Seguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctrica

dc.contributor.advisorCandelo Becerra, John Edwin
dc.contributor.authorSerna Toro, Juan Sebastian
dc.date.accessioned2022-08-22T20:53:09Z
dc.date.available2022-08-22T20:53:09Z
dc.date.issued2022-05-15
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEn este trabajo de grado se abordan los principales retos de la operación y planeación del sistema eléctrico bajo la regulación CREG 060 de 2019. Se aborda el tema de pronósticos de potencia de plantas solares haciendo uso de redes neuronales recurrentes. Se plantea una metodología para operar de manera segura el sistema teniendo en cuenta la variación de corto tiempo asociado a este tipo de plantas y finalmente se propone una modificación al calculo de la región segura de operación que considera la variación de las renovables. (Texto tomado de la fuente)spa
dc.description.abstractIn this degree work, the main challenges of the operation and planning of the electrical system under the CREG 060 regulation of 2019 are addressed. The issue of power forecasts of solar plants is addressed using recurrent neural networks. A methodology is proposed to safely operate the system, considering the short-time variation associated with this type of plant, and finally a modification to the calculation of the safe region of operation that considers the variation of renewables is proposed.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.format.extent67 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81999
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesO. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113.spa
dc.relation.references“RE-thinking 2050.” www.erec.org (accessed Sep. 02, 2013).spa
dc.relation.references“World Energy Outlook 2012.” www.iae.org (accessed Aug. 15, 2013).spa
dc.relation.referencesUPME, “‘Informe registro de proyectos’ - https://www1.upme.gov.co/Paginas/Registro.aspx" ,” Nov. 18, 2021.spa
dc.relation.referencesComisión de Regulación de Energía y Gas, “Resolución N° 060 de 2019.” p. 44, 2019.spa
dc.relation.referencesP. Li et al., “Operational flexibility of active distribution networks: Definition, quantified calculation and application,” International Journal of Electrical Power & Energy Systems, vol. 119, p. 105872, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105872.spa
dc.relation.referencesM. A. Bucher, S. Delikaraoglou, K. Heussen, P. Pinson, and G. Andersson, “On quantification of flexibility in power systems,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232514.spa
dc.relation.referencesJ. Zhang, G. Xiong, K. Meng, P. Yu, G. Yao, and Z. Dong, “An improved probabilistic load flow simulation method considering correlated stochastic variables,” International Journal of Electrical Power and Energy Systems, vol. 111, no. March, pp. 260–268, 2019, doi: 10.1016/j.ijepes.2019.04.007.spa
dc.relation.referencesF. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.spa
dc.relation.referencesF. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.spa
dc.relation.referencesC. Liu, “A New Method for the Construction of Maximal Steady-State Security Regions of Power Systems,” IEEE Power Engineering Review, vol. PER-6, no. 11, pp. 25–26, 1986, doi: 10.1109/MPER.1986.5527464.spa
dc.relation.referencesW. Dai et al., “Security region of renewable energy integration: Characterization and flexibility,” Energy, vol. 187, p. 115975, 2019, doi: 10.1016/j.energy.2019.115975.spa
dc.relation.referencesY. Hou, J. Yan, C. Peng, Z. Qin, S. Lei, and H. Ruan, “Risk assessment of critical time to renewable operation with steady-state security region,” Proceedings - 2014 Power Systems Computation Conference, PSCC 2014, no. 51277155, pp. 1–6, 2014, doi: 10.1109/PSCC.2014.7038341.spa
dc.relation.referencesF. F. Wu and S. Kumagai, “Steady-State Security Regions of Power Systems,” IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–711, 1982, doi: 10.1109/TCS.1982.1085091.spa
dc.relation.referencesH. Jahangir, M. A. Golkar, F. Alhameli, A. Mazouz, A. Ahmadian, and A. Elkamel, “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN,” Sustainable Energy Technologies and Assessments, vol. 38, no. December 2019, 2020, doi: 10.1016/j.seta.2019.100601.spa
dc.relation.referencesH. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun, “Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning,” International Journal of Electrical Power and Energy Systems, vol. 118, no. December 2019, p. 105790, 2020, doi: 10.1016/j.ijepes.2019.105790.spa
dc.relation.referencesS. Xuewei et al., “Research on Energy Storage Configuration Method Based on Wind and Solar Volatility; Research on Energy Storage Configuration Method Based on Wind and Solar Volatility,” 2020 10th International Conference on Power and Energy Systems (ICPES), 2020, doi: 10.1109/ICPES51309.2020.9349645/20/$31.00.spa
dc.relation.referencesC. O. Inacio and C. L. T. Borges, “Stochastic Model for Generation of High-Resolution Irradiance Data and Estimation of Power Output of Photovoltaic Plants,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 952–960, Apr. 2018, doi: 10.1109/TSTE.2017.2767780.spa
dc.relation.referencesK. Touafek et al., “Improvement of Energy Efficiency of Solar Hybrid Water Collectors; Improvement of Energy Efficiency of Solar Hybrid Water Collectors,” 2017.spa
dc.relation.referencesJ. Windarta, D. Denis, S. Saptadi, J. S. Silaen, and D. A. Satrio, “Implementation and Testing of Rooftop Solar Power Plant with On-Grid System 1215 Wp Household Scale,” in 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2020 - Proceedings, Sep. 2020, pp. 294–299. doi: 10.1109/ICITACEE50144.2020.9239239.spa
dc.relation.referencesM. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.spa
dc.relation.referencesL. Alvarado-Barrios, J. M. Mauricio, J. M. Maza-Ortega, and A. Gómez-Expósito, “Control strategy for a mid-size Wind Energy Convertion System,” in SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2010, pp. 396–402. doi: 10.1109/SPEEDAM.2010.5542228.spa
dc.relation.referencesL. F. Donoso, “Energía Eólica en Chile,” Chile más Energía, 2011. http://chilemasenergia.blogspot.com/2011/11/energia-eolica-en-chile.html (accessed Feb. 24, 2020).spa
dc.relation.referencesB. F. W. Allen J. Wood, Power Generation operation and control, Second edition. 1996.spa
dc.relation.referencesD. A. Rivera, S. M. Matute, J. v. Mendoza, and G. Mejía, “Low active and reactive power reserve in Honduras Northwest’s transmission system,” Dec. 2020. doi: 10.1109/ARGENCON49523.2020.9505325.spa
dc.relation.referencesComisión de regulación de energía eléctrica y gas, “Creg 060.” Ministerio de minas y energía, Jun. 20, 2019.spa
dc.relation.referencesR. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network,” IEEE Access, vol. 6, pp. 59438–59448, 2018, doi: 10.1109/ACCESS.2018.2873712.spa
dc.relation.referencesJ. S. Sepp Hochreiter, “Long Short-Term Memory,” Neural Computation 9, 1997.spa
dc.relation.referencesM. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020, doi: 10.1109/ACCESS.2020.3024901.spa
dc.relation.referencesSouth Dakota State University, IEEE Region 4, and Institute of Electrical and Electronics Engineers, Classification of Electricity Load Profile Data and The Prediction of Load Demand Variability.spa
dc.relation.referencesM. Lave, J. Kleissl, and E. Arias-Castro, “High-frequency irradiance fluctuations and geographic smoothing,” Solar Energy, vol. 86, no. 8. pp. 2190–2199, Aug. 2012. doi: 10.1016/j.solener.2011.06.031.spa
dc.relation.referencesGutierrez Eduardo and Vladimirovna Olga, “Estadistica inferencial para ingenieria y ciencias,” Azcapotzalco, Ciudad de México: Grupo editorial Patria, 2016, pp. 306–307.spa
dc.relation.referencesH. Adolfo. Quevedo Urías and B. Rosa. Pérez Salvador, Estadística para inegeniería y ciencias. Larousse - Grupo Editorial Patria, 2000.spa
dc.relation.referencesDIgSILENT GmbH, “39 Bus New England System,” vol. V15,2, pp. 1–18, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembSistemas eléctricos - Colombia
dc.subject.lembElectrical systems - Colombia
dc.subject.lembEnergía solar
dc.subject.lembSolar energy
dc.subject.proposalRenovablesspa
dc.subject.proposalRegión Segura de Operaciónspa
dc.subject.proposalPronosticospa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalRenewableseng
dc.subject.proposalSafe Region of Operationeng
dc.subject.proposalForecasteng
dc.subject.proposalNeural Networkseng
dc.titleSeguridad eléctrica en un sistema de potencia considerando fuentes intermitentes de energía eléctricaspa
dc.title.translatedElectrical safety in a power system considering intermittent sources of electrical energyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1115083142_2022.pdf
Tamaño:
2.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: