Análisis de la información evolutiva y de diversidad genómica para un estudio piloto de dispersión de variantes de Delta- y Gammacoronavirus con potencial zoonótico
dc.contributor.advisor | Bermudez Santana, Clara Isabel | spa |
dc.contributor.advisor | Cuervo Maya, Andrés Mauricio | spa |
dc.contributor.author | Contreras Quesada, Armando Alí | spa |
dc.contributor.orcid | Contreras, Armando [0000-0001-7946-8965] | spa |
dc.contributor.researchgroup | Rnomica Teórica y Computacional | spa |
dc.date.accessioned | 2025-06-18T22:48:36Z | |
dc.date.available | 2025-06-18T22:48:36Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Los coronavirus (CoVs) son un grupo diverso de virus de ARN monocatenario de sentido positivo que infectan a una amplia variedad de mamíferos y aves. Si bien se ha documentado ampliamente la transmisión zoonótica de sarbecovirus como SARS-CoV, MERS-CoV y SARS-CoV-2, existen evidencias recientes que sugieren el potencial zoonótico de otros linajes como Deltacoronavirus (Delta-CoV) y Gammacoronavirus (Gamma-CoV). Esta investigación tuvo como objetivo analizar la evolución, diversificación y dispersión de las características genómicas de variantes de Delta-CoV y Gamma-CoV, con el fin de identificar marcadores moleculares y aportar evidencia sobre su diversidad y posible riesgo para la salud pública, así como la determinación de patrones asociados con la evolución viral y dispersión espacial integrando modelos filogeográficos. El estudio piloto considera dos enfoques para representar la información genómica: como secuencia y como estructura de ARN. Se analizaron 879 genomas completos, los cuales fueron sometidos a un filtrado según la calidad de las secuencias y eliminación de redundancias. Los resultados mostraron una alta diversidad genética y la presencia de presiones selectivas sobre ORF1ab y el gen S, favoreciendo la diversificación y adaptación a nuevos hospedadores. En particular, se observó que los Delta-CoVs circulan de forma natural en aves silvestres acuáticas, mientras que aves terrestres podrían actuar como hospedadores intermedios en su transmisión hacia aves de corral y mamíferos. Por su parte, los Gamma-CoVs presentan eventos de recombinación frecuentes, relacionados con la aparición de nuevas especies virales como el coronavirus de pavo (TCoV), el coronavirus de pato (DuCoV) y el coronavirus de la gallinas de Guinea (GfCoV). Estas dinámicas evolutivas se ven impulsadas por la transformación de hábitats asociada a la actividad humana y la intensificación ganadera. Este estudio destaca la importancia de ampliar la vigilancia genómica, incorporando una mayor diversidad de hospedadores y regiones geográficas. Los hallazgos obtenidos no solo contribuyen a la comprensión de los mecanismos de evolución y dispersión de los Delta-CoVs y Gamma-CoVs, sino que también proponen marcadores moleculares clave que podrían fortalecer los sistemas de vigilancia molecular y servir como base para futuras investigaciones y estrategias en salud pública. (Texto tomado de la fuente). | spa |
dc.description.abstract | Coronaviruses (CoVs) are a diverse group of positive-sense single-stranded RNA viruses that infect a wide range of mammals and birds. While zoonotic transmission of sarbecoviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 has been extensively documented, recent evidence suggests that other lineages, such as Deltacoronavirus (Delta-CoV) and Gammacoronavirus (Gamma-CoV), may also possess zoonotic potential. This study aimed to analyze the evolution, diversification, and geographic spread of genomic features in Delta-CoV and Gamma-CoV variants, with the objective of identifying molecular markers and contributing evidence on their genetic diversity and potential public health risk. Additionally, it sought to determine patterns associated with viral evolution and spatial dispersion by integrating phylogeographic models. This pilot study adopted two complementary approaches to represent genomic information: RNA sequence and RNA secondary structure. A total of 879 complete genomes were analyzed following quality filtering and redundancy removal. The results revealed a high degree of genetic diversity and the presence of selective pressures acting on ORF1ab and the spike (S) gene, promoting diversification and adaptation to new hosts. Notably, Delta-CoVs were found to circulate naturally in wild aquatic birds, while terrestrial birds may act as intermediate hosts facilitating transmission to domestic poultry and mammals. Gamma-CoVs, in turn, exhibited frequent recombination events associated with the emergence of novel viral species such as turkey coronavirus (TCoV), duck coronavirus (DuCoV), and guinea fowl coronavirus (GfCoV). These evolutionary dynamics appear to be driven by habitat transformation resulting from human activities and the intensification of livestock production. This study underscores the importance of expanding genomic surveillance to include a broader diversity of host species and geographic regions. The findings contribute to a better understanding of the mechanisms underlying the evolution and spread of Delta-CoVs and Gamma-CoVs, and propose key molecular markers that could enhance molecular surveillance systems and serve as a foundation for future research and public health strategies. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biología | spa |
dc.description.researcharea | Genómica comparativa | spa |
dc.format.extent | viii, 70 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88235 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Biología | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | 3tres3. (2020). Producción porcina en China. 3tres3 Latinoamérica. https://www.3tres3.com/latam/articulos/produccion-porcina-en-china_11303. | spa |
dc.relation.references | Albery, G. F., Eskew, E. A., Ross, N., & Olival, K. J. (2020). Predicting the global mammalian viral sharing network using phylogeography. Nature communications, 11(1), 2260. https://doi.org/10.1038/s41467-020-16153-4. | spa |
dc.relation.references | Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., & Poljak, Z. (2018). Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada. Transboundary and Emerging Diseases, 65(5), 1197–1207. https://doi.org/10.1111/TBED.12858. | spa |
dc.relation.references | Baranov, P. v., Henderson, C. M., Anderson, C. B., Gesteland, R. F., Atkins, J. F., & Howard, M. T. (2005). Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology, 332(2), 498–510. https://doi.org/10.1016/J.VIROL.2004.11.038. | spa |
dc.relation.references | Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910–2912. https://doi.org/10.1093/BIOINFORMATICS/BTR481. | spa |
dc.relation.references | Brister, J. R., Ako-adjei, D., Bao, Y., & Blinkova, O. (2015). NCBI Viral Genomes Resource. Nucleic Acids Research, 43(Database issue), D571-D577. https://doi.org/10.1093/nar/gku1207. | spa |
dc.relation.references | Brown, P. A., Touzain, F., Briand, F. X., Gouilh, A. M., Courtillon, C., Allée, C., Lemaitre, E., De Boisséson, C., Blanchard, Y., & Eterradossi, N. (2016). First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses. The Journal of general virology, 97(1), 110–120. https://doi.org/10.1099/jgv.0.000338. | spa |
dc.relation.references | Cao, J., Wu, C. C., & Lin, T. L. (2008). Complete nucleotide sequence of polyprotein gene 1 and genome organization of turkey coronavirus. Virus research, 136(1-2), 43–49. https://doi.org/10.1016/j.virusres.2008.04.015. | spa |
dc.relation.references | Carlson, C. J., Zipfel, C. M., Garnier, R., & Bansal, S. (2019). Global estimates of mammalian viral diversity accounting for host sharing. Nature ecology & evolution, 3(7), 1070–1075. https://doi.org/10.1038/s41559-019-0910-6 | spa |
dc.relation.references | Chen, Q., Wang, L., Yang, C., Zheng, Y., Gauger, P. C., Anderson, T., Harmon, K. M., Zhang, J., Yoon, K. J., Main, R. G., & Li, G. (2018). The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronavirus than sparrow deltacoronavirus HKU17. Emerging Microbes & Infections, 7(1). https://doi.org/10.1038/S41426-018-0108-Z. | spa |
dc.relation.references | Chen, Y., Ye, W., Zhang, Y., & Xu, Y. (2015). High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Research, 43(16), 7762-7768. https://doi.org/10.1093/nar/gkv784. | spa |
dc.relation.references | Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. https://doi.org/10.4161/fly.19695. | spa |
dc.relation.references | Clara Frezal & Stephan Hubertus Gay & Claude Nenert, 2021. "The Impact of the African Swine Fever outbreak in China on global agricultural markets,"OECD Food, Agriculture and Fisheries Papers 156, OECD Publishing. | spa |
dc.relation.references | Cronje, N. (2017). The diversity of coronaviruses in Southern African bat populations (Tesis Doctoral, Stellenbosch University). | spa |
dc.relation.references | Cuevas, J. M., Domingo-Calap, P., & Sanjuán, R. (2011). The Fitness Effects of Synonymous Mutations in DNA and RNA Viruses. https://doi.org/10.1093/molbev/msr179. | spa |
dc.relation.references | Danecek, P., & McCarthy, S. A. (2017). BCFtools/csq: Haplotype-aware variant consequences. Bioinformatics (Oxford, England), 33(13), 2037-2039. https://doi.org/10.1093/bioinformatics/btx100. | spa |
dc.relation.references | Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and high-performance computing. Nature methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109. | spa |
dc.relation.references | Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses. RNA Biology, 8(2), 270-279. https://doi.org/10.4161/rna.8.2.15013. | spa |
dc.relation.references | Drummond, A. J., Bouckaert, R. R. (2015). Bayesian Evolutionary Analysis with BEAST. Cambridge University Press. | spa |
dc.relation.references | Drummond, A., Pybus, O. G., and Rambaut, A. (2003). Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358. doi:10.1016/S0065-308X(03)54008-8. | spa |
dc.relation.references | Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences. Molecular Biology and Evolution, 22(5), 1185–1192. https://doi.org/10.1093/MOLBEV/MSI103. | spa |
dc.relation.references | Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: Patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. https://doi.org/10.1038/nrg2323. | spa |
dc.relation.references | Fan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11(3), 210. https://doi.org/10.3390/v11030210. | spa |
dc.relation.references | Fang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Bi, J., Wang, D., & Xiao, S. (2017). Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. The Journal of general virology, 98(2), 173–178. https://doi.org/10.1099/jgv.0.000690. | spa |
dc.relation.references | Ferron, F., Subissi, L., Morais, A. T. S. D., Le, N. T. T., Sevajol, M., Gluais, L., Decroly, E., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2018). Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences, 115(2), E162-E171. https://doi.org/10.1073/pnas.1718806115. | spa |
dc.relation.references | Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565. | spa |
dc.relation.references | Ge, X. Y., Li, J. L., Yang, X. L., Chmura, A. A., Zhu, G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., Peng, C., Zhang, Y. J., Luo, C. M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S. Y., Wang, L. F., Daszak, P., & Shi, Z. L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538. https://doi.org/10.1038/nature12711. | spa |
dc.relation.references | Georgopoulou, I., & Tsiouris, V. (2008). The potential role of migratory birds in the transmission of zoonoses. Veterinaria Italiana, 44(4), 671–677. http://www.ncbi.nlm.nih.gov/pubmed/20411494. | spa |
dc.relation.references | Graepel, K. W., Lu, X., Case, J. B., Sexton, N. R., Smith, E. C., & Denison, M. R. (2017). Proofreading-deficient coronaviruses adapt over long-term passage for increased fidelity and fitness without reversion of exoribonuclease-inactivating mutations. BioRxiv, 175562.https://doi.org/10.1101/175562. | spa |
dc.relation.references | Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69–79. https://doi.org/10.1142/9789814295291_0009. | spa |
dc.relation.references | Hiscox, J. A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., & Brooks, G. (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of virology, 75(1), 506–512. https://doi.org/10.1128/JVI.75.1.506-512.2001. | spa |
dc.relation.references | Huang, S., Bininda-Emonds, O. R., Stephens, P. R., Gittleman, J. L., & Altizer, S. (2014). Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. The Journal of animal ecology, 83(3), 671–680. https://doi.org/10.1111/1365-2656.12160. | spa |
dc.relation.references | Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., & Guo, D. (2005). Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 79(9), 5288-5295. https://doi.org/10.1128/JVI.79.9.5288-5295.2005. | spa |
dc.relation.references | Ito, K., & Murphy, D. (2013). Application of ggplot2 to Pharmacometric Graphics. CPT: Pharmacometrics & Systems Pharmacology, 2, e79. https://doi.org/10.1038/psp.2013.56. | spa |
dc.relation.references | Jackwood, M. W., Hall, D., & Handel, A. (2012). Molecular evolution and emergence of avian gammacoronaviruses. Infection, Genetics and Evolution, 12(6), 1305–1311. https://doi.org/10.1016/j.meegid.2012.05.003. | spa |
dc.relation.references | Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., & Amonsin, A. (2016). Porcine Deltacoronavirus, Thailand, 2015 - Volume 22, Number 4—April 2016 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 22(4), 757–759. https://doi.org/10.3201/EID2204.151852. | spa |
dc.relation.references | Jia, W., Karaca, K., Parrish, C. R., & Naqi, S. A. (1995). A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Archives of virology, 140(2), 259–271. https://doi.org/10.1007/BF01309861. | spa |
dc.relation.references | Karesh, W. B., Cook, R. A., Bennett, E. L., & Newcomb, J. (2005). Wildlife Trade and Global Disease Emergence. Emerging Infectious Diseases, 11(7), 1000–1002. https://doi.org/10.3201/eid1107.050194. | spa |
dc.relation.references | Kelly, J. A., Woodside, M. T., & Dinman, J. D. (2021). Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology, 554, 75–82. https://doi.org/10.1016/J.VIROL.2020.12.010 | spa |
dc.relation.references | Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208–1222. https://doi.org/10.1093/molbev/msi105. | spa |
dc.relation.references | Kreuder Johnson, C., Hitchens, P. L., Smiley Evans, T., Goldstein, T., Thomas, K., Clements, A., Joly, D. O., Wolfe, N. D., Daszak, P., Karesh, W. B., & Mazet, J. K. (2015). Spillover and pandemic properties of zoonotic viruses with high host plasticity. Scientific reports, 5, 14830. https://doi.org/10.1038/srep14830. | spa |
dc.relation.references | Kühnert, D., Wu, C. H., and Drummond, A. J. (2011). Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. Infect. Genet. Evol. 11, 1825–1841. doi:10.1016/j.meegid.2011.08.005. | spa |
dc.relation.references | Kusters, J. G., Jager, E. J., Niesters, H. G. M., & van der Zeijst, B. A. M. (1990). Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine, 8(6), 605–608. https://doi.org/10.1016/0264-410X(90)90018-H. | spa |
dc.relation.references | Laconi, A., van Beurden, S. J., Berends, A. J., Krämer-Kühl, A., Jansen, C. A., Spekreijse, D., Chénard, G., Philipp, H. C., Mundt, E., Rottier, P. J. M., & Hélène Verheije, M. (2018). Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo. Journal of General Virology, 99(10), 1381–1390. https://doi.org/10.1099/jgv.0.001130. | spa |
dc.relation.references | Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531. | spa |
dc.relation.references | Lednicky, J. A., Tagliamonte, M. S., White, S. K., Elbadry, M. A., Alam, M. M., Stephenson, C. J., Bonny, T. S., Loeb, J. C., Telisma, T., Chavannes, S., Ostrov, D. A., Mavian, C., de Rochars, V. M. B., Salemi, M., & Morris, J. G. (2021). Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.03.19.21253391. | spa |
dc.relation.references | Lee, C. W., & Jackwood, M. W. (2000). Evidence of genetic diversity generated by recombination among avian coronavirus IBV. Archives of virology, 145(10), 2135–2148. https://doi.org/10.1007/s007050070044. | spa |
dc.relation.references | Lee, J. H., Chung, H. C., Nguyen, V. G., Moon, H. J., Kim, H. K., Park, S. J., Lee, C. H., Lee, G. E., & Park, B. K. (2016). Detection and Phylogenetic Analysis of Porcine Deltacoronavirus in Korean Swine Farms, 2015. Transboundary and Emerging Diseases, 63(3), 248–252. https://doi.org/10.1111/TBED.12490. | spa |
dc.relation.references | Lee, S., & Lee, C. (2015). Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus. Virus Research, 208, 136. https://doi.org/10.1016/J.VIRUSRES.2015.06.013. | spa |
dc.relation.references | Leite Júnior, D. P., Araújo Pires, R. A., Dantas, E. S. de O., Pereira, R. S., Bonci, M. M., Ramos, R. T. B., Costa, G. L. da, Melhem, M. de S. C., Felippe, P. A. N., & Paula, C. R. (2020). Spillover: the role of bats and relationships as reservoirs of zoonotic viruses and the origin of new coronaviruses. Forensic Research & Criminology International Journal, 8(5), 205–214. https://doi.org/10.15406/frcij.2020.08.00329. | spa |
dc.relation.references | Lemey, P., Rambaut, A., Drummond, A. J., & Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology, 5(9), e1000520. https://doi.org/10.1371/journal.pcbi.1000520. | spa |
dc.relation.references | Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England), 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191. | spa |
dc.relation.references | Liang, Q., Zhang, H., Li, B., Ding, Q., Wang, Y., Gao, W., Guo, D., Wei, Z., & Hu, H. (2019). Susceptibility of Chickens to Porcine Deltacoronavirus Infection. Viruses, 11(6). https://doi.org/10.3390/V11060573. | spa |
dc.relation.references | Lin, T. L., Loa, C. C., & Wu, C. C. (2004). Complete sequences of 3′ end coding region for structural protein genes of turkey coronavirus. Virus Research, 106(1), 61–70. https://doi.org/10.1016/J.VIRUSRES.2004.06.003. | spa |
dc.relation.references | Liu, S., Zhuang, Q., Wang, S., Jiang, W., Jin, J., Peng, C., Hou, G., Li, J., Yu, J., Yu, X., Liu, H., Sun, S., Yuan, L., & Chen, J. (2020). Control of avian influenza in China: Strategies and lessons. Transboundary and Emerging Diseases, 67(4), 1463–1471. https://doi.org/10.1111/TBED.13515. | spa |
dc.relation.references | Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C. et al. ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26. | spa |
dc.relation.references | McBride, R., van Zyl, M., & Fielding, B. C. (2014). The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses, 6(8), 2991. https://doi.org/10.3390/V6082991. | spa |
dc.relation.references | McCluskey, B. J., Haley, C., Rovira, A., Main, R., Zhang, Y., & Barder, S. (2016). Retrospective testing and case series study of porcine delta coronavirus in U.S. swine herds. Preventive Veterinary Medicine, 123, 185–191. https://doi.org/10.1016/j.prevetmed.2015.10.018. | spa |
dc.relation.references | Menachery, V. D., Graham, R. L., & Baric, R. S. (2017). Jumping species—a mechanism for coronavirus persistence and survival. Current Opinion in Virology, 23, 1. https://doi.org/10.1016/J.COVIRO.2017.01.002. | spa |
dc.relation.references | Michel, C. J., Mayer, C., Poch, O., & Thompson, J. D. (2020). Characterization of accessory genes in coronavirus genomes. Virology Journal, 17(1), 131. https://doi.org/10.1186/s12985-020-01402-1. | spa |
dc.relation.references | Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Molecular Biology and Evolution, 30(5), 1196–1205. https://doi.org/10.1093/molbev/mst030. | spa |
dc.relation.references | Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S. L. (2012). Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genetics, 8(7), e1002764. https://doi.org/10.1371/journal.pgen.1002764. | spa |
dc.relation.references | Niu, X., Hou, Y. J., Jung, K., Kong, F., Saif, L. J., & Wang, Q. (2021). Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses, 13(1), 122. https://doi.org/10.3390/v13010122. | spa |
dc.relation.references | O’Leary, N.A., Cox, E., Holmes, J.B. et al. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets. Sci Data 11, 732 (2024). https://doi.org/10.1038/s41597-024-03571-y. | spa |
dc.relation.references | Olival, K. J., Hosseini, P. R., Zambrana-Torrelio, C., Ross, N., Bogich, T. L., & Daszak, P. (2017). Erratum: Host and viral traits predict zoonotic spillover from mammals. Nature, 548(7669), 612. https://doi.org/10.1038/nature23660. | spa |
dc.relation.references | Organización Mundial de la Salud. (2023, 12 de julio). Los brotes actuales de gripe aviar en animales suponen un riesgo para los seres humanos. https://www.who.int/es/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans. | spa |
dc.relation.references | Pagès H, Aboyoun P, Gentleman R, DebRoy S (2024). Biostrings: Efficient manipulation of biological strings. R package version 2.72.1, https://bioconductor.org/packages/Biostrings. | spa |
dc.relation.references | Pang, W., Lu, Y., Zhao, YB. et al. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 32, 1068–1085 (2022). https://doi.org/10.1038/s41422-022-00746-3. | spa |
dc.relation.references | Plant, E. P., & Dinman, J. D. (2008). The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Frontiers in Bioscience : A Journal and Virtual Library, 13(13), 4873. https://doi.org/10.2741/3046. | spa |
dc.relation.references | R Core Team. (2021). R: The R Project for Statistical Computing. https://www.r-project.org/ | spa |
dc.relation.references | Rambaut, A. (2018). FigTree v1.4.4 [Computer software]. http://tree.bio.ed.ac.uk/software/figtree/. | spa |
dc.relation.references | Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032. | spa |
dc.relation.references | Rangan, R., Zheludev, I. N., & Das, R. (2020). RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. BioRxiv, 2020.03.27.012906. https://doi.org/10.1101/2020.03.27.012906. | spa |
dc.relation.references | Rappole, J., Derrickson, S. R., & Hubálek, Z. (2000). Migratory Birds and Spread of West Nile Virus in the Western Hemisphere. Emerging Infectious Diseases, 6(4), 319–328. https://doi.org/10.3201/eid0604.000401. | spa |
dc.relation.references | Rivas, E. (2020). RNA structure prediction using positive and negative evolutionary information. PLOS Computational Biology, 16(10), e1008387. https://doi.org/10.1371/journal.pcbi.1008387. | spa |
dc.relation.references | Rojas – Cruz, Alexis F. (2022). Evolución molecular de Betacoronavirus zoonóticos asociados con el Síndrome de Distrés Respiratorio Agudo (SDRA) (Tesis magister, UNAL Bogotá). | spa |
dc.relation.references | Saeng-chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D. T., Stott, C. J., Madapong, A., Tripipat, T., Wegner, M., Intrakamhaeng, M., Chongcharoen, W., Tantituvanont, A., Kaewprommal, P., Piriyapongsa, J., & Nilubol, D. (2017). Different Lineage of Porcine Deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015. Transboundary and Emerging Diseases, 64(1), 3–10. https://doi.org/10.1111/TBED.12585. | spa |
dc.relation.references | Schneider, M., Lander, B., & Brunson, K. (2019, 2 de agosto). ¿Cómo el cerdo se convirtió en una “fábrica de carne porcina” en China? Dialogue Earth. https://dialogue.earth/es/alimentos/29354-como-el-cerdo-se-convirtio-en-una-fabrica-de-carne-porcina-en-china. | spa |
dc.relation.references | Simmonds, P. (2020). Pervasive RNA secondary structure in the genomes of SARS-CoV-2 and other coronaviruses. MBio, 11(6), 1–15. https://doi.org/10.1128/mBio.01661-20. | spa |
dc.relation.references | Smith, E. C., Blanc, H., Surdel, M. C., Vignuzzi, M., & Denison, M. R. (2013). Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS pathogens, 9(8), e1003565. https://doi.org/10.1371/journal.ppat.1003565. | spa |
dc.relation.references | Sweileh, W. M. (2017). Global research trends of World Health Organization’s top eight emerging pathogens. Globalization and Health, 13. https://doi.org/10.1186/s12992-017-0233-9. | spa |
dc.relation.references | Tamayo-Ordóñez, M. C., Rosas-García, N. M., Ayil-Gutiérrez, B. A., Bello-López, J. M., Tamayo-Ordóñez, F. A., Anguebes-Franseschi, F., Damas-Damas, S., & Tamayo-Ordóñez, Y. d. J. (2023). Non-Structural Proteins (Nsp): A Marker for Detection of Human Coronavirus Families. Pathogens, 12(9), 1185. https://doi.org/10.3390/pathogens12091185. | spa |
dc.relation.references | van Beurden, S. J., Berends, A. J., Krämer-Kühl, A., Spekreijse, D., Chenard, G., Philipp, H. C., Mundt, E., Rottier, P. J. M., & Verheije, M. H. (2018). Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens. Vaccine, 36(8), 1085–1092. https://doi.org/10.1016/J.VACCINE.2018.01.017. | spa |
dc.relation.references | van Dijk, J. G., Verhagen, J. H., Wille, M., & Waldenström, J. (2018). Host and virus ecology as determinants of influenza A virus transmission in wild birds. Current Opinion in Virology, 28, 26–36. https://doi.org/10.1016/j.coviro.2017.10.006. | spa |
dc.relation.references | Walter Costa, M. B., Höner zu Siederdissen, C., Dunjić, M., Stadler, P. F., & Nowick, K. (2019). SSS-test: a novel test for detecting positive selection on RNA secondary structure. BMC Bioinformatics, 20(1), 151. https://doi.org/10.1186/s12859-019-2711-y. | spa |
dc.relation.references | Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W., Jr, Swanstrom, R., Burch, C. L., & Weeks, K. M. (2009). Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460(7256), 711–716. https://doi.org/10.1038/nature08237. | spa |
dc.relation.references | Weaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Kosakovsky Pond, S. L. (2018). Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Molecular Biology and Evolution, 35(3), 773-777. https://doi.org/10.1093/molbev/msx335. | spa |
dc.relation.references | Welfare, W., & Wright, E. (2016). Planning for the unexpected: Ebola virus, Zika virus, what’s next? British Journal of Hospital Medicine, 77(12), 704-707. https://doi.org/10.12968/hmed.2016.77.12.704. | spa |
dc.relation.references | Wells, K., Gibson, D. I., Clark, N. J., Ribas, A., Morand, S., & McCallum, H. I. (2018). Global spread of helminth parasites at the human-domestic animal-wildlife interface. Global change biology, 24(7), 3254–3265. https://doi.org/10.1111/gcb.14064. | spa |
dc.relation.references | Wertheim, J. O., Murrell, B., Smith, M. D., Pond, S. L. K., & Scheffler, K. (2015). RELAX: Detecting Relaxed Selection in a Phylogenetic Framework. Molecular Biology and Evolution, 32(3), 820–832. https://doi.org/10.1093/MOLBEV/MSU400. | spa |
dc.relation.references | Wickham H, François R, Henry L, Müller K, Vaughan D (2023). dplyr: A Grammar of Data Manipulation. R package version 1.1.4, https://github.com/tidyverse/dplyr. | spa |
dc.relation.references | Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686. | spa |
dc.relation.references | Wille, M., & Holmes, E. C. (2020). Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiology Reviews, 44(5), 631–644. https://doi.org/10.1093/femsre/fuaa026. | spa |
dc.relation.references | Wille, M., Avril, A., Tolf, C., Schager, A., Larsson, S., Borg, O., Olsen, B., & Waldenström, J. (2015). Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus. Infection, Genetics and Evolution, 29, 129. https://doi.org/10.1016/J.MEEGID.2014.11.014. | spa |
dc.relation.references | Wille, M., Shi, M., Klaassen, M., Hurt, A. C., & Holmes, E. C. (2019). Virome heterogeneity and connectivity in waterfowl and shorebird communities. The ISME Journal, 13(10), 2603–2616. https://doi.org/10.1038/s41396-019-0458-0. | spa |
dc.relation.references | Woo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., & Yuen, K. Y. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11. | spa |
dc.relation.references | Wu, Y., Li, M., Tian, J., Yan, H., Pan, Y., Shi, H., Shi, D., Chen, J., Guo, L., & Feng, L. (2023). Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. PLOS Pathogens, 19(10). https://doi.org/10.1371/JOURNAL.PPAT.1011702. | spa |
dc.relation.references | Xing, Y., Li, X., Gao, X., & Dong, Q. (2020). MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences. Frontiers in Microbiology, 0. https://doi.org/10.3389/fmicb.2020.01502. | spa |
dc.relation.references | Xu, Z., Choi, J., Yen, T. S., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M. J., & Ou, J. (2001). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. The EMBO journal, 20(14), 3840–3848. https://doi.org/10.1093/emboj/20.14.3840. | spa |
dc.relation.references | Yang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3’ and 5’ ends. Virus Research, 206, 120–133. https://doi.org/10.1016/j.virusres.2015.02.025. | spa |
dc.relation.references | Yoshimoto F. K. (2020). The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. The protein journal, 39(3), 198–216. https://doi.org/10.1007/s10930-020-09901-4. | spa |
dc.relation.references | Zhang, H., Liang, Q., Li, B., Cui, X., Wei, X., Ding, Q., Wang, Y., & Hu, H. (2019). Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China. Preventive Veterinary Medicine, 166, 8–15. https://doi.org/10.1016/j.prevetmed.2019.02.017. | spa |
dc.relation.references | Zhang, M., Li, W., Zhou, P., Liu, D., Luo, R., Jongkaewwattana, A., & He, Q. (2020). Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design. Emerging Microbes & Infections, 9(1), 20. https://doi.org/10.1080/22221751.2019.1701391. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.decs | Deltacoronavirus/genética | spa |
dc.subject.decs | Deltacoronavirus/genetics | eng |
dc.subject.decs | Variación Genética | spa |
dc.subject.decs | Genetic Variation | eng |
dc.subject.decs | Vigilancia de Zoonosis | spa |
dc.subject.decs | Zoonosis Surveillance | eng |
dc.subject.proposal | Delta- y Gammacoronavirus | spa |
dc.subject.proposal | Filogenómica viral | spa |
dc.subject.proposal | Filogeografía viral | spa |
dc.subject.proposal | Genómica comparativa | spa |
dc.subject.proposal | Delta- and gammacoronaviruses | eng |
dc.subject.proposal | Viral phylogenomics | eng |
dc.subject.proposal | Viral phylogeography | eng |
dc.subject.proposal | Comparative genomic | eng |
dc.title | Análisis de la información evolutiva y de diversidad genómica para un estudio piloto de dispersión de variantes de Delta- y Gammacoronavirus con potencial zoonótico | spa |
dc.title.translated | Analysis of evolutionary and genomic diversity information for a pilot study on the dispersal of delta- and gammacoronavirus variants with zoonotic potential | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 6732940.2025.pdf
- Tamaño:
- 3.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: