Development of MP2 orbital optimization and spin scaling methods for positron-molecule systems

dc.contributor.advisorReyes, Andrés
dc.contributor.authorPorras Roldan, Rafael
dc.contributor.researchgroupQuímica Cuántica y Computacional
dc.date.accessioned2025-09-17T16:24:43Z
dc.date.available2025-09-17T16:24:43Z
dc.date.issued2025
dc.descriptionIlustraciones a color, diagramasspa
dc.description.abstractThis thesis presents theoretical developments, computational implementations, and applications of multicomponent methodologies for studying positron complexes. The theoretical development is based on wavefunction optimization and energy scaling approaches for electrons and positrons. An optimization of the wavefunction algorithm of Bozkaya et al. J. Chem. Phys. 135, 104103 (2011) has been extended to a multicomponent formulation under the any particle molecular orbital approach. The implemented wavefunction optimization method provides an alternative to the regular HF wavefunction with a computational cost equivalent to the number of optimization steps and a significant improvement over the energetic and geometric properties of molecular positron complexes. This thesis also reports the implementation of an energy scaling method. Various electronic and electron:positron scaling coefficients provide a significant reduction in error with respect to unscaled optimized and unoptimized wavefunctions' positron binding energies. In addition, selective optimization of electron or positron wavefunction is addressed in terms of quality and computational cost against a regular optimization routine. Finally, propagator theory corrections are employed with the optimized wavefunction as a reference. This study provides a methodological approach to the study of positron complexes under the new developments presented. (Texto tomado de la fuente)eng
dc.description.abstractEsta tesis presenta desarrollos teóricos, implementaciones computacionales y aplicaciones de metodologías multicomponente para el estudio de complejos con positrones. Los desarrollos teóricos se basan en la optimización de funciones de onda y enfoques de escalamiento energético para electrones y positrones. El algoritmo de optimización de funciones de onda de Bozkaya et al. J. Chem. Phys. 135, 104103 (2011) fue extendido a una formulación multicomponente bajo el enfoque de orbitales moleculares de cualquier partícula. El método de optimización de funciones de onda implementado ofrece una alternativa a la función de onda HF convencional, con un costo computacional equivalente al número de pasos de optimización y una mejora significativa en las propiedades energéticas y geométricas de los complejos moleculares con positrones. Esta tesis también reporta la implementación de un método de escalamiento energético. Diversos coeficientes de escalamiento electrónicos y electrón-positrón proporcionan una reducción significativa del error con respecto a las energías de enlace de positrón obtenidas con funciones de onda optimizadas y no optimizadas sin escalamiento. Además, se aborda la optimización selectiva de la función de onda del electrón o del positrón en términos de calidad y costo computacional frente a la rutina de optimización convencional. Finalmente, se emplean correcciones de la teoría del propagador utilizando la función de onda optimizada como referencia. Este estudio proporciona un enfoque metodológico para el estudio de complejos con positrones en el marco de los nuevos desarrollos presentados.spa
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Química
dc.format.extentxiii, 85 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88868
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesP. A. M. Dirac, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1928, 117, 610.
dc.relation.referencesC. D. Anderson, Physical Review 1933, 43, 491.
dc.relation.referencesJ. Thibaud, Physical Review 1934, 45, 781.
dc.relation.referencesJ. H. Hubbell, Radiation Physics and Chemistry 2006, 75, 614.
dc.relation.referencesJ. R. Danielson, D. H. E. Dubin, R. G. Greaves, C. M. Surko, Reviews of Modern Physics 2015, 87, 247.
dc.relation.referencesY. C. Jean, P. E. Mallon, D. M. Schrader, Principles and Applications of Positron and Positronium Chemistry, (World Scientific, Singapore, 2003).
dc.relation.referencesA. P. Mills Jr, Radiation Physics and Chemistry 2007, 76, 76.
dc.relation.referencesJ. Rong, A. Haider, T. E. Jeppesen, L. Josephson, S. H. Liang, Nature Communications 2023, 14, 3257.
dc.relation.referencesJ. Čížek, Journal of Materials Science & Technology 2018, 34, 577.
dc.relation.referencesF. Selim, Materials Characterization 2021, 174, 110952.
dc.relation.referencesS. Mohorovičić, Astronomische Nachrichten 1934, 253, 93.
dc.relation.referencesM. Deutsch, Physical Review 1951, 82, 455.
dc.relation.referencesA. P. Mills, Physical Review Letters 1981, 46, 717.
dc.relation.referencesD. B. Cassidy, A. P. Mills, Nature 2007, 449, 195.
dc.relation.referencesG. F. Gribakin, J. A. Young, C. M. Surko, Reviews of Modern Physics 2010, 82, 2557.
dc.relation.referencesJ. R. Danielson, J. J. Gosselin, C. M. Surko, Physical Review Letters 2010, 104, 233201.
dc.relation.referencesJ. Danielson, D. Dubin, R. Greaves, C. Surko, Reviews of Modern Physics 2015, 87, 247.
dc.relation.referencesA. R. Swann, G. F. Gribakin, J. R. Danielson, S. Ghosh, M. R. Natisin, C. M. Surko, Physical Review A 2021, 104, 012813.
dc.relation.referencesC. Hugenschmidt, C. Piochacz, M. Reiner, K. Schreckenbach, New Journal of Physics 2012, 14, 055027.
dc.relation.referencesK. Michishio, L. Chiari, F. Tanaka, N. Oshima, Y. Nagashima, Review of Scientific Instruments 2019, 90, 023305.
dc.relation.referencesA. Reyes, F. Moncada, J. Charry, International Journal of Quantum Chemistry 2018, 119, e25705.
dc.relation.referencesA. Ore, Physical Review 1951, 83, 665.
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, W. A. King, Physical Review A 1995, 52, 4541.
dc.relation.referencesG. G. Ryzhikh, J. Mitroy, Physical Review Letters 1997, 79, 4124.
dc.relation.referencesG. G. Ryzhikh, J. Mitroy, K. Varga, Journal of Physics B: Atomic, Molecular and Optical Physics 1998, 31, 3965.
dc.relation.referencesJ. Mitroy, M. W. J. Bromley, G. G. Ryzhikh, Journal of Physics B: Atomic, Molecular and Optical Physics 2002, 35, R81.
dc.relation.referencesX. Cheng, D. Babikov, D. M. Schrader, Physical Review A 2011, 83, 032504.
dc.relation.referencesC. Harabati, V. A. Dzuba, V. V. Flambaum, Physical Review A 2014, 89, 022517.
dc.relation.referencesH. A. Kurtz, K. D. Jordan, International Journal of Quantum Chemistry 1978, 14, 747.
dc.relation.referencesA. Farazdel, P. E. Cade, Chemical Physics Letters 1980, 72, 131.
dc.relation.referencesC.-M. Kao, P. E. Cade, The Journal of Chemical Physics 1984, 80, 3234.
dc.relation.referencesT. Yoshida, G. Miyako, N. Jiang, D. M. Schrader, Physical Review A 1996, 54, 964.
dc.relation.referencesT. Saito, M. Tachikawa, C. Ohe, K. Iguchi, K. Suzuki, The Journal of Physical Chemistry 1996, 100, 6057.
dc.relation.referencesD. Bressanini, M. Mella, G. Morosi, The Journal of Chemical Physics 1998, 108, 4756.
dc.relation.referencesD. Bressanini, M. Mella, G. Morosi, The Journal of Chemical Physics 1998, 109, 1716.
dc.relation.referencesD. Bressanini, M. Mella, G. Morosi, The Journal of Chemical Physics 1998, 109, 5931.
dc.relation.referencesM. Mella, G. Morosi, D. Bressanini, The Journal of Chemical Physics 1999, 111, 108.
dc.relation.referencesM. Mella, G. Morosi, D. Bressanini, S. Elli, The Journal of Chemical Physics 2000, 113, 6154.
dc.relation.referencesM. Mella, M. Casalegno, G. Morosi, The Journal of Chemical Physics 2002, 117, 1450.
dc.relation.referencesY. Kita, R. Maezono, M. Tachikawa, M. Towler, R. J. Needs, The Journal of Chemical Physics 2009, 131, 134310.
dc.relation.referencesY. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, R. J. Needs, The European Physical Journal D 2014, 68, 63.
dc.relation.referencesT. Oyamada, M. Tachikawa, The European Physical Journal D 2014, 68, 231.
dc.relation.referencesY. Kita, M. Tachikawa, The Effect of Molecular Vibrations on the Binding of a Positron to Polyatomic Molecules, in Recent Progress in Quantum Monte Carlo, (ACS, Washington D.C., 2016).
dc.relation.referencesS. Upadhyay, A. Benali, K. D. Jordan, Journal of Chemical Theory and Computation 2024, 20, 9879.
dc.relation.referencesJ. A. Charry Martinez, M. Barborini, A. Tkatchenko, Journal of Chemical Theory and Computation 2022, 18, 2267.
dc.relation.referencesJ. Hofierka, B. Cunningham, D. G. Green, The European Physical Journal D 2024, 78, 37.
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, C. Harabati, Physical Review A 1999, 60, 3641.
dc.relation.referencesM. W. J. Bromley, J. Mitroy, Physical Review A 2002, 66, 062504.
dc.relation.referencesS. L. Saito, The Journal of Chemical Physics 2005, 122, 054302.
dc.relation.referencesS. L. Saito, Theoretical Chemistry Accounts 2005, 115, 281.
dc.relation.referencesR. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, M. Kimura, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2006, 247, 47.
dc.relation.referencesM. W. J. Bromley, J. Mitroy, Physical Review A 2006, 73, 032507.
dc.relation.referencesF. A. Gianturco, J. Franz, R. J. Buenker, H.-P. Liebermann, L. Pichl, J.-M. Rost, M. Tachikawa, M. Kimura, Physical Review A 2006, 73, 022705.
dc.relation.referencesJ. Mitroy, M. W. J. Bromley, Physical Review A 2006, 73, 052712.
dc.relation.referencesJ. Mitroy, J. Y. Zhang, M. W. J. Bromley, S. I. Young, Physical Review A 2008, 78, 012715.
dc.relation.referencesM. Tachikawa, Y. Kita, R. J. Buenker, Physical Chemistry Chemical Physics 2011, 13, 2701.
dc.relation.referencesM. Tachikawa, Y. Kita, R. J. Buenker, New Journal of Physics 2012, 14, 035004.
dc.relation.referencesD. Yoshida, M. Tachikawa, The European Physical Journal D 2024, 78, 10.
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, C. Harabati, Physical Review A 2012, 86, 032503.
dc.relation.referencesB. H. Ellis, S. Aggarwal, A. Chakraborty, Journal of Chemical Theory and Computation 2015, 12, 188.
dc.relation.referencesF. Pavošević, S. Hammes-Schiffer, The Journal of Chemical Physics 2019, 150, 161102.
dc.relation.referencesK. Strasburger, The Journal of Chemical Physics 1999, 111, 10555.
dc.relation.referencesS. Bubin, L. Adamowicz, The Journal of Chemical Physics 2004, 120, 6051.
dc.relation.referencesK. Strasburger, Structural Chemistry 2004, 15, 415.
dc.relation.referencesJ. Hofierka, B. Cunningham, C. M. Rawlins, C. H. Patterson, D. G. Green, Nature 2022, 606, 688.
dc.relation.referencesJ. Cassidy, J. Hofierka, B. Cunningham, C. Rawlins, C. Patterson, D. Green, Physical Review A 2024, 109, L040801.
dc.relation.referencesJ. Mitroy, G. Ryzhikh, Journal of Physics B: Atomic, Molecular and Optical Physics 1999, 32, 1375.
dc.relation.referencesJ. Mitroy, G. G. Ryzhikh, Journal of Physics B: Atomic, Molecular and Optical Physics 2001, 34, 2001.
dc.relation.referencesJ. Mitroy, Physical Review A 2004, 70, 024502.
dc.relation.referencesJ. M. J. Mitroy, Journal of Atomic and Molecular Sciences 2010, 1, 275.
dc.relation.referencesA. Zubiaga, F. Tuomisto, M. J. Puska, Physical Review A 2014, 89, 052707.
dc.relation.referencesJ. Charry, M. T. d. N. Varella, A. Reyes, Angewandte Chemie International Edition 2018, 57, 8859.
dc.relation.referencesF. Moncada, L. Pedraza-González, J. Charry, M. T. do N. Varella, A. Reyes, Chemical Science 2020, 11, 44.
dc.relation.referencesT. Tachibana, D. Hoshi, Y. Nagashima, Physical Review Letters 2023, 131, 143201.
dc.relation.referencesI. Thomas, Chemical Physics Letters 1969, 3, 705.
dc.relation.referencesI. L. Thomas, H. W. Joy, Physical Review A 1970, 2, 1200.
dc.relation.referencesI. L. Thomas, Physical Review A 1971, 3, 565.
dc.relation.referencesH. J. Monkhorst, Physical Review A 1987, 36, 1544.
dc.relation.referencesM. Tachikawa, K. Mori, H. Nakai, K. Iguchi, Chemical Physics Letters 1998, 290, 437.
dc.relation.referencesR. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Díaz-Tinoco, S. A. González, N. F. Aguirre, A. Reyes, International Journal of Quantum Chemistry 2013, 114, 50.
dc.relation.referencesS. Fahy, X. W. Wang, S. G. Louie, Physical Review B 1990, 42, 3503.
dc.relation.referencesJ. Romero, E. Posada, R. Flores-Moreno, A. Reyes, The Journal of Chemical Physics 2012, 137, 074105.
dc.relation.referencesJ. Romero, J. A. Charry, H. Nakai, A. Reyes, Chemical Physics Letters 2014, 591, 82.
dc.relation.referencesH. Nakai, K. Sodeyama, The Journal of Chemical Physics 2003, 118, 1119.
dc.relation.referencesW. Kutzelnigg, D. Mukherjee, The Journal of Chemical Physics 1997, 107, 432.
dc.relation.referencesK. A. Brueckner, Physical Review 1954, 96, 508.
dc.relation.referencesR. K. Nesbet, Physical Review 1958, 109, 1632.
dc.relation.referencesC. D. Sherrill, A. I. Krylov, E. F. C. Byrd, M. Head-Gordon, The Journal of Chemical Physics 1998, 109, 4171.
dc.relation.referencesR. A. Chiles, C. E. Dykstra, The Journal of Chemical Physics 1981, 74, 4544.
dc.relation.referencesG. D. Purvis, R. J. Bartlett, The Journal of Chemical Physics 1982, 76, 1910.
dc.relation.referencesG. E. Scuseria, H. F. Schaefer, Chemical Physics Letters 1987, 142, 354.
dc.relation.referencesR. C. Lochan, M. Head-Gordon, The Journal of Chemical Physics 2007, 126, 164101.
dc.relation.referencesU. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer, C. D. Sherrill, The Journal of Chemical Physics 2011, 135, 104103.
dc.relation.referencesF. Pavošević , B. J. Rousseau, S. Hammes-Schiffer, The Journal of Physical Chemistry Letters 2020, 11, 1578.
dc.relation.referencesD. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Gal- velis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, I. Schaefer, Henry F., A. Y. Sokolov, K. Patkowski, I. DePrince, A. Euge- ne, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, The Journal of Chemical Physics 2020, 152, 184108.
dc.relation.referencesC. Le Sech, B. Silvi, Chemical Physics 1998, 236, 77.
dc.relation.referencesE. Soydas, U. Bozkaya, Journal of Chemical Theory and Computation 2013, 9, 1452.
dc.relation.referencesS. Grimme, Journal of Chemical Physics 2003, 118, 9095.
dc.relation.referencesY. Jung, R. C. Lochan, A. D. Dutoi, M. Head-Gordon, The Journal of Chemical Physics 2004, 121, 9793.
dc.relation.referencesJ. V. Ortiz, International Journal of Quantum Chemistry 1999, 75, 615.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.bnePositrones
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.subject.ddc530 - Física::539 - Física moderna
dc.subject.lccPositronseng
dc.subject.lembQuímica cuánticaspa
dc.subject.lembQuantum chemistryeng
dc.subject.lembOrbitales molecularesspa
dc.subject.lembMolecular orbitalseng
dc.subject.lembOptimización matemáticaspa
dc.subject.lembMathematical optimizationeng
dc.subject.lembPerturbación (Matemáticas)spa
dc.subject.lembPerturbation (Mathematics)eng
dc.subject.lembElectrodinámica cuántica -- Métodos de simulaciónspa
dc.subject.lembQuantum electrodynamics -- Simulation Methodseng
dc.subject.proposalPositronseng
dc.subject.proposalMulticomponent methodseng
dc.subject.proposalAny particle molecular orbitaleng
dc.subject.proposalOrbital optimizationeng
dc.subject.proposalSpin scalingeng
dc.subject.proposalPropagator theoryeng
dc.subject.proposalQuantum chemistryeng
dc.subject.proposalPositrónspa
dc.subject.proposalMétodos multicomponentespa
dc.subject.proposalOrbital molecular de cualquier partículaspa
dc.subject.proposalOptimización de orbitalesspa
dc.subject.proposalEscalado de espínspa
dc.subject.proposalQuímica cuánticaspa
dc.titleDevelopment of MP2 orbital optimization and spin scaling methods for positron-molecule systemseng
dc.title.translatedDesarrollo de métodos de optimización de orbitales MP2 y escalado por espín para sistemas positrón-moléculaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Development of MP2 orbital optimization and spin scaling methods for positron-molecule systems.pdf
Tamaño:
7.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: