.; 2017. 531-543 p.spa
dc.relation.referencesTaylor C. Intensive care unit acquired weakness. Anaesth Intensive Care Med. 2018;19(3):87-92.spa
dc.relation.referencesKelsey JL, Whittemore A, Evans AS, Thompson WD. Methods in observational epidemiology. 432 p.spa
dc.relation.referencesLee JJ, Waak K, Grosse-Sundrup M, Xue F, Lee J, Chipman D, et al. Global Muscle Strength But Not Grip Strength Predicts Mortality and Length of Stay in a General Population in a Surgical Intensive Care Unit. Phys Ther. 2012;92(12):1546-55.spa
dc.relation.referencesDiaz Ballve LP, Da rgains N, Inchaustegui JGU, Bratos A, Milagros Percaz M de los, Ardariz CB, et al. Weakness acquired in the intensive care unit. Incidence, risk factors and their association with inspiratory weakness. Observational cohort study. Rev Bras Ter Intensiva. 2017;29(4):466-75.spa
dc.relation.referencesNtoumenopoulos G, Parry SM, Neindre AL. Impact of an intensive education programme of diagnostic lung and lower limb ultrasound on physiotherapist knowledge: A pilot study. Australas J Ultrasound Med. 22 de marzo de 2018;21(2):104-14.spa
dc.relation.referencesGonzález-Seguel F, Pinto-Concha JJ, Ríos-Castro F, Silva-Gutiérrez A, Camus-Molina A, Mayer KP, et al. Evaluating a Muscle Ultrasound Education Program: Theoretical Knowledge, Hands-on Skills, Reliability, and Satisfaction of Critical Care Physiotherapists. Arch Rehabil Res Clin Transl. 2021;3(3):100142.spa
dc.relation.referencesYamada T, Minami T, Soni NJ, Hiraoka E, Takahashi H, Okubo T, et al. Skills acquisition for novice learners after a point-of-care ultrasound course: does clinical rank matter? BMC Med Educ. 22 de agosto de 2018;18(1):202.spa
dc.relation.referencesHadda V, Khilnani GC, Kumar R, Dhunguna A, Mittal S, Khan MA, et al. Intra- and inter-observer reliability of quadriceps muscle thickness measured with bedside ultrasonography by critical care physicians. Indian J Crit Care Med. 2017;21(7):448-52.spa
dc.relation.referencesHadda V, Kumar R, Hussain T, Khan MA, Madan K, Mohan A, et al. Reliability of ultrasonographic arm muscle thickness measurement by various levels of health care providers in ICU. Clin Nutr ESPEN. 2018;24:78-81.spa
dc.relation.referencesHadda V, Kumar R, Dhungana A, Khan MA, Madan K, Khilnani GC. Inter-and intra-observer variability of ultrasonographic arm muscle thickness measurement by critical care physicians. J Postgrad Med. 2017;63(3):157-61.spa
dc.relation.referencesWesley E, Truman B, Thomason JWW, Wheeler AP, Gordon S, Francis J, et al. Monitoring Sedation Status Over Time in ICU Patients Reliability and Validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2983-91.spa
dc.relation.referencesRojas-Gambasica JA, Valencia-Moreno A, Nieto-Estrada VH, Méndez-Osorio P, Molano-Franco D, Jiménez-Quimbaya AT, et al. Validación trascultural y lingustica de la escala de Sedación y Agitación Richmond al español. Rev Colomb Anestesiol. 2016;44(3):218-23.spa
dc.relation.referencesZhou C, Wu L, Ni F, Ji W, Wu J, Zhang H. Critical illness polyneuropathy and myopathy: a systematic review. Neural Regen Res. 1 de enero de 2014;9(1):101-10.spa
dc.relation.referencesMatos LC, Tavares MM, Amaral TF. Handgrip strength as a hospital admission nutritional risk screening method. Eur J Clin Nutr. 2007;61(9):1128-35.spa
dc.relation.referencesda Silva TK, Perry IDS, Brauner JS, Weber OCB, Souza GC, Vieira SRR. Performance evaluation of phase angle and handgrip strength in patients undergoing cardiac surgery: Prospective cohort study. Aust Crit Care. 2017;31:284-90.spa
dc.relation.referencesDaphnee DK, John S, Vaidya A, Khakhar A, Bhuvaneshwari S, Ramamurthy A. Hand grip strength: A reliable, reproducible, cost-effective tool to assess the nutritional status and outcomes of cirrhotics awaiting liver transplant. Clin Nutr ESPEN. 2017;19:49-53.spa
dc.relation.referencesLatronico N, Gosselink R. A guided approach to diagnose severe muscle weakness in the intensive care unit. Rev Bras Ter Intensiva. 2015;27(3):199-201.spa
dc.relation.referencesHernández-álvarez ED, Guzmán-David CA, Ruiz-González JC, Ortega-Hernández AM, Ortiz-González DC. Effect of a respiratory muscle training program on lung function, respiratory muscle strength and resting oxygen consumption in sedentary young people. Rev Fac Med. 2018;66(4).spa
dc.relation.referencesFormiga MF, Roach KE, Vital I, Urdaneta G, Balestrini K, Calderon-Candelario RA, et al. Reliability and validity of the test of incremental respiratory endurance measures of inspiratory muscle performance in COPD. Int J Chron Obstruct Pulmon Dis. 15 de mayo de 2018;13:1569.spa
dc.relation.referencesSpadaro S, Marangoni E, Ragazzi R, Mojoli F, Verri M, Longo L, et al. A methodological approach for determination of maximal inspiratory pressure in patients undergoing invasive mechanical ventilation. Minerva Anestesiol. 2015;81(1):33-8.spa
dc.relation.referencesMedrinal C, Prieur G, Frenoy É, Robledo Quesada A, Poncet A, Bonnevie T, et al. Respiratory weakness after mechanical ventilation is associated with one-year mortality - a prospective study. Crit Care. 2016;20(1):1-7.spa
dc.relation.referencesGibson GJ, Whitelaw W, Siafakas N, Supinski GS, Fitting JW, Bellemare F, et al. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518-624.spa
dc.relation.referencesTzanis G, Vasileiadis I, Zervakis D, Karatzanos E, Dimopoulos S, Pitsolis T, et al. Maximum inspiratory pressure, a surrogate parameter for the assessment of ICU-acquired weakness. BMC Anesthesiol. 26 de junio de 2011;11:14.spa
dc.relation.referencesGrigoriadis BK, Efstathiou I, Konstantopoulou G, Grigoriadou A, Vasileiadis G, Micha M, et al. Hangrip force and maximum inspiratory and expiratory pressures in critically ill patients with a tracheostomy. Am J Crit Care. 2021;30(2):48-53.spa
dc.relation.referencesMazzanti Di Ruggiero M. Declaración de Helsinki, principios y valores bioéticos en juego en la investigación médica con seres humanos. Rev Colomb Bioét. 2011;6(1):125-44.spa
dc.relation.referencesGood Clinical Practice Network. ICH GCP - ICH harmonised guideline integrated addendum to ICH E6(R1): Guideline for Good Clinical Practice ICH E6(R2) ICH Consensus Guideline - ICH GCP [Internet]. [citado 21 de noviembre de 2021]. Disponible en: https://ichgcp.net/esspa
dc.relation.referencesMinisterio de Salud. Resolución Número 8430 de 1993. 1993 p. 1-19.spa
dc.relation.referencesWorld Health Organization. Handbook for good clinical research practice (GCP) : guidance for implementation. 2005. 1-125 p.spa
dc.relation.referencesCongreso de la Republica de Colombia. Ley 1581 de 2012 - EVA - Función Pública [Internet]. 2012 [citado 21 de noviembre de 2021]. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49981spa
dc.relation.referencesMinesterio de Salud. Resolución Número 1995 de 1999. 1999 p. 1-7.spa
dc.relation.referencesYang T, Li Z, Jiang L, Wang Y, Xi X. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. agosto de 2018;138(2):104-14.spa
dc.relation.referencesHrdy O, Vrbica K, Kovar M, Korbicka T, Stepanova R, Gal R. Incidence of muscle wasting in the critically ill: a prospective observational cohort study. Sci Rep. 13 de enero de 2023;13(1):742.spa
dc.relation.referencesBloch SAA, Lee JY, Wort SJ, Polkey MI, Kemp PR, Griffiths MJD. Sustained Elevation of Circulating Growth and Differentiation Factor-15 and a Dynamic Imbalance in Mediators of Muscle Homeostasis Are Associated With the Development of Acute Muscle Wasting Following Cardiac Surgery*. Crit Care Med. abril de 2013;41(4):982.spa
dc.relation.referencesBloch SA, Donaldson AV, Lewis A, Banya WA, Polkey MI, Griffiths MJ, et al. MiR-181a: a potential biomarker of acute muscle wasting following elective high-risk cardiothoracic surgery. Crit Care. 1 de diciembre de 2015;19(1):147.spa
dc.relation.referencesStrasser EM, Draskovits T, Praschak M, Quittan M, Graf A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age Dordr Neth. diciembre de 2013;35(6):2377-88.spa
dc.relation.referencesParry SM, Burtin C, Denehy L, Puthucheary ZA, Bear D. Ultrasound Evaluation of Quadriceps Muscle Dysfunction in Respiratory Disease. Cardiopulm Phys Ther J. 2019;30(1):15-23.spa
dc.relation.referencesLad H, Saumur TM, Herridge MS, dos Santos CC, Mathur S, Batt J, et al. Intensive Care Unit-Acquired Weakness: Not Just Another Muscle Atrophying Condition. Int J Mol Sci. 22 de octubre de 2020;21(21):7840.spa
dc.relation.referencesOchala J, Larsson L. Effects of a preferential myosin loss on Ca2+ activation of force generation in single human skeletal muscle fibres. Exp Physiol. abril de 2008;93(4):486-95.spa
dc.relation.referencesLarsson L, Li X, Edström L, Eriksson LI, Zackrisson H, Argentini C, et al. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med. enero de 2000;28(1):34-45.spa
dc.relation.referencesPalakshappa JA, Reilly JP, Schweickert WD, Anderson BJ, Khoury V, Shashaty MG, et al. Quantitative peripheral muscle ultrasound in sepsis: Muscle area superior to thickness. J Crit Care. octubre de 2018;47:324-30.spa
dc.relation.referencesBorges RC, Barbeiro HV, Barbeiro DF, Soriano FG. Muscle degradation, vitamin D and systemic inflammation in hospitalized septic patients. J Crit Care. abril de 2020;56:125-31.spa
dc.relation.referencesFazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care. 3 de enero de 2023;27(1):2.spa
dc.relation.referencesMcNelly AS, Bear DE, Connolly BA, Arbane G, Allum L, Tarbhai A, et al. Effect of Intermittent or Continuous Feed on Muscle Wasting in Critical Illness: A Phase 2 Clinical Trial. Chest. julio de 2020;158(1):183-94.spa
dc.relation.referencesEvans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med. 4 de octubre de 2021;spa
dc.relation.referencesIwatsu K, Iida Y, Kono Y, Yamazaki T, Usui A, Yamada S. Neuromuscular electrical stimulation may attenuate muscle proteolysis after cardiovascular surgery: A preliminary study. J Thorac Cardiovasc Surg. febrero de 2017;153(2):373-379.e1.spa
dc.relation.referencesAnnetta MG, Pittiruti M, Silvestri D, Grieco DL, Maccaglia A, La Torre MF, et al. Ultrasound assessment of rectus femoris and anterior tibialis muscles in young trauma patients. Ann Intensive Care. 6 de octubre de 2017;7(1):104.spa
dc.relation.referencesVan Zanten ARH, De Waele E, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit Care Lond Engl. 21 de noviembre de 2019;23(1):368.spa
dc.relation.referencesPreiser JC, Ichai C, Orban JC, Groeneveld ABJ. Metabolic response to the stress of critical illness. Br J Anaesth. diciembre de 2014;113(6):945-54.spa
dc.relation.referencesPuthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 16 de octubre de 2013;310(15):1591-600.spa
dc.relation.referencesKhan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology. 24 de octubre de 2006;67(8):1421-5.spa
dc.relation.referencesKemp PR, Paul R, Hinken AC, Neil D, Russell A, Griffiths MJ. Metabolic profiling shows pre-existing mitochondrial dysfunction contributes to muscle loss in a model of ICU-acquired weakness. J Cachexia Sarcopenia Muscle. octubre de 2020;11(5):1321-35.spa
dc.relation.referencesde Jonghe B, Lacherade JC, Sharshar T, Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Crit Care Med. octubre de 2009;37(10 Suppl):S309-315.spa
dc.relation.referencesWieske L, Witteveen E, Verhamme C, Dettling-Ihnenfeldt DS, van der Schaaf M, Schultz MJ, et al. Early prediction of intensive care unit-acquired weakness using easily available parameters: a prospective observational study. PloS One. 2014;9(10):e111259.spa
dc.relation.referencesNakanishi N, Tsutsumi R, Okayama Y, Takashima T, Ueno Y, Itagaki T, et al. Monitoring of muscle mass in critically ill patients: Comparison of ultrasound and two bioelectrical impedance analysis devices. J Of [Internet]. 2019;7(1).spa
dc.relation.referencesDusseaux MM, Antoun S, Grigioni S, Béduneau G, Carpentier D, Girault C, et al. Skeletal muscle mass and adipose tissue alteration in critically ill patients. PloS One. 2019;14(6):e0216991.spa
dc.relation.referencesWitteveen E, Wieske L, Sommers J, Spijkstra JJ, de Waard MC, Endeman H, et al. Early Prediction of Intensive Care Unit–Acquired Weakness: A Multicenter External Validation Study. J Intensive Care Med. junio de 2020;35(6):595-605.spa
dc.relation.referencesFoster J. Complications of Sedation in Critical Illness: An Update. Crit Care Nurs Clin North Am. junio de 2016;28(2):227-39.spa
dc.relation.referencesParry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extreme Physiol Med. 2015;4:16.spa
dc.relation.referencesVan den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2 de febrero de 2006;354(5):449-61.spa
dc.relation.referencesDe Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 11 de diciembre de 2002;288(22):2859-67.spa
dc.relation.referencesParry SM, Burtin C, Denehy L, Puthucheary ZA, Bear D. Ultrasound Evaluation of Quadriceps Muscle Dysfunction in Respiratory Disease. Cardiopulm Phys Ther J. enero de 2019;30(1):15.spa
dc.relation.referencesLee SJ, Janssen I, Heymsfield SB, Ross R. Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr. noviembre de 2004;80(5):1215-21.spa
dc.relation.referencesHashim A, Tahir MJ, Ullah I, Asghar MS, Siddiqi H, Yousaf Z. The utility of point of care ultrasonography (POCUS). Ann Med Surg. 2 de noviembre de 2021;71:102982.spa
dc.relation.referencesLe Neindre A, Mongodi S, Philippart F, Bouhemad B. Thoracic ultrasound: Potential new tool for physiotherapists in respiratory management. A narrative review. J Crit Care. febrero de 2016;31(1):101-9.spa
dc.relation.referencesHayward SA, Janssen J. Use of thoracic ultrasound by physiotherapists: a scoping review of the literature. Physiotherapy. diciembre de 2018;104(4):367-75.spa
dc.relation.referencesWong A, Galarza L, Duska F. Critical Care Ultrasound: A Systematic Review of International Training Competencies and Program. Crit Care Med. marzo de 2019;47(3):e256.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsUnidad de cuidados intensivosspa
dc.subject.decsIntensive Care Unitseng
dc.subject.decsTrastornos musculares atróficosspa
dc.subject.decsMuscular Disorders, Atrophiceng
dc.subject.proposalUltrasonografíaspa
dc.subject.proposalMorbilidadspa
dc.subject.proposalMortalidadspa
dc.subject.proposalUnidad de Cuidados Intensivosspa
dc.subject.proposalAtrofia Muscularspa
dc.subject.proposalUltrasonographyeng
dc.subject.proposalMorbidityeng
dc.subject.proposalMortalityeng
dc.subject.proposalIntensive Care Unitseng
dc.subject.proposalMuscular Atrophyeng
dc.titleParámetros de atrofia muscular como predictores de desenlaces clínicos en pacientes de Unidad de Cuidados Intensivosspa
dc.title.translatedParameters of muscle atrophy as predictors of clinical outcomes in intensive care unit patients.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCONVOCATORIA NACIONAL PARA EL FOMENTO DE ALIANZAS INTERDISCIPLINARIAS QUE ARTICULEN INVESTIGACIÓN, CREACIÓN, EXTENSIÓN Y FORMACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA 2019-2022spa
oaire.fundernameDirección Nacional de Investigación y Laboratorios de la Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis ECO-UCI.pdf
Tamaño:
2.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: