Zariski cancellation problem for skew PBW extensions

dc.contributor.advisorLezama Serrano, José Oswaldospa
dc.contributor.authorVenegas Ramírez, Helbert Javierspa
dc.contributor.researchgroupSeminario de álgebra constructiva, SAC2spa
dc.date.accessioned2020-08-05T22:32:16Zspa
dc.date.available2020-08-05T22:32:16Zspa
dc.date.issued2020-06-19spa
dc.description.abstractA special question for noncommutative algebras is Zariski cancellation problem. In this thesis we establish cancellation for some special classes of algebras such as skew PBW extensions, some Artin--Schelter regular algebras and universal enveloping algebras of dimension three. In addition, we provide general properties for cancellation and we present a noncommutative analogues of a cancellation theorem for algebras of Gelfand-Kirillov dimension one.spa
dc.description.abstractUna pregunta especial para álgebras no conmutativas es el problema de cancelación de Zariski. En esta tesis, establecemos cancelación para algunas clases especiales de álgebras como extensiones PBW torcidas, algunas álgebras Artin--Schelter regulares y álgebras envolvente universal de dimensión tres. Adicionalmente, proveemos propiedades generales para cancelación y presentamos un análogo no conmutativo del teorema de cancelación para álgebras de dimensión Gelfand-Kirillov uno.spa
dc.description.additionalResearch line Noncommutative Algebra.spa
dc.description.additionalLínea de investigación: Álgebra no conmutativaspa
dc.description.degreelevelDoctoradospa
dc.format.extent96spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationH. Venegas, Zariski cancellation problem, Ph.D Thesis, Universidad Nacional de Colombia, Bogotá (2020).spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77946
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesJ.P. Acosta, C. Chaparro, O. Lezama, I. Ojeda, and C. Venegas, Ore and Goldie theorems for skew PBW extensions Asian-European Journal of Mathematics, 6(4) (2013).spa
dc.relation.referencesJ. Alev and F. Dumas, {\it Sur le corps des fractions de certaines algèbres quantiques}, J. of Algebra, {\bf 170} (1994), 229-265.spa
dc.relation.referencesS. Abhyankar, P. Eakin and W. Heinzer, {\it On the uniqueness of the coefficient ring in a polynomial ring}, \emph{J. Algebra} {\bf 23} (1972), 310--342.spa
dc.relation.referencesF.W. Anderson and K.R. Fuller, \emph{Rings and categories of modules}, Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974.spa
dc.relation.referencesE. Armendariz, H.K. Koo and J. Park, {\it Isomorphic Ore extensions}, Comm. Algebra {\bf 15} (1987), N° 12, 2633-2652.spa
dc.relation.referencesL.P. Acosta, O. Lezama, and M.A. Reyes, {\it Prime ideals of skew $PBW$ extensions}, Revista de la Unión Matemática Argentina, {\bf 56}(2)(2015), 39-55.spa
dc.relation.referencesM. Artin and W. Schelter, {\it Graded algebras of global dimension 3}, Adv. Math. {\bf 66} (1987), 171--216.spa
dc.relation.referencesM. Artin, L. Small and J.J. Zhang, {\it Generic flatness for strongly noetherian algebras}, \emph{J. Algebra} {\bf 221} (1999), 579--610.spa
dc.relation.referencesM. Artin, J. Tate and M. Van den Bergh, {\it Modules over regular algebras of dimension 3}, Invent. Math. {\bf106}(2) (1991), 335-388.spa
dc.relation.referencesM. Artin, J. Tate and M. Van den Bergh, {\it Some algebras associated to automorphisms of elliptic curves}, in P.Cartier, et al. (Eds.), The Grothendieck Festschrift, Birkhäuser, Basel, {\bf 1} (1990), 33-85.spa
dc.relation.referencesM. Artin and J. J. Zhang, {\it Noncommutative projective schemes}, \emph{Adv. Math.} {\bf 109} (1994), 228-287.spa
dc.relation.referencesJ. Bell, M. Hamidizadeh, H. Huang and H. Venegas, \emph{ Noncommutative analogues of a cancellation theorem of Abhyankar, Eakin, and Heinzer}. Available at arXiv:1909.04023, to appear in contributions to Algebra and Geometry.spa
dc.relation.referencesA. Bell and K. Goodearl, \textit{Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions}, Pacific J. Math., {\bf131} (1) (1988), 13-37.spa
dc.relation.referencesJ. Bell and J. J. Zhang, {\it Zariski cancellation problem for noncommutative algebras}, \emph{Selecta Math.} (N.S.) {\bf 23}(3) (2017), 1709--1737.spa
dc.relation.referencesJ. Bell and J.J. Zhang, {\it An isomorphism lemma for graded rings}, \emph{Proc. Am. Math. Soc.} {\bf 145}(3) (2017), 989--994.spa
dc.relation.referencesG. Bellany, D. Rogalski, T. Schedler, T. Stafford and M. Wemyss. {\it Noncommutative algebraic geometric}, MSRI, (2016), 356.spa
dc.relation.referencesJ. Bergen, {\it Cancellation in skew polynomial rings}, \emph{Comm. Algebra} {\bf 46}(2) (2018), 705--707.spa
dc.relation.referencesN. Bourbaki, \emph{Algebra II. Chapters 4--7}. Translated from the 1981 French edition by P. M. Cohn and J. Howie. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2003.spa
dc.relation.referencesJ.W. Brewer and E.A. Rutter, {\it Isomorphic polynomial rings}, \emph{Arch. Math.} (Basel) {\bf 23} (1972), 484--488.spa
dc.relation.referencesK.A. Brown and K.R. Goodearl, \emph{Lectures on algebraic quantum groups}, Biskhauser Basel, 2002.spa
dc.relation.referencesK.A. Brown and M.T. Yakimov, {\it Azumaya loci and discriminant ideals of PI algebras}, \emph{Adv. Math.} {\bf 340} (2018), 1219--1255.spa
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas and A. Verschoren, Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups, Kluwer, 2003.spa
dc.relation.referencesS. Ceken, J. Palmieri, Y.-H. Wang and J.J. Zhang, {\it The discriminant controls automorphism groups of noncommutative algebras}, \emph{Adv. Math.} {\bf 269} (2015), 551--584.spa
dc.relation.referencesS. Ceken, J. Palmieri, Y.-H. Wang and J.J. Zhang, {\it The discriminant criterion and the automorphism groups of quantized algebras}, \emph{Adv. Math.} {\bf 286} (2016), 754--801.spa
dc.relation.referencesK. Chan, A. Young, and J.J. Zhang, {\it Discriminant formulas and applications}, \emph{Algebra Number Theory} {\bf 10}(3) (2016), 557--596.spa
dc.relation.referencesK. Chan, A. Young, and J.J. Zhang, {\it Discriminants and Automorphism Groups of Veronese subrings of skew polynomial rings}, \emph{Math. Z.}, {\bf 288}(3-4) (2018), 1395--1420.spa
dc.relation.referencesK. Chan, A. Young, and J.J. Zhang, {\it Noncommutative Cyclic Isolated Singularities}, preprint (2019), arXiv:1902.04847.spa
dc.relation.referencesD.B. Coleman and E.E. Enochs, {\it Isomorphic polynomial rings}, \emph{Proc. Amer. Math. Soc.} {\bf 27} (1971), 247--252.spa
dc.relation.referencesA. Crachiola and L. Makar-Limanov, {\it On the rigidity of small domains}, J. Algebra {\bf 284}(1) (2005), 1--12.spa
dc.relation.referencesW. Danielewski, {\it On the cancellation problem and automorphism groups of affine algebraic varieties}, preprint, 1989, 8 pages, Warsaw.spa
dc.relation.referencesJ. Dixmier, \textit{Enveloping Algebras}. AMS, 1996.spa
dc.relation.referencesJ. Dixmier, \textit{Sur les alg\`{e}bres de Weyl}, Bulletin de la S.M.F., {\bf96} (1968), 209-242.spa
dc.relation.referencesB. Farb and R. K. Dennis, \emph{Noncommutative algebra.} Graduate Texts in Mathematics, 144. Springer-Verlag, New York, 1993.spa
dc.relation.referencesG. Freudenburg, {\it Algebraic theory of locally nilpotent derivations}, Second edition. Encyclopaedia of Mathematical Sciences, {\bf 136}. Invariant Theory and Algebraic Transformation Groups, VII. Springer-Verlag, Berlin, 2017.spa
dc.relation.referencesT. Fujita, {\it On Zariski problem}, \emph{Proc. Japan Acad.} {\bf 55}(A) (1979) 106--110.spa
dc.relation.referencesD. Gale, {\it Subalgebras of an algebra with a single generator are finitely generated}, Proc. Amer. Math. Soc. {\bf 8} (1957), 929-930.spa
dc.relation.referencesJ. Gaddis, {\it The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras}, \emph{J. Pure Appl. Algebra} {\bf 221}(10) (2017), 2511--2524.spa
dc.relation.referencesJ. Gaddis, E. Kirkman and W.F. Moore, {\it On the discriminant of twisted tensor products}, \emph{Journal of Algebra} {\bf 477} (2017), 29--55.spa
dc.relation.referencesJ. Gaddis, E. Kirkman, W.F. Moore and R. Won, {\it Auslander's Theorem for permutation actions on noncommutative algebras}, \emph{Proc. Amer. Math. Soc.} {\bf 147}(5) (2019), 1881--1896.spa
dc.relation.referencesC. Gallego and O. Lezama, {\it Gr\"obner bases for ideals of sigma-PBW extensions}, Comm. Algebra, {\bf39} (1) (2011), 50-75.spa
dc.relation.referencesC. Gallego and O. Lezama, {\it Projective modules and Gröbner bases for skew PBW extensions}, Dissertationes Mathematicae, {\bf521} (2017), 1-50.spa
dc.relation.referencesJ. Gaddis and X.-T. Wang, {\it The Zariski cancellation problem for Poisson algebras}, preprint (2019), arxiv:1904.05836.spa
dc.relation.referencesJ. Gaddis, R. Won and D. Yee, {\it Discriminants of Taft algebra smash products and applications}, \emph{Algebr. Represent. Theory}, (2019), https://doi.org/10.1007/s10468-018-9798-0.spa
dc.relation.referencesI. Gelfand and A. Kirillov, Sur le corps liés aux alg\`{e}bres enveloppantes des alg\`{e}bres de Lie, Math. IHES, 31, (1966), 509-523.spa
dc.relation.referencesN. Gupta, {\it On the Cancellation Problem for the Affine Space ${\mathbb A}^3$ in characteristic $p$}, \emph{Inventiones Math.} {\bf 195}(1) (2014), 279--288.spa
dc.relation.referencesN. Gupta, {\it On Zariski's cancellation problem in positive characteristic}, \emph{Adv. Math.} {\bf 264} (2014), 296--307.spa
dc.relation.referencesN. Gupta, {\it A survey on Zariski cancellation problem}, \emph{Indian J. Pure Appl. Math.} {\bf 46}(6) (2015), 865--877.spa
dc.relation.referencesM. Hochster, {\it Non-uniqueness of the ring of coefficients in a polynomial ring}, \emph{Proc. Amer. Math. Soc.}, {\bf 34} (1972), 81-82.spa
dc.relation.referencesA. Isaev, P. Pyatov and V. Rittenberg, {\it Diffusion algebras}, {\emph J. Phys. A: Math. Gen.}, {\bf34} (2001), 5815.spa
dc.relation.referencesN. Jacobson, \emph{Lie algebras}, Dover publications, Inc., New York (1979).spa
dc.relation.referencesH. Kraft, {\it Challenging problems on affine $n$-space. S{\'e}minaire Bourbaki}, Vol. 1994/95. \emph{Ast{\'e}risque}, No. {\bf 237} (1996), Exp. No. 802, 5, 295--317.spa
dc.relation.referencesG.R. Krause and T.H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics, Pitman Adv. Publ. Program, {\bf 116} (1985).spa
dc.relation.referencesT. Levasseur, {\it Some properties of non-commutative regular rings}, \emph{Glasgow Math. J.} {\bf 34} (1992), 277--300.spa
dc.relation.referencesV. Levandovskyy, Non-commutatve Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Doctoral Thesis, Universität Kaiserslautern, Germany, 2005.spa
dc.relation.referencesJ. Levitt and M. Yakimov, {\it Quantized Weyl algebras at roots of unity}, \emph{Israel J. Math.} {\bf 225}(2) (2018), 681--719.spa
dc.relation.referencesO. Lezama and M. Reyes, {\it Some homological properties of skew $PBW$ extensions}, Comm. Algebra, {\bf42}, (2014), 1200-1230.spa
dc.relation.referencesO. Lezama and H. Venegas, {\it Center of skew $PBW$ extensions}, arXiv: 1804.05425 [math.RA], 2018.spa
dc.relation.referencesO. Lezama and H. Venegas, {\it The center of the total ring of fractions}, arXiv: 1911.1062 [math.RA], 2019.spa
dc.relation.referencesO. Lezama and H. Venegas, {\it Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry}, Discussiones Mathematicae-General Algebra and Applications, {\bf37} (1) (2017), 45-57.spa
dc.relation.referencesO. Lezama, Y.-H. Wang and J.J. Zhang, {\it Zariski cancellation problem for non-domain noncommutative algebras}, \emph{Math. Z.} {\bf292}(3-4) (2019), 1269--1290, https://doi.org/10.1007/s00209-018-2153-7.spa
dc.relation.referencesJ.-F. L{\"u}, X.-F. Mao and J.J. Zhang, {\it Nakayama automorphism and applications}, \emph{Trans. Amer. Math. Soc.} {\bf 369}(4) (2017), 2425--2460.spa
dc.relation.referencesD.-M. Lu, J.H. Palmieri, Q.-S. Wu and J.J. Zhang, {\it Regular algebras of dimension 4 and their $A_{\infty}$-Ext-algebras}, \emph{Duke Math. J.} {\bf 137}(3) (2007), 537--584.spa
dc.relation.referencesD.-M. Lu, Q.-S. Wu and J.J. Zhang, {\it Morita cancellation problem}, \emph{Canadian J. Math.} (2019), (to appear).spa
dc.relation.referencesL. Makar-Limanov, \emph{Locally nilpotent derivations, a new ring invariant and applications}. Available online at \url{http://www.math.wayne.edu/~lml/lmlnotes}.spa
dc.relation.referencesL. Makar-Limanov, {\it On the hypersurface $x+x^2y+z^2+t^3=0$ in ${\bf C}^4$ or a ${\bf C}^3$-like threefold which is not ${\bf C}^3$}, Israel J. Math. {\bf 96} (1996), part B, 419--429.spa
dc.relation.referencesA.I. Malcev, {\it On the representations of infinite algebras}. (Russian) \emph{Rec. Math.} [Mat. Sbornik] N.S. {\bf13} (55) (1943). 263--286.spa
dc.relation.referencesJ.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.spa
dc.relation.referencesM. Miyanishi and T. Sugie, {\it Affine surfaces containing cylinderlike open sets}, \emph{J. Math. Kyoto Univ.} {\bf 20} (1980), 11--42.spa
dc.relation.referencesI. Mori and K. Ueyama, {\it Ample Group Action on AS-regular Algebras and Noncommutative Graded Isolated Singularities}, \emph{Trans. Amer. Math. Soc.} {\bf 368}(10) (2016), 7359--7383.spa
dc.relation.referencesI. Mori and K. Ueyama, {\it Stable categories of graded maximal Cohen-Macaulay modules over noncommutative quotient singularities}, \emph{Adv. Math.} {\bf 297} (2016), 54--92.spa
dc.relation.referencesA. Nowicki, {\it Finitely generated subrings of $R[x]$}, Analitic and Algebraic Geometry 3, Lódz university press (2019), 117-141.spa
dc.relation.referencesB. Nguyen, K. Trampel, and M. Yakimov, {\it Noncommutative discriminants via Poisson primes}, \emph{Adv. Math.} {\bf 322} (2017), 269--307.spa
dc.relation.referencesM. A. Reyes, {\it Ring and Module Theoretic Properties of $\sigma$-PBW Extensions}, Ph.D. Thesis, Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesD. Rogalski, S.J. Sierra and J.T. Stafford, {\it Algebras in which every subalgebra is Noetherian}, \emph{Proc. Amer. Math. Soc.} {\bf 142}(9) (2014), 2983--2990.spa
dc.relation.referencesP. Russell, {\it On Affine-Ruled rational surfaces}, \emph{Math. Ann.}, {\bf 255} (3) (1981), 287--302.spa
dc.relation.referencesE.N. Shirikov, {\it Two-generated graded algebras}, \emph{Algebra Discrete Math.} {\bf 3} (2005), 64--80.spa
dc.relation.referencesL.W. Small and R.B. Warfield Jr., {\it Prime affine algebras of Gelfand-Kirillov dimension one}, \emph{J. Algebra} {\bf 91}(2) (1984), 386--389.spa
dc.relation.referencesS.P. Smith and J.J. Zhang, {\it A remark on Gelfand-Kirillov dimension}, \emph{Proc. Amer. Math. Soc.} {\bf 126}(2) (1998), 349--352.spa
dc.relation.referencesJ.T. Stafford, {\it Auslander-regular algebras and maximal orders}, \emph{J. London Math. Soc.} {\bf 50}(2), (1994), 276--292.spa
dc.relation.referencesD.R. Stephenson and J.J. Zhang, {\it Growth of graded Noetherian rings}, \emph{Proc. Amer. Math. Soc.} {\bf 125}(6), (1997), 1593--1605.spa
dc.relation.referencesM. Suzuki, {\it Propri{\'e}t{\'e}s topologiques des polynomes de deux variables complex et automorphisms alg{\'e}briques de l'espace C2}, \emph{J. Math. Soc. Japan} {\bf 26} (3) (1974), 241--257.spa
dc.relation.referencesX. Tang, {\it Automorphisms for some symmetric multiparameter quantized Weyl algebras and their localizations}, \emph{Algebra Colloq.} {\bf 24}(3) (2017), 419--438.spa
dc.relation.referencesX. Tang, {\it The Automorphism Groups for a family of Generalized Weyl Algebras}, \emph{J Algebra Appl} {\bf 18} (2018), 1850142.spa
dc.relation.referencesX. Tang, H. Venegas, J. Zhang, \emph{Cancellation problem for AS-regular algebras of dimension three}, (2019). Available at arXiv:1904.07281.spa
dc.relation.referencesK. Ueyama, {\it Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities}, \emph{J. Algebra} {\bf 383} (2013), 85-103.spa
dc.relation.referencesA. van den Essen, {\it Polynomial Automorphisms and the Jacobian conjecture}, Prog. Math., Vol.{\bf190}, Birkhäuser Verlag, Basel, (2000).spa
dc.relation.referencesY.-H. Wang and J.J. Zhang, {\it Discriminants of noncommutative algebras and their applications} (in Chinese), \emph{Sci. China Math.} {\bf 48} (2018), 1615--1630, doi: 10.1360/N012017-00263.spa
dc.relation.referencesC.A. Weibel, {\it An introduction to homological algebra}, Cambridge Studies in Advanced Mathematics, {\bf 38} Cambridge University Press, Cambridge, 1994.spa
dc.relation.referencesS.L. Woronowicz, {\it Twisted $SU(2)$ group. An example of a noncommutative di\-ffe\-ren\-tial calculus}, Publ. RIMS, Kyoto Univ., {\bf23} (1987), 117-181.spa
dc.relation.referencesZ. Yi, {\it Homological dimension of skew group rings and crossed products}, \emph{J. Algebra} {\bf 164}(1) (1994), 101--123.spa
dc.relation.referencesH. Zhang, {\it The representations of the coordinate ring of the quantum symplectic space}, J. Pure Appl. Algebra, {\bf150} (2000), 95-106.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalcancellationeng
dc.subject.proposalcancelaciónspa
dc.subject.proposalretractablespa
dc.subject.proposalretractableeng
dc.subject.proposaldetectableeng
dc.subject.proposaldetectablespa
dc.subject.proposalmorita cancelaciónspa
dc.subject.proposalmorita cancellationeng
dc.subject.proposallocally nilpotent derivationeng
dc.subject.proposalderivación localmente nilpotentespa
dc.subject.proposalmakar-Limanov invarianteng
dc.subject.proposalinvariante de Makar-Limanovspa
dc.subject.proposalhopfianeng
dc.subject.proposalhopfianspa
dc.subject.proposaldiscriminantespa
dc.subject.proposaldiscriminanteng
dc.subject.proposalcentrospa
dc.subject.proposalcentereng
dc.subject.proposalextensiones PBW torcidasspa
dc.subject.proposalskew P BW extensionseng
dc.subject.proposalAS-regular algebraseng
dc.subject.proposalálgebras regulares de Artin--Schelterspa
dc.titleZariski cancellation problem for skew PBW extensionsspa
dc.title.alternativeProblema de cancelación de Zariski para extenciones P BW torcidasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070009632.2020.pdf
Tamaño:
959.26 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: