Sólidos basados en α-Fe2O3 como catalizadores de procesos tipo Fenton

dc.contributor.advisorCarriazo Baños, José Gregorio
dc.contributor.authorGarzon Cucaita, Angie Valentina
dc.contributor.orcidGarzon Cucaita, Angie Valentina [0000-0003-2557-7546]spa
dc.contributor.researchgroupDiseño y Reactividad de Estructuras Sólidasspa
dc.date.accessioned2023-07-25T19:44:30Z
dc.date.available2023-07-25T19:44:30Z
dc.date.issued2023-05
dc.descriptionilustraciones, fotográfías, gráficas, tablasspa
dc.description.abstractComo respuesta a la necesidad de diseñar tecnologías de tratamiento de aguas, las reacciones tipo Fenton han surgido como Procesos Avanzados de Oxidación que han demostrado alta eficiencia y potencial aplicación en la degradación de contaminantes. Por otra parte, los óxidos de hierro han sido ampliamente usados como catalizadores de sistemas Fenton. En el siguiente documento se detallan la síntesis, caracterización y evaluación de sólidos basados en α-Fe2O3 como catalizadores de la reacción tipo Fenton para la degradación del colorante textil AR 145. Se sintetizaron sólidos de α-Fe2O3 y se caracterizaron usando técnicas como: SEM, TEM, DRX, Espectroscopias IR, Raman y Vis-NIR, sortometría, TGA/DSC, entre otras. Posteriormente, se evaluó su actividad catalítica en la degradación del AR 145. Los resultados obtenidos mostraron la síntesis exitosa de sólidos con morfología multirramificada y estructura tipo hematita. Además, el sólido Cu-Co/α-Fe2O3 exhibió el mejor desempeño catalítico alcanzando un porcentaje de mineralización de AR 145 mayor al 70% en condiciones suaves y 180 minutos de reacción. (Texto tomado de la fuente)spa
dc.description.abstractIn response to the need to design water treatment technologies, Fenton-type reactions have emerged as Advanced Oxidation Processes that have demonstrated high efficiency and potential application in pollutant degradation. On the other hand, iron oxides have been widely used as catalysts for Fenton systems. The following document details the synthesis, characterization, and evaluation of solids based on α-Fe2O3 as catalysts for the Fenton-type reaction for the degradation of the textile dye AR 145. Solids of α-Fe2O3 were synthesized and characterized using SEM, TEM, XRD, IR, Raman, Vis-NIR spectroscopies, sortometry, and TGA/DSC, among others. Subsequently, its catalytic activity in the degradation of AR 145 was evaluated. The results showed the successful synthesis of solids with multibranched morphology and hematite-like structure. In addition, the solid Cu-Co/α-Fe2O3 exhibited the best catalytic performance, reaching a mineralization percentage of AR 145 greater than 70% under mild conditions and 180 minutes of reaction.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentxviii, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84267
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] C. Amor, L. Marchão, M. S. Lucas, and J. A. Peres, “Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review,” Water (Basel), vol. 11, no. 2, p. 205, Jan. 2019, doi: 10.3390/w11020205.spa
dc.relation.references[2] Y. di Chen et al., “Advanced oxidation processes for water disinfection: Features, mechanisms and prospects,” Chemical Engineering Journal, vol. 409. Elsevier B.V., p. 128207, Apr. 01, 2021. doi: 10.1016/j.cej.2020.128207.spa
dc.relation.references[3] F. E. Titchou et al., “An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes,” Journal of Water Process Engineering, vol. 41. Elsevier Ltd, p. 102040, Jun. 01, 2021. doi: 10.1016/j.jwpe.2021.102040.spa
dc.relation.references[4] J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications,” J Mol Liq, vol. 332, p. 115755, Jun. 2021, doi: 10.1016/j.molliq.2021.115755.spa
dc.relation.references[5] I. F. Macías-Quiroga, P. A. Henao-Aguirre, A. Marín-Flórez, S. M. Arredondo-López, and N. R. Sanabria-González, “Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends,” Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23791–23811, May 2021, doi: 10.1007/s11356-020-11333-7.spa
dc.relation.references[6] D. Rawat, V. Mishra, and R. S. Sharma, “Detoxification of azo dyes in the context of environmental processes,” Chemosphere, vol. 155, pp. 591–605, Jul. 2016, doi: 10.1016/J.CHEMOSPHERE.2016.04.068.spa
dc.relation.references[7] S. Benkhaya, S. M’rabet, H. Lgaz, A. El Bachiri, and A. El Harfi, “Dyes: Classification, Pollution, and Environmental Effects,” 2022, pp. 1–50. doi: 10.1007/978-981-16-5932-4_1.spa
dc.relation.references[8] N. Tara et al., “Graphene, graphene oxide, and reduced graphene oxide-based materials: a comparative adsorption performance,” Contamination of Water: Health Risk Assessment and Treatment Strategies, pp. 495–507, Jan. 2021, doi: 10.1016/B978-0-12-824058-8.00014-1.spa
dc.relation.references[9] A. G. R Ananthashankar, “Production, Characterization and Treatment of Textile Effluents: A Critical Review,” Journal of Chemical Engineering & Process Technology, vol. 05, no. 01, 2013, doi: 10.4172/2157-7048.1000182.spa
dc.relation.references[11] D. Ma et al., “Critical review of advanced oxidation processes in organic wastewater treatment,” Chemosphere, p. 130104, Feb. 2021, doi: 10.1016/j.chemosphere.2021.130104.spa
dc.relation.references[12] R. Ameta, A. K. Chohadia, A. Jain, and P. B. Punjabi, “Fenton and Photo-Fenton Processes,” in Advanced Oxidation Processes for Waste Water Treatment, Elsevier, 2018, pp. 49–87. doi: 10.1016/B978-0-12-810499-6.00003-6.spa
dc.relation.references[13] N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: A review of recent advances,” Journal of Hazardous Materials, vol. 404. Elsevier B.V., p. 124082, Feb. 15, 2021. doi: 10.1016/j.jhazmat.2020.124082.spa
dc.relation.references[14] C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A. N. Grace, and J. Madhavan, “Iron Oxide Nanomaterials for Water Purification,” in Nanoscale Materials in Water Purification, Elsevier, 2018, pp. 431–446. doi: 10.1016/B978-0-12-813926-4.00022-7.spa
dc.relation.references[15] Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review,” Applied Catalysis B: Environmental, vol. 255. Elsevier B.V., p. 117739, Oct. 15, 2019. doi: 10.1016/j.apcatb.2019.05.041.spa
dc.relation.references[16] S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” J Clean Prod, vol. 64, pp. 24–35, Feb. 2014, doi: 10.1016/j.jclepro.2013.09.013.spa
dc.relation.references[17] C. N. C. Hitam and A. A. Jalil, “A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants,” J Environ Manage, vol. 258, p. 110050, Mar. 2020, doi: 10.1016/J.JENVMAN.2019.110050.spa
dc.relation.references[18] X. Hu, J. C. Yu, and J. Gong, “Fast Production of Self-Assembled Hierarchical α-Fe 2 O 3 Nanoarchitectures,” The Journal of Physical Chemistry C, vol. 111, no. 30, Aug. 2007, doi: 10.1021/jp073073e.spa
dc.relation.references[19] V. Polshettiwar, B. Baruwati, and R. S. Varma, “Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis,” ACS Nano, vol. 3, no. 3, Mar. 2009, doi: 10.1021/nn800903p.spa
dc.relation.references[20] A. M. Carrillo Romero, “Síntesis y caracterización de catalizadores a partir de los metales Cu y Co soportados sobre un mineral de arcilla tipo haloisita para la oxidación total de tolueno.,” 2013.spa
dc.relation.references[21] GVR, “Dyes & Pigments Market Size, Share & Trends Analysis Report By Product (Dyes, Pigments), By Application, By Regions, And Segment Forecasts, 2022 - 2030,” 2022.spa
dc.relation.references[22] S. C. Bhatia, Pollution Control in Textile Industry. WPI Publishing, 2017. doi: 10.1201/9781315148588.spa
dc.relation.references[23] R. Kishor et al., “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety,” J Environ Chem Eng, vol. 9, no. 2, p. 105012, Apr. 2021, doi: 10.1016/J.JECE.2020.105012.spa
dc.relation.references[24] A. Desore and S. A. Narula, “An overview on corporate response towards sustainability issues in textile industry,” Environ Dev Sustain, vol. 20, no. 4, pp. 1439–1459, Aug. 2018, doi: 10.1007/s10668-017-9949-1.spa
dc.relation.references[25] S. M. Shang, “Process control in dyeing of textiles,” in Process Control in Textile Manufacturing, Elsevier, 2013, pp. 300–338. doi: 10.1533/9780857095633.3.300.spa
dc.relation.references[26] A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Classification of Dye and Pigments,” 2016, pp. 31–45. doi: 10.1007/978-3-319-33892-7_3.spa
dc.relation.references[27] S. Benkhaya, S. M’rabet, and A. El Harfi, “Classifications, properties, recent synthesis and applications of azo dyes,” Heliyon, vol. 6, no. 1, p. e03271, Jan. 2020, doi: 10.1016/J.HELIYON.2020.E03271.spa
dc.relation.references[28] S. H. Hashemi and M. Kaykhaii, “Azo dyes: Sources, occurrence, toxicity, sampling, analysis, and their removal methods,” Emerging Freshwater Pollutants, pp. 267–287, Jan. 2022, doi: 10.1016/B978-0-12-822850-0.00013-2.spa
dc.relation.references[29] N. Garg, A. Garg, and S. Mukherji, “Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha,” J Environ Manage, vol. 263, p. 110383, Jun. 2020, doi: 10.1016/J.JENVMAN.2020.110383.spa
dc.relation.references[30] B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, “Effects of textile dyes on health and the environment and bioremediation potential of living organisms,” Biotechnology Research and Innovation, vol. 3, no. 2, pp. 275–290, Jul. 2019, doi: 10.1016/J.BIORI.2019.09.001.spa
dc.relation.references[31] P. Pal, “Industry-Specific Water Treatment,” in Industrial Water Treatment Process Technology, Elsevier, 2017, pp. 243–511. doi: 10.1016/B978-0-12-810391-3.00006-0.spa
dc.relation.references[32] P. Chakravarty, K. Bauddh, and M. Kumar, “Remediation of Dyes from Aquatic Ecosystems by Biosorption Method Using Algae,” in Algae and Environmental Sustainability, New Delhi: Springer India, 2015, pp. 97–106. doi: 10.1007/978-81-322-2641-3_8.spa
dc.relation.references[33] B. J. Brüschweiler, S. Küng, D. Bürgi, L. Muralt, and E. Nyfeler, “Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles,” Regulatory Toxicology and Pharmacology, vol. 69, no. 2, pp. 263–272, Jul. 2014, doi: 10.1016/J.YRTPH.2014.04.011.spa
dc.relation.references[34] A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, “Colorants in Health and Environmental Aspects,” 2016, pp. 69–83. doi: 10.1007/978-3-319-33892-7_5.spa
dc.relation.references[35] R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol Environ Saf, vol. 231, p. 113160, Feb. 2022, doi: 10.1016/J.ECOENV.2021.113160.spa
dc.relation.references[36] H. Tounsadi, Y. Metarfi, M. Taleb, K. El Rhazi, and Z. Rais, “Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study,” Ecotoxicol Environ Saf, vol. 197, p. 110594, Jul. 2020, doi: 10.1016/J.ECOENV.2020.110594.spa
dc.relation.references[37] Ministerio de Ambiente y Desarrollo Sostenible, RESOLUCIÓN 631 DE 2015. Colombia : Imprenta Nacional de Colombia , 2015.spa
dc.relation.references[38] S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr, “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives,” Process Safety and Environmental Protection, vol. 143, pp. 138–163, Nov. 2020, doi: 10.1016/J.PSEP.2020.05.034.spa
dc.relation.references[39] M. Sardar, M. Manna, M. Maharana, and S. Sen, “Remediation of Dyes from Industrial Wastewater Using Low-Cost Adsorbents,” 2021, pp. 377–403. doi: 10.1007/978-3-030-47400-3_15.spa
dc.relation.references[40] S. Mani, P. Chowdhary, and R. N. Bharagava, “Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches,” in Emerging and Eco-Friendly Approaches for Waste Management, Singapore: Springer Singapore, 2019, pp. 219–244. doi: 10.1007/978-981-10-8669-4_11.spa
dc.relation.references[41] Y. Zhou, J. Lu, Y. Zhou, and Y. Liu, “Recent advances for dyes removal using novel adsorbents: A review,” Environmental Pollution, vol. 252, pp. 352–365, Sep. 2019, doi: 10.1016/J.ENVPOL.2019.05.072.spa
dc.relation.references[42] A. Ahmad et al., “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RSC Adv, vol. 5, no. 39, pp. 30801–30818, 2015, doi: 10.1039/C4RA16959J.spa
dc.relation.references[43] S. Arslan, M. Eyvaz, E. Gürbulak, and E. Yüksel, “A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case,” in Textile Wastewater Treatment, InTech, 2016. doi: 10.5772/64140.spa
dc.relation.references[44] N. MOHAN, N. BALASUBRAMANIAN, and C. BASHA, “Electrochemical oxidation of textile wastewater and its reuse,” J Hazard Mater, vol. 147, no. 1–2, pp. 644–651, Aug. 2007, doi: 10.1016/j.jhazmat.2007.01.063.spa
dc.relation.references[45] K. Siddique, M. Rizwan, M. J. Shahid, S. Ali, R. Ahmad, and H. Rizvi, “Textile Wastewater Treatment Options: A Critical Review,” in Enhancing Cleanup of Environmental Pollutants, Cham: Springer International Publishing, 2017, pp. 183–207. doi: 10.1007/978-3-319-55423-5_6.spa
dc.relation.references[46] S. Atalay and G. Ersöz, “Advanced Oxidation Processes for Removal of Dyes from Aqueous Media,” in Green Chemistry for Dyes Removal from Wastewater, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. doi: 10.1002/9781118721001.ch3.spa
dc.relation.references[47] S. C. Ameta, “Introduction,” in Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Elsevier Inc., 2018, pp. 1–12. doi: 10.1016/B978-0-12-810499-6.00001-2.spa
dc.relation.references[48] A. Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” Journal of Environmental Chemical Engineering, vol. 2, no. 1. Elsevier Ltd, pp. 557–572, Mar. 01, 2014. doi: 10.1016/j.jece.2013.10.011.spa
dc.relation.references[49] J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bulletin of Materials Science, vol. 42, no. 4, Aug. 2019, doi: 10.1007/s12034-019-1817-1.spa
dc.relation.references[50] M. Coha, G. Farinelli, A. Tiraferri, M. Minella, and D. Vione, “Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs,” Chemical Engineering Journal, vol. 414. Elsevier B.V., p. 128668, Jun. 15, 2021. doi: 10.1016/j.cej.2021.128668.spa
dc.relation.references[51] Q. Q. Cai, L. Jothinathan, S. H. Deng, S. L. Ong, H. Y. Ng, and J. Y. Hu, “Fenton- and ozone-based AOP processes for industrial effluent treatment,” in Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2021, pp. 199–254. doi: 10.1016/b978-0-12-821011-6.00011-6.spa
dc.relation.references[52] J. P. Ribeiro and M. I. Nunes, “Recent trends and developments in Fenton processes for industrial wastewater treatment – A critical review,” Environmental Research, vol. 197. Academic Press Inc., p. 110957, Jun. 01, 2021. doi: 10.1016/j.envres.2021.110957.spa
dc.relation.references[53] N. Wang, T. Zheng, G. Zhang, and P. Wang, “A review on Fenton-like processes for organic wastewater treatment,” Journal of Environmental Chemical Engineering, vol. 4, no. 1. Elsevier Ltd, pp. 762–787, Mar. 01, 2016. doi: 10.1016/j.jece.2015.12.016.spa
dc.relation.references[54] G. Pliego, J. A. Zazo, P. Garcia-Muñoz, M. Munoz, J. A. Casas, and J. J. Rodriguez, “Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview,” Crit Rev Environ Sci Technol, vol. 45, no. 24, Dec. 2015, doi: 10.1080/10643389.2015.1025646.spa
dc.relation.references[55] M. Usman and Y.-S. Ho, “A bibliometric study of the Fenton oxidation for soil and water remediation,” J Environ Manage, vol. 270, p. 110886, Sep. 2020, doi: 10.1016/j.jenvman.2020.110886.spa
dc.relation.references[56] M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, and D. Meng, “A review on Fenton process for organic wastewater treatment based on optimization perspective,” Science of the Total Environment, vol. 670. Elsevier B.V., pp. 110–121, Jun. 20, 2019. doi: 10.1016/j.scitotenv.2019.03.180.spa
dc.relation.references[57] Y. Ruan et al., “Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater,” J Clean Prod, vol. 321, p. 128924, Oct. 2021, doi: 10.1016/J.JCLEPRO.2021.128924.spa
dc.relation.references[58] R. M. Cornell and U. Schwertmann, The Iron Oxides. Wiley, 2003. doi: 10.1002/3527602097.spa
dc.relation.references[59] G. S. Parkinson, “Iron oxide surfaces,” Surface Science Reports, vol. 71, no. 1. Elsevier B.V., pp. 272–365, Mar. 01, 2016. doi: 10.1016/j.surfrep.2016.02.001.spa
dc.relation.references[60] J. He, X. Yang, B. Men, and D. Wang, “Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review,” J Environ Sci (China), vol. 39, pp. 97–109, Jan. 2016, doi: 10.1016/j.jes.2015.12.003.spa
dc.relation.references[61] A. N. Soon and B. H. Hameed, “Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process,” Desalination, vol. 269, no. 1–3. Elsevier, pp. 1–16, Mar. 15, 2011. doi: 10.1016/j.desal.2010.11.002.spa
dc.relation.references[62] L. Zhao, Z. R. Lin, X. hong Ma, and Y. H. Dong, “Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems,” Chemical Engineering Journal, vol. 352, pp. 343–351, Nov. 2018, doi: 10.1016/j.cej.2018.07.035.spa
dc.relation.references[63] F. C. C. Moura et al., “Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites,” Chemosphere, vol. 60, no. 8, pp. 1118–1123, Aug. 2005, doi: 10.1016/j.chemosphere.2004.12.076.spa
dc.relation.references[64] X. Xue, K. Hanna, and N. Deng, “Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide,” J Hazard Mater, vol. 166, no. 1, pp. 407–414, Jul. 2009, doi: 10.1016/j.jhazmat.2008.11.089.spa
dc.relation.references[65] T. Shahwan et al., “Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes,” Chemical Engineering Journal, vol. 172, no. 1, pp. 258–266, Aug. 2011, doi: 10.1016/J.CEJ.2011.05.103.spa
dc.relation.references[66] W. M. Wang, X. Li, X. Du, and Q. Y. Wu, “A feasible approach for azo dye degradation using natural magnetite in heterogeneous Fenton oxidation,” Water Cycle, vol. 3, pp. 100–105, Jan. 2022, doi: 10.1016/J.WATCYC.2022.06.002.spa
dc.relation.references[67] M. G. Tavares et al., “Reusable iron magnetic catalyst for organic pollutant removal by Adsorption, Fenton and Photo Fenton process,” J Photochem Photobiol A Chem, vol. 432, p. 114089, Nov. 2022, doi: 10.1016/J.JPHOTOCHEM.2022.114089.spa
dc.relation.references[68] P. J. Vikesland, A. M. Heathcock, R. L. Rebodos, and K. E. Makus, “Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride,” Environ Sci Technol, vol. 41, no. 15, Aug. 2007, doi: 10.1021/es062082i.spa
dc.relation.references[69] Y. Wang, Y. Gao, L. Chen, and H. Zhang, “Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange,” Catal Today, vol. 252, pp. 107–112, Sep. 2015, doi: 10.1016/j.cattod.2015.01.012.spa
dc.relation.references[70] Y. Li and F. S. Zhang, “Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash,” Chemical Engineering Journal, vol. 158, no. 2, pp. 148–153, Apr. 2010, doi: 10.1016/j.cej.2009.12.021.spa
dc.relation.references[71] H. Zhang, H. Fu, and D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,” J Hazard Mater, vol. 172, no. 2–3, pp. 654–660, doi: 10.1016/j.jhazmat.2009.07.047.spa
dc.relation.references[72] H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, and G. He, “Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite,” Environ Technol, vol. 33, no. 14, pp. 1545–1552, Jul. 2012, doi: 10.1080/09593330.2011.635709.spa
dc.relation.references[73] E. Ghasemi, H. Ziyadi, A. M. Afshar, and M. Sillanpää, “Iron oxide nanofibers: A new magnetic catalyst for azo dyes degradation in aqueous solution,” Chemical Engineering Journal, vol. 264, pp. 146–151, Mar. 2015, doi: 10.1016/J.CEJ.2014.11.021.spa
dc.relation.references[74] X. Huang, X. Hou, J. Zhao, and L. Zhang, “Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span,” Appl Catal B, vol. 181, pp. 127–137, Feb. 2016, doi: 10.1016/j.apcatb.2015.06.061.spa
dc.relation.references[75] A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, “Photo-fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies,” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2020, pp. 248–254. doi: 10.1016/j.matpr.2019.08.095.spa
dc.relation.references[76] C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” J Clean Prod, vol. 180, pp. 550–559, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.127.spa
dc.relation.references[77] R. Jain, S. Mendiratta, L. Kumar, and A. Srivastava, “Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye,” Current Research in Green and Sustainable Chemistry, vol. 4, p. 100086, Jan. 2021, doi: 10.1016/J.CRGSC.2021.100086.spa
dc.relation.references[78] H. Ghasemi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, and N. Abu-Zahra, “High efficiency decolorization of wastewater by Fenton catalyst: Magnetic iron-copper hybrid oxides,” Journal of Water Process Engineering, vol. 37, p. 101540, Oct. 2020, doi: 10.1016/j.jwpe.2020.101540.spa
dc.relation.references[79] M. Haris et al., “Carbon encapsulated iron oxide for simultaneous Fenton degradation and adsorption of cationic and anionic dyes from water,” J Environ Chem Eng, vol. 10, no. 6, p. 108968, Dec. 2022, doi: 10.1016/J.JECE.2022.108968.spa
dc.relation.references[80] T. H. Wang, C. C. Yang, K. Qin, C. W. Chen, and C. Di Dong, “Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction,” J Hazard Mater, vol. 406, p. 124791, Mar. 2021, doi: 10.1016/j.jhazmat.2020.124791.spa
dc.relation.references[81] N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao, and J. C. Diniz da Costa, “The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe 3 O 4,” Chemical Communications, vol. 51, no. 45, 2015, doi: 10.1039/C5CC02292D.spa
dc.relation.references[82] M. Tadić, N. Čitaković, M. Panjan, Z. Stojanović, D. Marković, and V. Spasojević, “Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles,” J Alloys Compd, vol. 509, no. 28, pp. 7639–7644, Jul. 2011, doi: 10.1016/J.JALLCOM.2011.04.117.spa
dc.relation.references[83] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, “Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,” Results Phys, vol. 7, pp. 3007–3015, Jan. 2017, doi: 10.1016/J.RINP.2017.07.066.spa
dc.relation.references[84] L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren, and J. Guo, “One-Dimensional Quantum-Confinement Effect in α-Fe2O3 Ultrafine Nanorod Arrays,” Advanced Materials, vol. 17, no. 19, pp. 2320–2323, Oct. 2005, doi: 10.1002/adma.200500992.spa
dc.relation.references[85] W. Tan, Y. Liang, Y. Xu, and M. Wang, “Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review,” Chemosphere, vol. 306, p. 135540, Nov. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.135540.spa
dc.relation.references[86] J. Gu et al., “Single-crystalline α-Fe2O3 with hierarchical structures: Controllable synthesis, formation mechanism and photocatalytic properties,” J Solid State Chem, vol. 182, no. 5, pp. 1265–1272, May 2009, doi: 10.1016/J.JSSC.2009.01.041.spa
dc.relation.references[87] M. Cao et al., “Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties,” Angewandte Chemie International Edition, vol. 44, no. 27, Jul. 2005, doi: 10.1002/anie.200500448.spa
dc.relation.references[88] G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, “Hierarchical Dendrite-Like Magnetic Materials of Fe 3 O 4 , γ-Fe 2 O 3 , and Fe with High Performance of Microwave Absorption,” Chemistry of Materials, vol. 23, no. 6, Mar. 2011, doi: 10.1021/cm103441u.spa
dc.relation.references[89] A. E. Green et al., “Growth Mechanism of Dendritic Hematite via Hydrolysis of Ferricyanide,” Cryst Growth Des, vol. 17, no. 2, Feb. 2017, doi: 10.1021/acs.cgd.6b01655.spa
dc.relation.references[90] H. Wu and L. Wang, “Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation,” Appl Surf Sci, vol. 288, pp. 398–404, Jan. 2014, doi: 10.1016/J.APSUSC.2013.10.046.spa
dc.relation.references[91] M. R. Shenoy et al., “Preparation and characterization of porous iron oxide dendrites for photocatalytic application,” Solid State Sci, vol. 95, p. 105939, Sep. 2019, doi: 10.1016/J.SOLIDSTATESCIENCES.2019.105939.spa
dc.relation.references[92] R. C. C. Costa et al., “Novel active heterogeneous Fenton system based on Fe3-xM xO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions,” J Hazard Mater, vol. 129, no. 1–3, pp. 171–178, Feb. 2006, doi: 10.1016/j.jhazmat.2005.08.028.spa
dc.relation.references[93] J. Xu et al., “Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium,” Chemical Engineering Journal, vol. 291, pp. 174–183, May 2016, doi: 10.1016/j.cej.2016.01.059.spa
dc.relation.references[94] I. R. Guimaraes, A. Giroto, L. C. A. Oliveira, M. C. Guerreiro, D. Q. Lima, and J. D. Fabris, “Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process,” Appl Catal B, vol. 91, no. 3–4, pp. 581–586, Sep. 2009, doi: 10.1016/j.apcatb.2009.06.030.spa
dc.relation.references[95] World Bank, “Colombia un Cambio de Rumbo : Seguridad hídrica para la recuperación y crecimiento sostenible.,” Notas de política. Washington D.C, Sep. 2020.spa
dc.relation.references[96] P. A. Espinel González, D. M. Aparicio Soto, and A. J. Mora, “SECTOR TEXTIL COLOMBIANO Y SU INFLUENCIA EN LA ECONOMÍA DEL PAÍS,” Punto de vista, vol. 9, no. 13, Feb. 2018, doi: 10.15765/pdv.v9i13.1118.spa
dc.relation.references[97] E. M. Patarroyo, “Procesos de estabilización de residuos generados en la industria textil en Colombia mediante lodos activados.,” Universidad Militar Nueva Granada, 2013.spa
dc.relation.references[98] H. Luo, Y. Zeng, D. He, and X. Pan, “Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review,” Chemical Engineering Journal, vol. 407. Elsevier B.V., p. 127191, Mar. 01, 2021. doi: 10.1016/j.cej.2020.127191.spa
dc.relation.references[99] M. C. Pereira, L. C. A. Oliveira, and E. Murad, “Iron oxide catalysts: Fenton and Fentonlike reactions – a review,” Clay Miner, vol. 47, no. 3, Sep. 2012, doi: 10.1180/claymin.2012.047.3.01.spa
dc.relation.references[100] J. D. Navratil, “Wastewater Treatment Technology Based on Iron Oxides,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer Netherlands, 1999. doi: 10.1007/978-94-011-4499-5_31.spa
dc.relation.references[101] M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, and M. Panjan, “Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties,” J Alloys Compd, vol. 792, pp. 599–609, Jul. 2019, doi: 10.1016/j.jallcom.2019.03.414.spa
dc.relation.references[102] Y. Cheng, Y. Wang, D. Chen, and F. Bao, “Evolution of Single Crystalline Dendrites from Nanoparticles through Oriented Attachment,” J Phys Chem B, vol. 109, no. 2, pp. 794–798, Jan. 2005, doi: 10.1021/jp0460240.spa
dc.relation.references[103] W. Ramírez, “Síntesis de micropartículas multirramificadas de óxidos de metales de transición,” Universidad Nacional de Colombia, Bogotá, 2019.spa
dc.relation.references[104] K. He, C. Y. Xu, L. Zhen, and W. Z. Shao, “Fractal growth of single-crystal α-Fe2O3: From dendritic micro-pines to hexagonal micro-snowflakes,” Mater Lett, vol. 62, no. 4–5, pp. 739–742, Feb. 2008, doi: 10.1016/J.MATLET.2007.06.082.spa
dc.relation.references[105] S. Bharathi et al., “Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of α-Fe 2 O 3 : influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties,” CrystEngComm, vol. 12, no. 2, pp. 373–382, 2010, doi: 10.1039/B910550F.spa
dc.relation.references[106] M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S. M. Sajadi, and Z. Issaabadi, “Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications,” Interface Science and Technology, vol. 28, pp. 199–322, Jan. 2019, doi: 10.1016/B978-0-12-813586-0.00006-7.spa
dc.relation.references[107] S. Zeng et al., “Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties,” The Journal of Physical Chemistry C, vol. 112, no. 13, pp. 4836–4843, Apr. 2008, doi: 10.1021/jp0768773.spa
dc.relation.references[108] J. Lai, S. Xuan, and K. C.-F. Leung, “Tunable Synthesis of Hematite Structures with Nanoscale Subunits for the Heterogeneous Photo-Fenton Degradation of Azo Dyes,” ACS Appl Nano Mater, vol. 5, no. 10, pp. 13768–13778, Oct. 2022, doi: 10.1021/acsanm.2c00983.spa
dc.relation.references[109] D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria, and A. H. Shah, “Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor,” Results Phys, vol. 12, pp. 1253–1261, Mar. 2019, doi: 10.1016/J.RINP.2019.01.005.spa
dc.relation.references[110] Suman, S. Chahal, A. Kumar, and P. Kumar, “Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity,” Crystals (Basel), vol. 10, no. 4, p. 273, Apr. 2020, doi: 10.3390/cryst10040273.spa
dc.relation.references[111] M. Valášková, J. Tokarský, J. Pavlovský, T. Prostějovský, and K. Kočí, “α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties,” Materials, vol. 12, no. 11, p. 1880, Jun. 2019, doi: 10.3390/ma12111880.spa
dc.relation.references[112] J. Torrent and V. Barrón, “Diffuse Reflectance Spectroscopy of Iron Oxides,” Encyclopedia of Surface and Colloid Science, vol. 1, Jan. 2002.spa
dc.relation.references[113] N. Pailhé, A. Wattiaux, M. Gaudon, and A. Demourgues, “Impact of structural features on pigment properties of α-Fe2O3 haematite,” J Solid State Chem, vol. 181, no. 10, pp. 2697–2704, Oct. 2008, doi: 10.1016/J.JSSC.2008.06.049.spa
dc.relation.references[114] N. Pailhé, A. Wattiaux, M. Gaudon, and A. Demourgues, “Correlation between structural features and vis–NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A=Mg, Zn),” J Solid State Chem, vol. 181, no. 5, pp. 1040–1047, May 2008, doi: 10.1016/J.JSSC.2008.02.009.spa
dc.relation.references[115] P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra,” J Phys Chem Lett, vol. 9, no. 23, pp. 6814–6817, Dec. 2018, doi: 10.1021/acs.jpclett.8b02892.spa
dc.relation.references[116] T. Dimopoulos, “All-Oxide Solar Cells,” in The Future of Semiconductor Oxides in Next-Generation Solar Cells, Elsevier, 2018, pp. 439–480. doi: 10.1016/B978-0-12-811165-9.00011-9.spa
dc.relation.references[117] S. Sivakumar, D. Anusuya, C. P. Khatiwada, J. Sivasubramanian, A. Venkatesan, and P. Soundhirarajan, “Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 128, pp. 69–75, Jul. 2014, doi: 10.1016/J.SAA.2014.02.136.spa
dc.relation.references[118] J. S. Nyarige, T. P. J. Krüger, and M. Diale, “Structural and optical properties of hematite and L-arginine/hematite nanostructures prepared by thermal spray pyrolysis,” Surfaces and Interfaces, vol. 18, p. 100394, Mar. 2020, doi: 10.1016/j.surfin.2019.100394.spa
dc.relation.references[119] A. I. Kokorin and D. Bahnemann, Chemical Physics of Nanostructured Semiconductors. CRC Press, 2003. doi: 10.1201/9781498708630.spa
dc.relation.references[120] A. Lassoued, B. Dkhil, A. Gadri, and S. Ammar, “Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method,” Results Phys, vol. 7, pp. 3007–3015, Jan. 2017, doi: 10.1016/J.RINP.2017.07.066.spa
dc.relation.references[121] J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification,” Chemosphere, vol. 276. Elsevier Ltd, p. 130177, Aug. 01, 2021. doi: 10.1016/j.chemosphere.2021.130177.spa
dc.relation.references[122] A. Dehbi, Y. Dehmani, H. Omari, A. Lammini, K. Elazhari, and A. Abdallaoui, “Hematite iron oxide nanoparticles (α-Fe2O3): Synthesis and modelling adsorption of malachite green,” J Environ Chem Eng, vol. 8, no. 1, p. 103394, Feb. 2020, doi: 10.1016/j.jece.2019.103394.spa
dc.relation.references[123] P. Pinto, G. Lanza, J. Ardisson, and R. Lago, “Controlled Dehydration of Fe(OH)3 to Fe2O3: Developing Mesopores with Complexing Iron Species for the Adsorption of β-Lactam Antibiotics,” J Braz Chem Soc, 2018, doi: 10.21577/0103-5053.20180179.spa
dc.relation.references[124] M. Popescu et al., “The Influence of Synthesis Parameters on FeO(OH) / Fe 2 O 3 Formation by Hydrothermal Techniques,” Zeitschrift für Naturforschung B, vol. 65, no. 8, pp. 1024–1032, Aug. 2010, doi: 10.1515/znb-2010-0808.spa
dc.relation.references[125] N. Nurdini, M. M. Ilmi, E. Maryanti, P. Setiawan, G. T. M. Kadja, and Ismunandar, “Thermally-induced color transformation of hematite: insight into the prehistoric natural pigment preparation,” Heliyon, vol. 8, no. 8, p. e10377, Aug. 2022, doi: 10.1016/J.HELIYON.2022.E10377.spa
dc.relation.references[126] J. W. Geus and A. J. van Dillen, “Preparation of Supported Catalysts by Deposition-Precipitation,” in Handbook of Heterogeneous Catalysis, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. doi: 10.1002/9783527610044.hetcat0021.spa
dc.relation.references[127] P. W. N. M. van L. R. A. van S. J.A. Moulijn, “Preparation of supported catalysts,” 1993, pp. 335–360. doi: 10.1016/S0167-2991(08)63813-6.spa
dc.relation.references[128] D. C. Joy and D. G. Howitt, “Scanning Electron Microscopy,” in Encyclopedia of Physical Science and Technology, Elsevier, 2003, pp. 457–467. doi: 10.1016/B0-12-227410-5/00674-8.spa
dc.relation.references[129] R. Marassi and F. Nobili, “MEASUREMENT METHODS | Structural and Chemical Properties: Transmission Electron Microscopy,” Encyclopedia of Electrochemical Power Sources, pp. 769–789, Jan. 2009, doi: 10.1016/B978-044452745-5.00072-1.spa
dc.relation.references[130] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, vol. 3, no. 17, 2001, doi: 10.1039/b103226g.spa
dc.relation.references[131] S. M. Hosseinpour-Mashkani and M. Ramezani, “Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition,” Mater Lett, vol. 130, pp. 259–262, Sep. 2014, doi: 10.1016/J.MATLET.2014.05.133.spa
dc.relation.references[132] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study,” Physical Chemistry Chemical Physics, vol. 3, no. 17, pp. 3838–3845, 2001, doi: 10.1039/b103226g.spa
dc.relation.references[133] P. Paknahad, M. Askari, and M. Ghorbanzadeh, “Characterization of nanocrystalline CuCo2O4 spinel prepared by sol–gel technique applicable to the SOFC interconnect coating,” Applied Physics A, vol. 119, no. 2, pp. 727–734, May 2015, doi: 10.1007/s00339-015-9021-7.spa
dc.relation.references[134] N. N. Patil and S. R. Shukla, “Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating,” Journal of Water Process Engineering, vol. 7, pp. 314–327, Sep. 2015, doi: 10.1016/J.JWPE.2015.08.003.spa
dc.relation.references[135] D. P. Chattopadhyay, “Chemistry of dyeing,” in Handbook of Textile and Industrial Dyeing, Elsevier, 2011, pp. 150–183. doi: 10.1533/9780857093974.1.150.spa
dc.relation.references[136] D. M. Lewis, “The chemistry of reactive dyes and their application processes,” in Handbook of Textile and Industrial Dyeing, Elsevier, 2011, pp. 303–364. doi: 10.1533/9780857093974.2.301.spa
dc.relation.references[137] L. Pereira and M. Alves, “Dyes—Environmental Impact and Remediation,” in Environmental Protection Strategies for Sustainable Development, Dordrecht: Springer Netherlands, 2012, pp. 111–162. doi: 10.1007/978-94-007-1591-2_4.spa
dc.relation.references[138] H. M. Pinheiro, E. Touraud, and O. Thomas, “Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters,” Dyes and Pigments, vol. 61, no. 2, pp. 121–139, May 2004, doi: 10.1016/j.dyepig.2003.10.009.spa
dc.relation.references[139] G. Lyu, G. Shi, L. Tang, H. Fang, and M. Wu, “Mechanism of degradation of a nitrogenous heterocycle induced by a reductive radical: decomposition of a sym-triazine ring,” Physical Chemistry Chemical Physics, vol. 19, no. 14, pp. 9354–9357, 2017, doi: 10.1039/C7CP00004A.spa
dc.relation.references[140] B. Yuan, S. Liang, Y.-X. Jin, M.-J. Zhang, J.-B. Zhang, and N.-H. Kim, “Toxic effects of atrazine on porcine oocytes and possible mechanisms of action,” PLoS One, vol. 12, no. 6, p. e0179861, Jun. 2017, doi: 10.1371/journal.pone.0179861.spa
dc.relation.references[141] N. Watanabe, S. Horikoshi, H. Hidaka, and N. Serpone, “On the recalcitrant nature of the triazinic ring species, cyanuric acid, to degradation in Fenton solutions and in UV-illuminated TiO2 (naked) and fluorinated TiO2 aqueous dispersions,” J Photochem Photobiol A Chem, vol. 174, no. 3, pp. 229–238, Sep. 2005, doi: 10.1016/j.jphotochem.2005.03.013.spa
dc.relation.references[142] M. A. Breshears and A. W. Confer, “The Urinary System,” Pathologic Basis of Veterinary Disease Expert Consult, pp. 617-681.e1, Jan. 2017, doi: 10.1016/B978-0-323-35775-3.00011-4.spa
dc.relation.references[143] S. Song et al., “Mineralization of CI Reactive Yellow 145 in Aqueous Solution by Ultraviolet-Enhanced Ozonation,” Ind Eng Chem Res, vol. 47, no. 5, pp. 1386–1391, Mar. 2008, doi: 10.1021/ie0711628.spa
dc.relation.references[144] S. C. Gad, “Aniline,” in Encyclopedia of Toxicology, Elsevier, 2014, pp. 240–242. doi: 10.1016/B978-0-12-386454-3.00813-7.spa
dc.relation.references[145] A. L. Singh, S. Chaudhary, S. Kumar, A. Kumar, A. Singh, and A. Yadav, “Biodegradation of Reactive Yellow-145 azo dye using bacterial consortium: A deterministic analysis based on degradable Metabolite, phytotoxicity and genotoxicity study,” Chemosphere, vol. 300, p. 134504, Aug. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134504.spa
dc.relation.references[146] R. Sennaj et al., “Eco-friendly degradation of reactive red 195, reactive blue 214, and reactive yellow 145 by Klebsiella pneumoniae MW815592 isolated from textile waste,” J Microbiol Methods, vol. 204, p. 106659, Jan. 2023, doi: 10.1016/J.MIMET.2022.106659.spa
dc.relation.references[147] S. Krishnasamy et al., “Effective Removal of Reactive Yellow 145 (RY145) using Biochar Derived from Groundnut Shell,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–7, Mar. 2022, doi: 10.1155/2022/8715669.spa
dc.relation.references[148] S. Benkaddour et al., “Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: Kinetic and isotherm studies,” Sustain Chem Pharm, vol. 10, pp. 16–21, Dec. 2018, doi: 10.1016/J.SCP.2018.08.003.spa
dc.relation.references[149] E. A. Ofudje, E. F. Sodiya, F. H. Ibadin, A. A. Ogundiran, S. O. Alayande, and O. A. Osideko, “Mechanism of Cu 2+ and reactive yellow 145 dye adsorption onto eggshell waste as low-cost adsorbent,” Chemistry and Ecology, vol. 37, no. 3, pp. 268–289, Mar. 2021, doi: 10.1080/02757540.2020.1855153.spa
dc.relation.references[150] A. Saravanan et al., “Optimization and modeling of reactive yellow adsorption by surface modified Delonix regia seed: Study of nonlinear isotherm and kinetic parameters,” Surfaces and Interfaces, vol. 20, p. 100520, Sep. 2020, doi: 10.1016/J.SURFIN.2020.100520.spa
dc.relation.references[151] P. Gharbani, “Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnOX-CeO2 using response surface methodology,” Colloids Surf A Physicochem Eng Asp, vol. 548, pp. 191–197, Jul. 2018, doi: 10.1016/J.COLSURFA.2018.03.046.spa
dc.relation.references[152] B. Hatimi et al., “Physicochemical and statistical modeling of reactive Yellow 145 enhanced adsorption onto pyrrhotite Ash-Based novel (Catechin-PG-Fe)-Complex,” Mater Sci Energy Technol, vol. 6, pp. 65–76, Jan. 2023, doi: 10.1016/J.MSET.2022.11.007.spa
dc.relation.references[153] N. A. Kalkan, S. Aksoy, E. A. Aksoy, and N. Hasirci, “Adsorption of reactive yellow 145 onto chitosan coated magnetite nanoparticles,” J Appl Polym Sci, vol. 124, no. 1, pp. 576–584, Apr. 2012, doi: 10.1002/app.34986.spa
dc.relation.references[154] S. K. Fatima et al., “Visible Light-Induced Reactive Yellow 145 Discoloration: Structural and Photocatalytic Studies of Graphene Quantum Dot-Incorporated TiO 2,” ACS Omega, Jan. 2023, doi: 10.1021/acsomega.2c05805.spa
dc.relation.references[155] A. Aguedach, S. Brosillon, J. Morvan, and E. K. Lhadi, “Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide,” Appl Catal B, vol. 57, no. 1, pp. 55–62, Apr. 2005, doi: 10.1016/J.APCATB.2004.10.009.spa
dc.relation.references[156] S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane, and A. Assabbane, “Factors Influencing the Photocatalytic Degradation of Reactive Yellow 145 by TiO<sub>2</sub>-Coated Non-Woven Fibers,” Am J Analyt Chem, vol. 05, no. 08, pp. 445–454, 2014, doi: 10.4236/ajac.2014.58053.spa
dc.relation.references[157] M. B. Nguyen et al., “Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water,” J Hazard Mater, vol. 420, p. 126560, Oct. 2021, doi: 10.1016/J.JHAZMAT.2021.126560.spa
dc.relation.references[158] S. Alahiane, A. Sennaoui, F. Sakr, M. Dinne, S. Qourzal, and A. Assabbane, “Photo-mineralization of azo dye reactive yellow 145 in aqueous medium by TiO2-coated non-woven fibres,” Mediterranean Journal of Chemistry, vol. 10, no. 2, pp. 107–115, Feb. 2020, doi: 10.13171/mjc10102002051208sa.spa
dc.relation.references[159] Ş. Gül, Ö. Özcan, and O. Erbatur, “Ozonation of C.I. Reactive Red 194 and C.I. Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon,” Dyes and Pigments, vol. 75, no. 2, pp. 426–431, Jan. 2007, doi: 10.1016/J.DYEPIG.2006.06.018.spa
dc.relation.references[160] Ş. Gül and Ö. Özcan-Yildirim, “Degradation of Reactive Red 194 and Reactive Yellow 145 azo dyes by O3 and H2O2/UV-C processes,” Chemical Engineering Journal, vol. 155, no. 3, pp. 684–690, Dec. 2009, doi: 10.1016/J.CEJ.2009.08.029.spa
dc.relation.references[161] T. H. Bokhari et al., “Degradation Study of C.I. Reactive Yellow 145 by Advanced Oxidation Process,” Asian Journal of Chemistry, vol. 25, no. 15, pp. 8668–8672, 2013, doi: 10.14233/ajchem.2013.14996.spa
dc.relation.references[162] C. Özdemir, M. K. Öden, S. Şahinkaya, and E. Kalipçi, “Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process,” Clean (Weinh), vol. 39, no. 1, pp. 60–67, Jan. 2011, doi: 10.1002/clen.201000263.spa
dc.relation.references[163] S. Brosillon, H. Djelal, N. Merienne, and A. Amrane, “Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment,” Desalination, vol. 222, no. 1–3, pp. 331–339, Mar. 2008, doi: 10.1016/J.DESAL.2007.01.153.spa
dc.relation.references[164] R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, no. 1, pp. 86–91, Mar. 2005, doi: 10.1016/J.TALANTA.2004.10.001.spa
dc.relation.references[165] E. Lee, H. Lee, Y. K. Kim, K. Sohn, and K. Lee, “Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater,” International Journal of Environmental Science & Technology, vol. 8, no. 2, pp. 381–388, Mar. 2011, doi: 10.1007/BF03326225.spa
dc.relation.references[166] E. Elnemma, “Spectrophotometric Determination of Hydrogen Peroxide by a Hydroquinone-Aniline System Catalyzed by Molybdate,” Bull Korean Chem Soc, vol. 25, no. 1, pp. 127–129, Jan. 2004, doi: 10.5012/bkcs.2004.25.1.127.spa
dc.relation.references[167] J. G. Carriazo, Luis. F. Bossa-Benavides, and E. Castillo, “Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno,” Quim Nova, vol. 35, no. 6, pp. 1101–1106, 2012, doi: 10.1590/S0100-40422012000600006.spa
dc.relation.references[168] M. H. Maleki Rizi, B. Aghabarari, M. Alizadeh, A. Khanlarkhani, and M. V. Martinez Huerta, “The role of cobalt and copper nanoparticles on performance of magnetite-rich waste material in Fenton reaction,” International Journal of Environmental Science and Technology, vol. 16, no. 1, pp. 373–382, Jan. 2019, doi: 10.1007/s13762-017-1579-5.spa
dc.relation.references[169] Y. Wang, H. Zhao, M. Li, J. Fan, and G. Zhao, “Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid,” Appl Catal B, vol. 147, pp. 534–545, Apr. 2014, doi: 10.1016/j.apcatb.2013.09.017.spa
dc.relation.references[170] H. H. Huang, M. C. Lu, and J. N. Chen, “Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides,” Water Res, vol. 35, no. 9, pp. 2291–2299, 2001, doi: 10.1016/S0043-1354(00)00496-6.spa
dc.relation.references[171] W. He, Y.-T. Zhou, W. G. Wamer, M. D. Boudreau, and J.-J. Yin, “Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles,” Biomaterials, vol. 33, no. 30, pp. 7547–7555, Oct. 2012, doi: 10.1016/j.biomaterials.2012.06.076.spa
dc.relation.references[172] S. Hussain, E. Aneggi, and D. Goi, “Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review,” Environ Chem Lett, vol. 19, no. 3, pp. 2405–2424, Jun. 2021, doi: 10.1007/s10311-021-01185-z.spa
dc.relation.references[173] M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, and C. Gregor, “Catalytic Efficiency of Iron(III) Oxides in Decomposition of Hydrogen Peroxide: Competition between the Surface Area and Crystallinity of Nanoparticles,” J Am Chem Soc, vol. 129, no. 35, pp. 10929–10936, Sep. 2007, doi: 10.1021/ja072918x.spa
dc.relation.references[174] P. Bernard, P. Stelmachowski, P. Broś, W. Makowski, and A. Kotarba, “Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis,” J Chem Educ, vol. 98, no. 3, pp. 935–940, Mar. 2021, doi: 10.1021/acs.jchemed.0c01101.spa
dc.relation.references[175] R. Prucek, M. Hermanek, and R. Zbořil, “An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation-A competition between homogeneous and heterogeneous catalysis,” Appl Catal A Gen, vol. 366, no. 2, pp. 325–332, Sep. 2009, doi: 10.1016/j.apcata.2009.07.019.spa
dc.relation.references[176] Y. Artioli, “Adsorption,” Encyclopedia of Ecology, Five-Volume Set, pp. 60–65, Jan. 2008, doi: 10.1016/B978-008045405-4.00252-4.spa
dc.relation.references[177] H. Hu and K. Xu, “Physicochemical technologies for HRPs and risk control,” High-Risk Pollutants in Wastewater, pp. 169–207, Jan. 2020, doi: 10.1016/B978-0-12-816448-8.00008-3.spa
dc.relation.references[178] M. E. Mahmoud, G. M. Nabil, N. M. El-Mallah, and S. B. Karar, “Improved removal and decolorization of C.I. anionic reactive yellow 145 A dye from water in a wide pH range via active carbon adsorbent-loaded-cationic surfactant,” Desalination Water Treat, vol. 55, no. 1, pp. 227–240, Jul. 2015, doi: 10.1080/19443994.2014.913265.spa
dc.relation.references[179] B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study,” The Journal of Physical Chemistry C, vol. 115, no. 16, pp. 8024–8033, Apr. 2011, doi: 10.1021/jp109258f.spa
dc.relation.references[180] A. Ö. Yıldırım, Ş. Gül, O. Eren, and E. Kuşvuran, “A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for C.I. Reactive Red 194 Azo Dye Degradation,” Clean (Weinh), vol. 39, no. 8, pp. 795–805, Aug. 2011, doi: 10.1002/clen.201000192.spa
dc.relation.references[181] M. L. Yola, T. Eren, N. Atar, and S. Wang, “Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste,” Chemical Engineering Journal, vol. 242, pp. 333–340, Apr. 2014, doi: 10.1016/j.cej.2013.12.086.spa
dc.relation.references[182] M. Gorjanc and M. Šala, “Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes,” Cellulose, vol. 23, no. 3, pp. 2199–2209, Jun. 2016, doi: 10.1007/s10570-016-0945-7.spa
dc.relation.references[183] L. Xu and J. Wang, “Fenton-like degradation of 2,4-dichlorophenol using Fe 3O 4 magnetic nanoparticles,” Appl Catal B, vol. 123–124, pp. 117–126, Jul. 2012, doi: 10.1016/j.apcatb.2012.04.028.spa
dc.relation.references[184] X. Xue, K. Hanna, M. Abdelmoula, and N. Deng, “Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations,” Appl Catal B, vol. 89, no. 3–4, pp. 432–440, Jul. 2009, doi: 10.1016/j.apcatb.2008.12.024.spa
dc.relation.references[185] K. Rusevova, F. D. Kopinke, and A. Georgi, “Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance,” J Hazard Mater, vol. 241–242, pp. 433–440, Nov. 2012, doi: 10.1016/j.jhazmat.2012.09.068.spa
dc.relation.references[186] D. He, A. M. Jones, S. Garg, A. N. Pham, and T. D. Waite, “Silver Nanoparticle−Reactive Oxygen Species Interactions: Application of a Charging−Discharging Model,” The Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5461–5468, Apr. 2011, doi: 10.1021/jp111275a.spa
dc.relation.references[187] M. Y. Alkawareek, A. Bahlool, S. R. Abulateefeh, and A. M. Alkilany, “Synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide,” PLoS One, vol. 14, no. 8, p. e0220575, Aug. 2019, doi: 10.1371/journal.pone.0220575.spa
dc.relation.references[188] M. Sahoo, “Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives,” Res J Chem Environ, vol. 15, no. 2, pp. 96–112, 2011.spa
dc.relation.references[10] A. M. Botero-Coy et al., “‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’” Science of the Total Environment, vol. 642, pp. 842–853, Nov. 2018, doi: 10.1016/j.scitotenv.2018.06.088.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalReacción tipo Fentonspa
dc.subject.proposalÓxido de hierrospa
dc.subject.proposalCatálisis heterogéneaspa
dc.subject.proposalColorante textilspa
dc.subject.proposalFenton-type reactioneng
dc.subject.proposalIron oxideeng
dc.subject.proposalHeterogeneous catalysiseng
dc.subject.proposalTextile dyeeng
dc.subject.unescoTecnología sanitariaspa
dc.subject.wikidataCatalizadoresspa
dc.titleSólidos basados en α-Fe2O3 como catalizadores de procesos tipo Fentonspa
dc.title.translatedSolids based on α-Fe2O3 as catalysts for Fenton-type processeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032495880.2023.pdf
Tamaño:
4.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: