Análisis de la información evolutiva y de diversidad genómica para un estudio piloto de dispersión de variantes de Delta- y Gammacoronavirus con potencial zoonótico

dc.contributor.advisorBermudez Santana, Clara Isabelspa
dc.contributor.advisorCuervo Maya, Andrés Mauriciospa
dc.contributor.authorContreras Quesada, Armando Alíspa
dc.contributor.orcidContreras, Armando [0000-0001-7946-8965]spa
dc.contributor.researchgroupRnomica Teórica y Computacionalspa
dc.date.accessioned2025-06-18T22:48:36Z
dc.date.available2025-06-18T22:48:36Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos coronavirus (CoVs) son un grupo diverso de virus de ARN monocatenario de sentido positivo que infectan a una amplia variedad de mamíferos y aves. Si bien se ha documentado ampliamente la transmisión zoonótica de sarbecovirus como SARS-CoV, MERS-CoV y SARS-CoV-2, existen evidencias recientes que sugieren el potencial zoonótico de otros linajes como Deltacoronavirus (Delta-CoV) y Gammacoronavirus (Gamma-CoV). Esta investigación tuvo como objetivo analizar la evolución, diversificación y dispersión de las características genómicas de variantes de Delta-CoV y Gamma-CoV, con el fin de identificar marcadores moleculares y aportar evidencia sobre su diversidad y posible riesgo para la salud pública, así como la determinación de patrones asociados con la evolución viral y dispersión espacial integrando modelos filogeográficos. El estudio piloto considera dos enfoques para representar la información genómica: como secuencia y como estructura de ARN. Se analizaron 879 genomas completos, los cuales fueron sometidos a un filtrado según la calidad de las secuencias y eliminación de redundancias. Los resultados mostraron una alta diversidad genética y la presencia de presiones selectivas sobre ORF1ab y el gen S, favoreciendo la diversificación y adaptación a nuevos hospedadores. En particular, se observó que los Delta-CoVs circulan de forma natural en aves silvestres acuáticas, mientras que aves terrestres podrían actuar como hospedadores intermedios en su transmisión hacia aves de corral y mamíferos. Por su parte, los Gamma-CoVs presentan eventos de recombinación frecuentes, relacionados con la aparición de nuevas especies virales como el coronavirus de pavo (TCoV), el coronavirus de pato (DuCoV) y el coronavirus de la gallinas de Guinea (GfCoV). Estas dinámicas evolutivas se ven impulsadas por la transformación de hábitats asociada a la actividad humana y la intensificación ganadera. Este estudio destaca la importancia de ampliar la vigilancia genómica, incorporando una mayor diversidad de hospedadores y regiones geográficas. Los hallazgos obtenidos no solo contribuyen a la comprensión de los mecanismos de evolución y dispersión de los Delta-CoVs y Gamma-CoVs, sino que también proponen marcadores moleculares clave que podrían fortalecer los sistemas de vigilancia molecular y servir como base para futuras investigaciones y estrategias en salud pública. (Texto tomado de la fuente).spa
dc.description.abstractCoronaviruses (CoVs) are a diverse group of positive-sense single-stranded RNA viruses that infect a wide range of mammals and birds. While zoonotic transmission of sarbecoviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 has been extensively documented, recent evidence suggests that other lineages, such as Deltacoronavirus (Delta-CoV) and Gammacoronavirus (Gamma-CoV), may also possess zoonotic potential. This study aimed to analyze the evolution, diversification, and geographic spread of genomic features in Delta-CoV and Gamma-CoV variants, with the objective of identifying molecular markers and contributing evidence on their genetic diversity and potential public health risk. Additionally, it sought to determine patterns associated with viral evolution and spatial dispersion by integrating phylogeographic models. This pilot study adopted two complementary approaches to represent genomic information: RNA sequence and RNA secondary structure. A total of 879 complete genomes were analyzed following quality filtering and redundancy removal. The results revealed a high degree of genetic diversity and the presence of selective pressures acting on ORF1ab and the spike (S) gene, promoting diversification and adaptation to new hosts. Notably, Delta-CoVs were found to circulate naturally in wild aquatic birds, while terrestrial birds may act as intermediate hosts facilitating transmission to domestic poultry and mammals. Gamma-CoVs, in turn, exhibited frequent recombination events associated with the emergence of novel viral species such as turkey coronavirus (TCoV), duck coronavirus (DuCoV), and guinea fowl coronavirus (GfCoV). These evolutionary dynamics appear to be driven by habitat transformation resulting from human activities and the intensification of livestock production. This study underscores the importance of expanding genomic surveillance to include a broader diversity of host species and geographic regions. The findings contribute to a better understanding of the mechanisms underlying the evolution and spread of Delta-CoVs and Gamma-CoVs, and propose key molecular markers that could enhance molecular surveillance systems and serve as a foundation for future research and public health strategies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaGenómica comparativaspa
dc.format.extentviii, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88235
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedBiremespa
dc.relation.references3tres3. (2020). Producción porcina en China. 3tres3 Latinoamérica. https://www.3tres3.com/latam/articulos/produccion-porcina-en-china_11303.spa
dc.relation.referencesAlbery, G. F., Eskew, E. A., Ross, N., & Olival, K. J. (2020). Predicting the global mammalian viral sharing network using phylogeography. Nature communications, 11(1), 2260. https://doi.org/10.1038/s41467-020-16153-4.spa
dc.relation.referencesAjayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., & Poljak, Z. (2018). Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada. Transboundary and Emerging Diseases, 65(5), 1197–1207. https://doi.org/10.1111/TBED.12858.spa
dc.relation.referencesBaranov, P. v., Henderson, C. M., Anderson, C. B., Gesteland, R. F., Atkins, J. F., & Howard, M. T. (2005). Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology, 332(2), 498–510. https://doi.org/10.1016/J.VIROL.2004.11.038.spa
dc.relation.referencesBielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910–2912. https://doi.org/10.1093/BIOINFORMATICS/BTR481.spa
dc.relation.referencesBrister, J. R., Ako-adjei, D., Bao, Y., & Blinkova, O. (2015). NCBI Viral Genomes Resource. Nucleic Acids Research, 43(Database issue), D571-D577. https://doi.org/10.1093/nar/gku1207.spa
dc.relation.referencesBrown, P. A., Touzain, F., Briand, F. X., Gouilh, A. M., Courtillon, C., Allée, C., Lemaitre, E., De Boisséson, C., Blanchard, Y., & Eterradossi, N. (2016). First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses. The Journal of general virology, 97(1), 110–120. https://doi.org/10.1099/jgv.0.000338.spa
dc.relation.referencesCao, J., Wu, C. C., & Lin, T. L. (2008). Complete nucleotide sequence of polyprotein gene 1 and genome organization of turkey coronavirus. Virus research, 136(1-2), 43–49. https://doi.org/10.1016/j.virusres.2008.04.015.spa
dc.relation.referencesCarlson, C. J., Zipfel, C. M., Garnier, R., & Bansal, S. (2019). Global estimates of mammalian viral diversity accounting for host sharing. Nature ecology & evolution, 3(7), 1070–1075. https://doi.org/10.1038/s41559-019-0910-6spa
dc.relation.referencesChen, Q., Wang, L., Yang, C., Zheng, Y., Gauger, P. C., Anderson, T., Harmon, K. M., Zhang, J., Yoon, K. J., Main, R. G., & Li, G. (2018). The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronavirus than sparrow deltacoronavirus HKU17. Emerging Microbes & Infections, 7(1). https://doi.org/10.1038/S41426-018-0108-Z.spa
dc.relation.referencesChen, Y., Ye, W., Zhang, Y., & Xu, Y. (2015). High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Research, 43(16), 7762-7768. https://doi.org/10.1093/nar/gkv784.spa
dc.relation.referencesCingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. https://doi.org/10.4161/fly.19695.spa
dc.relation.referencesClara Frezal & Stephan Hubertus Gay & Claude Nenert, 2021. "The Impact of the African Swine Fever outbreak in China on global agricultural markets,"OECD Food, Agriculture and Fisheries Papers 156, OECD Publishing.spa
dc.relation.referencesCronje, N. (2017). The diversity of coronaviruses in Southern African bat populations (Tesis Doctoral, Stellenbosch University).spa
dc.relation.referencesCuevas, J. M., Domingo-Calap, P., & Sanjuán, R. (2011). The Fitness Effects of Synonymous Mutations in DNA and RNA Viruses. https://doi.org/10.1093/molbev/msr179.spa
dc.relation.referencesDanecek, P., & McCarthy, S. A. (2017). BCFtools/csq: Haplotype-aware variant consequences. Bioinformatics (Oxford, England), 33(13), 2037-2039. https://doi.org/10.1093/bioinformatics/btx100.spa
dc.relation.referencesDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and high-performance computing. Nature methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109.spa
dc.relation.referencesDenison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses. RNA Biology, 8(2), 270-279. https://doi.org/10.4161/rna.8.2.15013.spa
dc.relation.referencesDrummond, A. J., Bouckaert, R. R. (2015). Bayesian Evolutionary Analysis with BEAST. Cambridge University Press.spa
dc.relation.referencesDrummond, A., Pybus, O. G., and Rambaut, A. (2003). Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358. doi:10.1016/S0065-308X(03)54008-8.spa
dc.relation.referencesDrummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences. Molecular Biology and Evolution, 22(5), 1185–1192. https://doi.org/10.1093/MOLBEV/MSI103.spa
dc.relation.referencesDuffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: Patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. https://doi.org/10.1038/nrg2323.spa
dc.relation.referencesFan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11(3), 210. https://doi.org/10.3390/v11030210.spa
dc.relation.referencesFang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Bi, J., Wang, D., & Xiao, S. (2017). Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. The Journal of general virology, 98(2), 173–178. https://doi.org/10.1099/jgv.0.000690.spa
dc.relation.referencesFerron, F., Subissi, L., Morais, A. T. S. D., Le, N. T. T., Sevajol, M., Gluais, L., Decroly, E., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2018). Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences, 115(2), E162-E171. https://doi.org/10.1073/pnas.1718806115.spa
dc.relation.referencesFu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565.spa
dc.relation.referencesGe, X. Y., Li, J. L., Yang, X. L., Chmura, A. A., Zhu, G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., Peng, C., Zhang, Y. J., Luo, C. M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S. Y., Wang, L. F., Daszak, P., & Shi, Z. L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538. https://doi.org/10.1038/nature12711.spa
dc.relation.referencesGeorgopoulou, I., & Tsiouris, V. (2008). The potential role of migratory birds in the transmission of zoonoses. Veterinaria Italiana, 44(4), 671–677. http://www.ncbi.nlm.nih.gov/pubmed/20411494.spa
dc.relation.referencesGraepel, K. W., Lu, X., Case, J. B., Sexton, N. R., Smith, E. C., & Denison, M. R. (2017). Proofreading-deficient coronaviruses adapt over long-term passage for increased fidelity and fitness without reversion of exoribonuclease-inactivating mutations. BioRxiv, 175562.https://doi.org/10.1101/175562.spa
dc.relation.referencesGruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69–79. https://doi.org/10.1142/9789814295291_0009.spa
dc.relation.referencesHiscox, J. A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., & Brooks, G. (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of virology, 75(1), 506–512. https://doi.org/10.1128/JVI.75.1.506-512.2001.spa
dc.relation.referencesHuang, S., Bininda-Emonds, O. R., Stephens, P. R., Gittleman, J. L., & Altizer, S. (2014). Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. The Journal of animal ecology, 83(3), 671–680. https://doi.org/10.1111/1365-2656.12160.spa
dc.relation.referencesHussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., & Guo, D. (2005). Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 79(9), 5288-5295. https://doi.org/10.1128/JVI.79.9.5288-5295.2005.spa
dc.relation.referencesIto, K., & Murphy, D. (2013). Application of ggplot2 to Pharmacometric Graphics. CPT: Pharmacometrics & Systems Pharmacology, 2, e79. https://doi.org/10.1038/psp.2013.56.spa
dc.relation.referencesJackwood, M. W., Hall, D., & Handel, A. (2012). Molecular evolution and emergence of avian gammacoronaviruses. Infection, Genetics and Evolution, 12(6), 1305–1311. https://doi.org/10.1016/j.meegid.2012.05.003.spa
dc.relation.referencesJanetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., & Amonsin, A. (2016). Porcine Deltacoronavirus, Thailand, 2015 - Volume 22, Number 4—April 2016 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 22(4), 757–759. https://doi.org/10.3201/EID2204.151852.spa
dc.relation.referencesJia, W., Karaca, K., Parrish, C. R., & Naqi, S. A. (1995). A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Archives of virology, 140(2), 259–271. https://doi.org/10.1007/BF01309861.spa
dc.relation.referencesKaresh, W. B., Cook, R. A., Bennett, E. L., & Newcomb, J. (2005). Wildlife Trade and Global Disease Emergence. Emerging Infectious Diseases, 11(7), 1000–1002. https://doi.org/10.3201/eid1107.050194.spa
dc.relation.referencesKelly, J. A., Woodside, M. T., & Dinman, J. D. (2021). Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology, 554, 75–82. https://doi.org/10.1016/J.VIROL.2020.12.010spa
dc.relation.referencesKosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208–1222. https://doi.org/10.1093/molbev/msi105.spa
dc.relation.referencesKreuder Johnson, C., Hitchens, P. L., Smiley Evans, T., Goldstein, T., Thomas, K., Clements, A., Joly, D. O., Wolfe, N. D., Daszak, P., Karesh, W. B., & Mazet, J. K. (2015). Spillover and pandemic properties of zoonotic viruses with high host plasticity. Scientific reports, 5, 14830. https://doi.org/10.1038/srep14830.spa
dc.relation.referencesKühnert, D., Wu, C. H., and Drummond, A. J. (2011). Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. Infect. Genet. Evol. 11, 1825–1841. doi:10.1016/j.meegid.2011.08.005.spa
dc.relation.referencesKusters, J. G., Jager, E. J., Niesters, H. G. M., & van der Zeijst, B. A. M. (1990). Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine, 8(6), 605–608. https://doi.org/10.1016/0264-410X(90)90018-H.spa
dc.relation.referencesLaconi, A., van Beurden, S. J., Berends, A. J., Krämer-Kühl, A., Jansen, C. A., Spekreijse, D., Chénard, G., Philipp, H. C., Mundt, E., Rottier, P. J. M., & Hélène Verheije, M. (2018). Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo. Journal of General Virology, 99(10), 1381–1390. https://doi.org/10.1099/jgv.0.001130.spa
dc.relation.referencesLarsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531.spa
dc.relation.referencesLednicky, J. A., Tagliamonte, M. S., White, S. K., Elbadry, M. A., Alam, M. M., Stephenson, C. J., Bonny, T. S., Loeb, J. C., Telisma, T., Chavannes, S., Ostrov, D. A., Mavian, C., de Rochars, V. M. B., Salemi, M., & Morris, J. G. (2021). Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.03.19.21253391.spa
dc.relation.referencesLee, C. W., & Jackwood, M. W. (2000). Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Archives of virology, 145(10), 2135–2148. https://doi.org/10.1007/s007050070044.spa
dc.relation.referencesLee, J. H., Chung, H. C., Nguyen, V. G., Moon, H. J., Kim, H. K., Park, S. J., Lee, C. H., Lee, G. E., & Park, B. K. (2016). Detection and Phylogenetic Analysis of Porcine Deltacoronavirus in Korean Swine Farms, 2015. Transboundary and Emerging Diseases, 63(3), 248–252. https://doi.org/10.1111/TBED.12490.spa
dc.relation.referencesLee, S., & Lee, C. (2015). Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus. Virus Research, 208, 136. https://doi.org/10.1016/J.VIRUSRES.2015.06.013.spa
dc.relation.referencesLeite Júnior, D. P., Araújo Pires, R. A., Dantas, E. S. de O., Pereira, R. S., Bonci, M. M., Ramos, R. T. B., Costa, G. L. da, Melhem, M. de S. C., Felippe, P. A. N., & Paula, C. R. (2020). Spillover: the role of bats and relationships as reservoirs of zoonotic viruses and the origin of new coronaviruses. Forensic Research & Criminology International Journal, 8(5), 205–214. https://doi.org/10.15406/frcij.2020.08.00329.spa
dc.relation.referencesLemey, P., Rambaut, A., Drummond, A. J., & Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology, 5(9), e1000520. https://doi.org/10.1371/journal.pcbi.1000520.spa
dc.relation.referencesLi, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England), 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191.spa
dc.relation.referencesLiang, Q., Zhang, H., Li, B., Ding, Q., Wang, Y., Gao, W., Guo, D., Wei, Z., & Hu, H. (2019). Susceptibility of Chickens to Porcine Deltacoronavirus Infection. Viruses, 11(6). https://doi.org/10.3390/V11060573.spa
dc.relation.referencesLin, T. L., Loa, C. C., & Wu, C. C. (2004). Complete sequences of 3′ end coding region for structural protein genes of turkey coronavirus. Virus Research, 106(1), 61–70. https://doi.org/10.1016/J.VIRUSRES.2004.06.003.spa
dc.relation.referencesLiu, S., Zhuang, Q., Wang, S., Jiang, W., Jin, J., Peng, C., Hou, G., Li, J., Yu, J., Yu, X., Liu, H., Sun, S., Yuan, L., & Chen, J. (2020). Control of avian influenza in China: Strategies and lessons. Transboundary and Emerging Diseases, 67(4), 1463–1471. https://doi.org/10.1111/TBED.13515.spa
dc.relation.referencesLorenz, R., Bernhart, S.H., Höner zu Siederdissen, C. et al. ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26.spa
dc.relation.referencesMcBride, R., van Zyl, M., & Fielding, B. C. (2014). The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses, 6(8), 2991. https://doi.org/10.3390/V6082991.spa
dc.relation.referencesMcCluskey, B. J., Haley, C., Rovira, A., Main, R., Zhang, Y., & Barder, S. (2016). Retrospective testing and case series study of porcine delta coronavirus in U.S. swine herds. Preventive Veterinary Medicine, 123, 185–191. https://doi.org/10.1016/j.prevetmed.2015.10.018.spa
dc.relation.referencesMenachery, V. D., Graham, R. L., & Baric, R. S. (2017). Jumping species—a mechanism for coronavirus persistence and survival. Current Opinion in Virology, 23, 1. https://doi.org/10.1016/J.COVIRO.2017.01.002.spa
dc.relation.referencesMichel, C. J., Mayer, C., Poch, O., & Thompson, J. D. (2020). Characterization of accessory genes in coronavirus genomes. Virology Journal, 17(1), 131. https://doi.org/10.1186/s12985-020-01402-1.spa
dc.relation.referencesMurrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Molecular Biology and Evolution, 30(5), 1196–1205. https://doi.org/10.1093/molbev/mst030.spa
dc.relation.referencesMurrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S. L. (2012). Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genetics, 8(7), e1002764. https://doi.org/10.1371/journal.pgen.1002764.spa
dc.relation.referencesNiu, X., Hou, Y. J., Jung, K., Kong, F., Saif, L. J., & Wang, Q. (2021). Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses, 13(1), 122. https://doi.org/10.3390/v13010122.spa
dc.relation.referencesO’Leary, N.A., Cox, E., Holmes, J.B. et al. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets. Sci Data 11, 732 (2024). https://doi.org/10.1038/s41597-024-03571-y.spa
dc.relation.referencesOlival, K. J., Hosseini, P. R., Zambrana-Torrelio, C., Ross, N., Bogich, T. L., & Daszak, P. (2017). Erratum: Host and viral traits predict zoonotic spillover from mammals. Nature, 548(7669), 612. https://doi.org/10.1038/nature23660.spa
dc.relation.referencesOrganización Mundial de la Salud. (2023, 12 de julio). Los brotes actuales de gripe aviar en animales suponen un riesgo para los seres humanos. https://www.who.int/es/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans.spa
dc.relation.referencesPagès H, Aboyoun P, Gentleman R, DebRoy S (2024). Biostrings: Efficient manipulation of biological strings. R package version 2.72.1, https://bioconductor.org/packages/Biostrings.spa
dc.relation.referencesPang, W., Lu, Y., Zhao, YB. et al. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 32, 1068–1085 (2022). https://doi.org/10.1038/s41422-022-00746-3.spa
dc.relation.referencesPlant, E. P., & Dinman, J. D. (2008). The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Frontiers in Bioscience : A Journal and Virtual Library, 13(13), 4873. https://doi.org/10.2741/3046.spa
dc.relation.referencesR Core Team. (2021). R: The R Project for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRambaut, A. (2018). FigTree v1.4.4 [Computer software]. http://tree.bio.ed.ac.uk/software/figtree/.spa
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032.spa
dc.relation.referencesRangan, R., Zheludev, I. N., & Das, R. (2020). RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. BioRxiv, 2020.03.27.012906. https://doi.org/10.1101/2020.03.27.012906.spa
dc.relation.referencesRappole, J., Derrickson, S. R., & Hubálek, Z. (2000). Migratory Birds and Spread of West Nile Virus in the Western Hemisphere. Emerging Infectious Diseases, 6(4), 319–328. https://doi.org/10.3201/eid0604.000401.spa
dc.relation.referencesRivas, E. (2020). RNA structure prediction using positive and negative evolutionary information. PLOS Computational Biology, 16(10), e1008387. https://doi.org/10.1371/journal.pcbi.1008387.spa
dc.relation.referencesRojas – Cruz, Alexis F. (2022). Evolución molecular de Betacoronavirus zoonóticos asociados con el Síndrome de Distrés Respiratorio Agudo (SDRA) (Tesis magister, UNAL Bogotá).spa
dc.relation.referencesSaeng-chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D. T., Stott, C. J., Madapong, A., Tripipat, T., Wegner, M., Intrakamhaeng, M., Chongcharoen, W., Tantituvanont, A., Kaewprommal, P., Piriyapongsa, J., & Nilubol, D. (2017). Different Lineage of Porcine Deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015. Transboundary and Emerging Diseases, 64(1), 3–10. https://doi.org/10.1111/TBED.12585.spa
dc.relation.referencesSchneider, M., Lander, B., & Brunson, K. (2019, 2 de agosto). ¿Cómo el cerdo se convirtió en una “fábrica de carne porcina” en China? Dialogue Earth. https://dialogue.earth/es/alimentos/29354-como-el-cerdo-se-convirtio-en-una-fabrica-de-carne-porcina-en-china.spa
dc.relation.referencesSimmonds, P. (2020). Pervasive RNA secondary structure in the genomes of SARS-CoV-2 and other coronaviruses. MBio, 11(6), 1–15. https://doi.org/10.1128/mBio.01661-20.spa
dc.relation.referencesSmith, E. C., Blanc, H., Surdel, M. C., Vignuzzi, M., & Denison, M. R. (2013). Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS pathogens, 9(8), e1003565. https://doi.org/10.1371/journal.ppat.1003565.spa
dc.relation.referencesSweileh, W. M. (2017). Global research trends of World Health Organization’s top eight emerging pathogens. Globalization and Health, 13. https://doi.org/10.1186/s12992-017-0233-9.spa
dc.relation.referencesTamayo-Ordóñez, M. C., Rosas-García, N. M., Ayil-Gutiérrez, B. A., Bello-López, J. M., Tamayo-Ordóñez, F. A., Anguebes-Franseschi, F., Damas-Damas, S., & Tamayo-Ordóñez, Y. d. J. (2023). Non-Structural Proteins (Nsp): A Marker for Detection of Human Coronavirus Families. Pathogens, 12(9), 1185. https://doi.org/10.3390/pathogens12091185.spa
dc.relation.referencesvan Beurden, S. J., Berends, A. J., Krämer-Kühl, A., Spekreijse, D., Chenard, G., Philipp, H. C., Mundt, E., Rottier, P. J. M., & Verheije, M. H. (2018). Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens. Vaccine, 36(8), 1085–1092. https://doi.org/10.1016/J.VACCINE.2018.01.017.spa
dc.relation.referencesvan Dijk, J. G., Verhagen, J. H., Wille, M., & Waldenström, J. (2018). Host and virus ecology as determinants of influenza A virus transmission in wild birds. Current Opinion in Virology, 28, 26–36. https://doi.org/10.1016/j.coviro.2017.10.006.spa
dc.relation.referencesWalter Costa, M. B., Höner zu Siederdissen, C., Dunjić, M., Stadler, P. F., & Nowick, K. (2019). SSS-test: a novel test for detecting positive selection on RNA secondary structure. BMC Bioinformatics, 20(1), 151. https://doi.org/10.1186/s12859-019-2711-y.spa
dc.relation.referencesWatts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W., Jr, Swanstrom, R., Burch, C. L., & Weeks, K. M. (2009). Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460(7256), 711–716. https://doi.org/10.1038/nature08237.spa
dc.relation.referencesWeaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Kosakovsky Pond, S. L. (2018). Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Molecular Biology and Evolution, 35(3), 773-777. https://doi.org/10.1093/molbev/msx335.spa
dc.relation.referencesWelfare, W., & Wright, E. (2016). Planning for the unexpected: Ebola virus, Zika virus, what’s next? British Journal of Hospital Medicine, 77(12), 704-707. https://doi.org/10.12968/hmed.2016.77.12.704.spa
dc.relation.referencesWells, K., Gibson, D. I., Clark, N. J., Ribas, A., Morand, S., & McCallum, H. I. (2018). Global spread of helminth parasites at the human-domestic animal-wildlife interface. Global change biology, 24(7), 3254–3265. https://doi.org/10.1111/gcb.14064.spa
dc.relation.referencesWertheim, J. O., Murrell, B., Smith, M. D., Pond, S. L. K., & Scheffler, K. (2015). RELAX: Detecting Relaxed Selection in a Phylogenetic Framework. Molecular Biology and Evolution, 32(3), 820–832. https://doi.org/10.1093/MOLBEV/MSU400.spa
dc.relation.referencesWickham H, François R, Henry L, Müller K, Vaughan D (2023). dplyr: A Grammar of Data Manipulation. R package version 1.1.4, https://github.com/tidyverse/dplyr.spa
dc.relation.referencesWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.spa
dc.relation.referencesWille, M., & Holmes, E. C. (2020). Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiology Reviews, 44(5), 631–644. https://doi.org/10.1093/femsre/fuaa026.spa
dc.relation.referencesWille, M., Avril, A., Tolf, C., Schager, A., Larsson, S., Borg, O., Olsen, B., & Waldenström, J. (2015). Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus. Infection, Genetics and Evolution, 29, 129. https://doi.org/10.1016/J.MEEGID.2014.11.014.spa
dc.relation.referencesWille, M., Shi, M., Klaassen, M., Hurt, A. C., & Holmes, E. C. (2019). Virome heterogeneity and connectivity in waterfowl and shorebird communities. The ISME Journal, 13(10), 2603–2616. https://doi.org/10.1038/s41396-019-0458-0.spa
dc.relation.referencesWoo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., & Yuen, K. Y. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11.spa
dc.relation.referencesWu, Y., Li, M., Tian, J., Yan, H., Pan, Y., Shi, H., Shi, D., Chen, J., Guo, L., & Feng, L. (2023). Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. PLOS Pathogens, 19(10). https://doi.org/10.1371/JOURNAL.PPAT.1011702.spa
dc.relation.referencesXing, Y., Li, X., Gao, X., & Dong, Q. (2020). MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences. Frontiers in Microbiology, 0. https://doi.org/10.3389/fmicb.2020.01502.spa
dc.relation.referencesXu, Z., Choi, J., Yen, T. S., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M. J., & Ou, J. (2001). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. The EMBO journal, 20(14), 3840–3848. https://doi.org/10.1093/emboj/20.14.3840.spa
dc.relation.referencesYang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Research, 206, 120–133. https://doi.org/10.1016/j.virusres.2015.02.025.spa
dc.relation.referencesYoshimoto F. K. (2020). The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. The protein journal, 39(3), 198–216. https://doi.org/10.1007/s10930-020-09901-4.spa
dc.relation.referencesZhang, H., Liang, Q., Li, B., Cui, X., Wei, X., Ding, Q., Wang, Y., & Hu, H. (2019). Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China. Preventive Veterinary Medicine, 166, 8–15. https://doi.org/10.1016/j.prevetmed.2019.02.017.spa
dc.relation.referencesZhang, M., Li, W., Zhou, P., Liu, D., Luo, R., Jongkaewwattana, A., & He, Q. (2020). Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design. Emerging Microbes & Infections, 9(1), 20. https://doi.org/10.1080/22221751.2019.1701391.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.decsDeltacoronavirus/genéticaspa
dc.subject.decsDeltacoronavirus/geneticseng
dc.subject.decsVariación Genéticaspa
dc.subject.decsGenetic Variationeng
dc.subject.decsVigilancia de Zoonosisspa
dc.subject.decsZoonosis Surveillanceeng
dc.subject.proposalDelta- y Gammacoronavirusspa
dc.subject.proposalFilogenómica viralspa
dc.subject.proposalFilogeografía viralspa
dc.subject.proposalGenómica comparativaspa
dc.subject.proposalDelta- and gammacoronaviruseseng
dc.subject.proposalViral phylogenomicseng
dc.subject.proposalViral phylogeographyeng
dc.subject.proposalComparative genomiceng
dc.titleAnálisis de la información evolutiva y de diversidad genómica para un estudio piloto de dispersión de variantes de Delta- y Gammacoronavirus con potencial zoonóticospa
dc.title.translatedAnalysis of evolutionary and genomic diversity information for a pilot study on the dispersal of delta- and gammacoronavirus variants with zoonotic potentialeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
6732940.2025.pdf
Tamaño:
3.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: