Estudio de un catalizador de Ni-Co promovido con Ce anclado en un monolito cerámico para la obtención de hidrógeno a partir del proceso OSRE

dc.contributor.advisorMolina Gallego, Rafael Alberto
dc.contributor.authorNovoa Angulo, Gustavo Adolfo
dc.contributor.orcidNovoa Angulo, Gustavo Adolfo [0009000717402793]
dc.contributor.researchgroupEstado Sólido y Catálisis Ambiental
dc.coverage.countryColombia
dc.date.accessioned2025-09-11T17:37:02Z
dc.date.available2025-09-11T17:37:02Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractEste trabajo aborda el estudio del anclaje vía dip-coating de catalizadores tipo óxidos mixtos de Ni y Co, dopados con Ce, en monolitos cerámicos de cordierita para su uso como catalizadores en la producción de hidrógeno mediante el reformado oxidativo de etanol (OSRE). El estudio se centró en la definición y comprensión de las principales variables que controlan el proceso de recubrimiento, ajustando parámetros como la concentración de la suspensión, velocidades de inmersión y extracción, así como el tiempo de inmersión. Una aproximación a la optimización del método permitió lograr un recubrimiento uniforme, homogéneo, sin obstrucción de canales, con un espesor promedio de 59.1 ± 11.7 μm y una adhesión del 92.0 ± 2% tras condiciones de reacción. Bajo esas condiciones, el desempeño catalítico de los monolitos impregnados presentó, sorprendentemente, un comportamiento muy similar al obtenido con el catalizador en su presentación en polvo: conversiones completas de etanol (100%) y una selectividad mayoritaria hacia H₂ del 45 %, seguido de CO2 (35%), CH4 (19%) y CO (1%). Este resultado evidencia que la estructuración del catalizador no compromete la disponibilidad o características de los sitios activos y por ende su actividad catalítica. Este trabajo contribuye al avance en el diseño de catalizadores heterogéneos estructurados, al conjugar la versatilidad de los óxidos mixtos con las ventajas operativas de los monolitos cerámicos. Los resultados obtenidos reafirman el potencial de los monolitos cerámicos como soportes eficientes y mecánicamente estables para aplicaciones en procesos de conversión catalítica de alcoholes, aportando a la transición hacia tecnologías limpias de producción de hidrógeno y al cumplimiento de metas globales como las planteadas en el ODS7. (Texto tomado de la fuente)spa
dc.description.abstractThis work addresses the study of the anchoring of mixed oxide catalysts based on Ni and Co, doped with Ce, onto cordierite ceramic monoliths via dip-coating, for their application in hydrogen production through the oxidative steam reforming of ethanol (OSRE). The study focused on defining and understanding the main variables that govern the coating process, by adjusting parameters such as suspension concentration, immersion and withdrawal speeds, as well as immersion time. An approach to method optimization allowed for achieving a uniform, homogeneous coating without channel blockage, with an average thickness of 59.1 ± 11.7 µm and an adhesion of 92.0 ± 2% after reaction conditions. Under these conditions, the catalytic performance of the impregnated monoliths showed, surprisingly, very similar behavior to that of the catalyst in its powder form: complete ethanol conversions (100%) and a predominant selectivity towards H₂ of 45%, followed by CO₂ (35%), CH₄ (19%), and CO (1%). This result demonstrates that the structuring of the catalyst does not compromise the availability or characteristics of the active sites, and therefore, does not affect its catalytic activity. This study contributes to the advancement of structured heterogeneous catalyst design by combining the versatility of mixed oxides with the operational advantages of ceramic monoliths. The results reaffirm the potential of ceramic monoliths as efficient and mechanically stable supports for catalytic alcohol conversion processes, supporting the transition towards clean hydrogen production technologies and the fulfillment of global goals such as those outlined in SDG 7.eng
dc.description.curricularareaQuímica.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaCatálisis Heterogénea y Energía
dc.format.extentxiii, 75 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88722
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesK. Calvin, D. Dasgupta, G. Krinner, Et. Al, IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland., (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647.
dc.relation.referencesJ. Martinez-Alier, M. Walter, Social Metabolism and Conflicts over Extractivism, Environmental Governance in Latin America (2016) 58–85. https://doi.org/10.1007/978-1-137-50572-9_3.
dc.relation.referencesW.H. Chen, P.P. Biswas, H.C. Ong, A.T. Hoang, T.B. Nguyen, C. Di Dong, A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: Steam reforming, partial oxidation, and autothermal reforming, Fuel 333 (2023). https://doi.org/10.1016/j.fuel.2022.126526.
dc.relation.referencesM.I. Cobo Ángel, C.L. Barraza Botet, N.M. Cantillo Cuello, M.Á. Uribe Laverde, Recomendaciones para el desarrollo de la economía del hidrógeno en Colombia., Universidad de La Sabana (2022). https://doi.org/10.5294 /978-958-12-0618-6.
dc.relation.referencesI. - International Energy Agency, World Energy Outlook 2023, 2023. www.iea.org/terms.
dc.relation.referencesI. Energy Agency, Global Hydrogen Review 2024, 2024. www.iea.org.
dc.relation.referencesM. Raab, R. Körner, R.U. Dietrich, Techno-economic assessment of renewable hydrogen production and the influence of grid participation, Int J Hydrogen Energy 47 (2022) 26798–26811. https://doi.org/10.1016/J.IJHYDENE.2022.06.038.
dc.relation.referencesN. Sanchez, R. Ruiz, V. Hacker, M. Cobo, Impact of bioethanol impurities on steam reforming for hydrogen production: A review, (2020). https://doi.org/10.1016/j.ijhydene.2020.02.159.
dc.relation.referencesV. Troisi, V. Piazza, A. Stagni, A. Frassoldati, G. Groppi, A. Beretta, H 2 from biofuels and carriers: A concerted homo-heterogeneous kinetic model of ethanol partial oxidation and steam reforming on Rh/Al 2 O 3, (2023). https://doi.org/10.1016/j.ijhydene.2023.03.178.
dc.relation.referencesPlan Estratégico de Hidrógeno del Grupo Ecopetrol, (n.d.). https://www.ecopetrol.com.co/wps/portal/Home/sostecnibilidad/ambiental/energia-fuentes-alternativas/plan-estrategico-de-hidrogeno-del-grupo-ecopetrol (accessed June 25, 2023).
dc.relation.referencesMethanol | MeOH | CH3OH | Process | Haldor Topsoe, (n.d.). https://www.topsoe.com/processes/methanol?hsCtaTracking=6916cd42-e27d-4801-aae9-2d27bb8a2f00%7Ca4800fe3-a9d1-4b1f-9798-451e5e84952a (accessed June 25, 2023).
dc.relation.referencesN. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming, Int J Hydrogen Energy 41 (2016) 5640–5651. https://doi.org/10.1016/J.IJHYDENE.2016.01.155.
dc.relation.referencesA. Hofrichter, D. Rank, M. Heberl, M. Sterner, Determination of the optimal power ratio between electrolysis and renewable energy to investigate the effects on the hydrogen production costs, Int J Hydrogen Energy 48 (2023) 1651–1663. https://doi.org/10.1016/J.IJHYDENE.2022.09.263.
dc.relation.referencesB. Cifuentes, J.G. Omez A , N Estor S Anchez, L. Proa, F. Bustamante, M. Cobo, Bioethanol steam reforming over monoliths washcoated with RhPt/CeO 2 eSiO 2 : The use of residual biomass to stably produce syngas, (2020). https://doi.org/10.1016/j.ijhydene.2020.10.271.
dc.relation.referencesD. Rodríguez-Fontalvo, E. Quiroga, N.M. Cantillo, N. Sánchez, M. Figueredo, M. Cobo, Green hydrogen potential in tropical countries: The colombian case, Int J Hydrogen Energy 54 (2024) 344–360. https://doi.org/10.1016/J.IJHYDENE.2023.03.320.
dc.relation.referencesA. Burdack, L. Duarte-Herrera, G. López-Jiménez, T. Polklas, O. Vasco-Echeverri, Techno-economic calculation of green hydrogen production and export from Colombia, Int J Hydrogen Energy 48 (2023) 1685–1700. https://doi.org/10.1016/J.IJHYDENE.2022.10.064.
dc.relation.referencesC. Rodríguez, S. Moreno, R. Molina, A fundamental level understanding of the oxidative steam reforming of ethanol (OSRE) reaction: A review, Int J Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2022.12.147.
dc.relation.referencesJ. Llorca, V.C. Corberán, N.J. Divins, R.O. Fraile, E. Taboada, Hydrogen from Bioethanol, in: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Elsevier B.V., 2013: pp. 135–169. https://doi.org/10.1016/B978-0-444-56352-1.00007-6.
dc.relation.referencesV. Palma, C. Ruocco, E. Meloni, A. Ricca, Oxidative steam reforming of ethanol on mesoporous silica supported PtNi/CeO2 catalysts, Int J Hydrogen Energy 42 (2017) 1598–1608. https://doi.org/10.1016/J.IJHYDENE.2016.05.071.
dc.relation.referencesC. Rodríguez, S. Moreno, R. Molina, Oxygen mobility and its relationship with the oxidative steam reforming of ethanol (OSRE), Appl Surf Sci 485 (2019) 293–303. https://doi.org/10.1016/J.APSUSC.2019.04.183.
dc.relation.referencesE.B. Pereira, N. Homs, S. Martí, J.L.G. Fierro, P. Ramírez de la Piscina, Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes, J Catal 257 (2008) 206–214. https://doi.org/10.1016/J.JCAT.2008.05.001.
dc.relation.referencesM. Muñoz, S. Moreno, R. Molina, Oxidative steam reforming of ethanol (OSRE) over stable NiCo–MgAl catalysts by microwave or sonication assisted coprecipitation, Int J Hydrogen Energy 42 (2017) 12284–12294. https://doi.org/10.1016/j.ijhydene.2017.03.090.
dc.relation.referencesC. Rodríguez, S. Moreno, R. Molina, Operando DRIFT-MS study of oxidative steam reforming of ethanol (OSRE) on Ni-Co mixed oxides under non-equilibrium conditions, Chemical Engineering Journal 480 (2024) 1385–8947. https://doi.org/10.1016/j.cej.2023.148243.
dc.relation.referencesC. Rodríguez, P. Bazin, M. Daturi, S. Moreno, R. Molina, Effect of CePr and CeZr promoters on NiCo oxycarbonates and growth of carbon structures in oxidative steam reforming of ethanol (OSRE), (2025). https://doi.org/10.1016/j.surfin.2024.105729.
dc.relation.referencesM. Muñoz, M. Muñoz, S. Moreno, R. Molina, Promoter effect of Ce and Pr on the catalytic stability of the Ni-Co system for the oxidative steam reforming of ethanol, (2016). https://doi.org/10.1016/j.apcata.2016.08.010.
dc.relation.referencesM. Muñoz, S. Moreno, R. Molina, Oxidative steam reforming of ethanol (OSRE) over stable NiCo–MgAl catalysts by microwave or sonication assisted coprecipitation, Int J Hydrogen Energy 42 (2017) 12284–12294. https://doi.org/10.1016/J.IJHYDENE.2017.03.090.
dc.relation.referencesM. Espitia-Sibaja, M. Muñoz, S. Moreno, R. Molina, Effects of the cobalt content of catalysts prepared from hydrotalcites synthesized by ultrasound-assisted coprecipitation on hydrogen production by oxidative steam reforming of ethanol (OSRE), Fuel 194 (2017) 7–16. https://doi.org/10.1016/J.FUEL.2016.12.086.
dc.relation.referencesM. Gonzalez Castaño, T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, Pt vs. Au in water–gas shift reaction, J Catal 314 (2014) 1–9. https://doi.org/10.1016/J.JCAT.2014.03.014.
dc.relation.referencesX. Zhao, G. Lu, Improving catalytic activity and stability by in-situ regeneration of Ni-based catalyst for hydrogen production from ethanol steam reforming via controlling of active species dispersion, Int J Hydrogen Energy 41 (2016) 13993–14002. https://doi.org/10.1016/J.IJHYDENE.2016.05.042.
dc.relation.referencesJ.L. Contreras, J. Salmones, J.A. Colín-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, G.A. Fuentes, Catalysts for H2 production using the ethanol steam reforming (a review), Int J Hydrogen Energy 39 (2014) 18835–18853. https://doi.org/10.1016/j.ijhydene.2014.08.072.
dc.relation.referencesA. Casanovas, C. de Leitenburg, A. Trovarelli, J. Llorca, Catalytic monoliths for ethanol steam reforming, Catal Today 138 (2008) 187–192. https://doi.org/10.1016/J.CATTOD.2008.05.028.
dc.relation.referencesY. Escalante, A.E. Galetti, M.F. Gómez, O.J. Furlong, M.S. Nazzarro, M.N. Barroso, M.C. Abello, Hydrogen production by ethanol steam reforming: A study of Co- and Ce-based catalysts over FeCrAlloy monoliths, Int J Hydrogen Energy 45 (2020) 20956–20969. https://doi.org/10.1016/j.ijhydene.2020.05.188.
dc.relation.referencesR. Baruah, M. Dixit, A. Parejiya, P. Basarkar, A. Bhargav, S. Sharma, Oxidative steam reforming of ethanol on rhodium catalyst – I: Spatially resolved steady-state experiments and microkinetic modeling, Int J Hydrogen Energy 42 (2017) 10184–10198. https://doi.org/10.1016/J.IJHYDENE.2017.03.168.
dc.relation.referencesV. Tomašic, T. Tomašic´*, F.J. Jovic´, State-of-the-art in the monolithic catalysts/reactors, (2006). https://doi.org/10.1016/j.apcata.2006.06.013.
dc.relation.referencesS. Roy, A. K. Heibel, W. Liu, T. Boger, Design of monolithic catalysts for multiphase reactions, Chem Eng Sci 59 (2004) 957–966. https://doi.org/10.1016/j.ces.2003.12.001.
dc.relation.referencesS. Govender, H.B. Friedrich, catalysts Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation, (2017). https://doi.org/10.3390/catal7020062.
dc.relation.referencesT.A. Nijhuis, A.E.W. Beers, T. Vergunst, I. Hoek, F. Kapteijn, J.A. Moulijn, Preparation of monolithic catalysts, Catal Rev Sci Eng 43 (2001) 345–380. https://doi.org/10.1081/CR-120001807.
dc.relation.referencesR.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal 82 (2001) 149–156. https://doi.org/10.1016/S1385-8947(00)00365-X.
dc.relation.referencesJ.L. Williams, Monolith structures, materials, properties and uses, Catal Today 69 (2001) 3–9.
dc.relation.referencesN. Hedayat, Y. Du, H. Ilkhani, Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods, Renewable and Sustainable Energy Reviews 77 (2017) 1221–1239. https://doi.org/10.1016/j.rser.2017.03.095.
dc.relation.referencesK.A. Kravanja, M. Finšgar, A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients, Mater Des 217 (2022). https://doi.org/10.1016/j.matdes.2022.110653.
dc.relation.referencesI.A. Neacşu, A.I. Nicoară, O.R. Vasile, B.Ş. Vasile, Inorganic micro- and nanostructured implants for tissue engineering, in: Nanobiomaterials in Hard Tissue Engineering: Applications of Nanobiomaterials, Elsevier Inc., 2016: pp. 271–295. https://doi.org/10.1016/B978-0-323-42862-0.00009-2.
dc.relation.referencesS. Ebnesajjad, A.H. Landrock, Adhesive Applications and Bonding Processes, in: Adhesives Technology Handbook, Elsevier, 2015: pp. 206–234. https://doi.org/10.1016/b978-0-323-35595-7.00008-5.
dc.relation.referencesY. Doignon, Energía: Panorama general, Grupo Banco Mundial (2022). https://www.bancomundial.org/es/topic/energy/overview#1 (accessed September 18, 2022).
dc.relation.referencesY. Doignon, Energía: Panorama general, Grupo Banco Mundial (2022). https://www.bancomundial.org/es/topic/energy/overview#1 (accessed September 18, 2022).
dc.relation.referencesI. - International Energy Agency, World Energy Outlook 2023, 2023. www.iea.org/terms.
dc.relation.referencesBanco Mundial, Informe: La pandemia de COVID-19 demora el avance hacia el acceso universal a la energía, (2022). https://www.bancomundial.org/es/news/press-release/2022/06/01/report-covid-19-slows-progress-towards-universal-energy-access (accessed September 20, 2022).
dc.relation.referencesI. Energy Agency, World Energy Outlook 2024, 2024. www.iea.org/terms.
dc.relation.referencesCrisis Energética Mundial – Topics - IEA, (n.d.). https://www.iea.org/topics/global-energy-crisis?language=es (accessed February 20, 2025).
dc.relation.referencesEnergy Agency International, Review 2021 Assessing the effects of economic recoveries on global energy demand and CO 2 emissions in 2021 Global Energy, (2021). https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf (accessed September 24, 2022).
dc.relation.referencesBp, Statistical Review of World Energy 2022, 71 (2022).
dc.relation.referencesInternational Bank for Reconstruction and Development, TRACKING SDG7 A joint report of the custodian agencies, (2022). https://trackingsdg7.esmap.org/data/files/download-documents/sdg7-report2022-full_report.pdf (accessed September 24, 2022).
dc.relation.referencesInternational Bank for Reconstruction and Development, The energy progress report 2022, Tracking SDG7 (2022).
dc.relation.referencesI. Energy Agency, Global Hydrogen Review 2024, 2024. www.iea.org.
dc.relation.referencesWorld Energy Council, Hydrogen demand and cost dynamics, Hydrogen on the Horizon: Ready, Almoset Set, Go? (2021). https://www.worldenergy.org/assets/downloads/Working_Paper_-_Hydrogen_Demand_And_Cost_Dynamics_-_September_2021.pdf?v=1658324860 (accessed September 25, 2022).
dc.relation.referencesI. International Energy Agency, Global Hydrogen Review 2021, (2021). www.iea.org/t&c/ (accessed September 24, 2022).
dc.relation.referencesGlobal Emissions - Center for Climate and Energy SolutionsCenter for Climate and Energy Solutions, (n.d.). https://www.c2es.org/content/international-emissions/ (accessed September 25, 2022).
dc.relation.referencesM.M. Aba, I. Luís Sauer, N. Bispo Amado, Comparative review of hydrogen and electricity as energy carriers for the energy transition, Int J Hydrogen Energy 57 (2024) 660–678. https://doi.org/10.1016/j.ijhydene.2024.01.034.
dc.relation.referencesT. Wronski, A. Sciacovelli, Analysis of the potential of four reactive metals as zero-carbon energy carriers for energy storage and conversion, J Energy Storage 100 (2024) 113514. https://doi.org/10.1016/J.EST.2024.113514.
dc.relation.referencesP. Bolat, C. Thiel, Hydrogen supply chain architecture for bottom-up energy systems models. Part 1: Developing pathways, Int J Hydrogen Energy 39 (2014) 8881–8897. https://doi.org/10.1016/J.IJHYDENE.2014.03.176.
dc.relation.referencesM. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, Int J Hydrogen Energy 33 (2008) 4013–4029. https://doi.org/10.1016/J.IJHYDENE.2008.05.047.
dc.relation.referencesF. Suleman, I. Dincer, M. Agelin-Chaab, Environmental impact assessment and comparison of some hydrogen production options, Int J Hydrogen Energy 40 (2015) 6976–6987. https://doi.org/10.1016/J.IJHYDENE.2015.03.123.
dc.relation.referencesP. Moriarty, D. Honnery, Intermittent renewable energy: The only future source of hydrogen?, Int J Hydrogen Energy 32 (2007) 1616–1624. https://doi.org/10.1016/J.IJHYDENE.2006.12.008.
dc.relation.referencesE.I. Epelle, K.S. Desongu, W. Obande, A.A. Adeleke, P.P. Ikubanni, J.A. Okolie, B. Gunes, A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials, Int J Hydrogen Energy 47 (2022) 20398–20431. https://doi.org/10.1016/J.IJHYDENE.2022.04.227.
dc.relation.referencesS. Shiva Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production, Energy Reports 8 (2022) 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127.
dc.relation.referencesS. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, Journal of Industrial and Engineering Chemistry 20 (2014) 1148–1156. https://doi.org/10.1016/J.JIEC.2013.07.037.
dc.relation.referencesO. v. Marchenko, S. v. Solomin, The future energy: Hydrogen versus electricity, Int J Hydrogen Energy 40 (2015) 3801–3805. https://doi.org/10.1016/J.IJHYDENE.2015.01.132.
dc.relation.referencesT. Sinigaglia, F. Lewiski, M.E. Santos Martins, J.C. Mairesse Siluk, Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review, Int J Hydrogen Energy 42 (2017) 24597–24611. https://doi.org/10.1016/J.IJHYDENE.2017.08.063.
dc.relation.referencesM.G. Rasul, M.A. Hazrat, M.A. Sattar, M.I. Jahirul, M.J. Shearer, The future of hydrogen: Challenges on production, storage and applications, Energy Convers Manag 272 (2022). https://doi.org/10.1016/j.enconman.2022.116326.
dc.relation.referencesA. Maclenan, What Colour is your Hydrogen?, Getech Gruop (2020). https://storymaps.arcgis.com/stories/1eb98332059d493592151ded4d5ada9a (accessed October 31, 2022).
dc.relation.referencesInicio | Ecosistema H2 Colombia, (n.d.). https://www.minenergia.gov.co/es/ecosistema-hidrogeno-colombia/ (accessed February 24, 2025).
dc.relation.referencesHydrogen | H | H2 | Process | Catalyst | Technology | Topsoe, (n.d.). https://www.topsoe.com/processes/hydrogen (accessed June 25, 2023).
dc.relation.referencesN.C. Schjødt, S.L. Jørgensen, L.F. Lundegaard, P. Beato, R. Montesano, J. Sehested, Alkali promoted zinc-aluminum oxide as high temperature water gas shift catalyst, Appl Catal A Gen 640 (2022) 118646. https://doi.org/10.1016/J.APCATA.2022.118646.
dc.relation.referencesReforming | Methanol | MeOH | CH3OH | Catalyst | Technology | Topsoe, (n.d.). https://www.topsoe.com/processes/methanol/reforming (accessed June 25, 2023).
dc.relation.referencesDescubre nuestra Infografía explicativa de la Producción de Hidrógeno Verde - Iberdrola, (n.d.). https://www.iberdrola.com/conocenos/nuestra-actividad/hidrogeno-verde/puertollano-planta-hidrogeno-verde/infografia-interactiva (accessed June 25, 2023).
dc.relation.referencesPlanta de hidrógeno verde de Puertollano - Iberdrola, (n.d.). https://www.iberdrola.com/conocenos/nuestra-actividad/hidrogeno-verde/puertollano-planta-hidrogeno-verde (accessed June 25, 2023).
dc.relation.referencesEl Grupo Ecopetrol inició la producción de hidrógeno verde en Colombia, (n.d.). https://www.ecopetrol.com.co/wps/portal/Home/es/noticias/detalle/Noticias+2021/el-grupo-ecopetrol-inicip-la-produccion-de-hidrogeno-verde-en-colombia (accessed June 25, 2023).
dc.relation.referencesEcopetrol construirá planta de hidrógeno verde más grande de Latinoamérica: producirá 800 toneladas anuales, (n.d.). https://www.presidencia.gov.co/prensa/Paginas/Ecopetrol-construira-planta-de-hidrogeno-verde-mas-grande-de-Latinoamerica-producira-800-toneladas-anuales-241202.aspx (accessed March 23, 2025).
dc.relation.referencesI. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int J Hydrogen Energy 40 (2015) 11094–11111. https://doi.org/10.1016/J.IJHYDENE.2014.12.035.
dc.relation.referencesH.C. Hsieh, Y.S. Chen, S.F. Weng, Y.P. Hsieh, C.S. Lee, Ruthenium substituted pyrochlore metal oxide catalysts Y2Ce2-xRuxO7-δ (x = 0–0.4) for oxidative steam reforming of ethanol, Int J Hydrogen Energy 45 (2020) 19291–19303. https://doi.org/10.1016/J.IJHYDENE.2020.05.080.
dc.relation.referencesG.T. Wurzler, R.C. Rabelo-Neto, L. V. Mattos, M.A. Fraga, F.B. Noronha, Steam reforming of ethanol for hydrogen production over MgO—supported Ni-based catalysts, Appl Catal A Gen 518 (2016) 115–128. https://doi.org/10.1016/J.APCATA.2015.11.020.
dc.relation.referencesC. Ruocco, E. Meloni, V. Palma, M. van Sint Annaland, V. Spallina, F. Gallucci, Pt–Ni based catalyst for ethanol reforming in a fluidized bed membrane reactor, Int J Hydrogen Energy 41 (2016) 20122–20136. https://doi.org/10.1016/J.IJHYDENE.2016.08.045.
dc.relation.referencesC. Resini, T. Montanari, L. Barattini, G. Ramis, G. Busca, S. Presto, P. Riani, R. Marazza, M. Sisani, F. Marmottini, U. Costantino, Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: Catalyst characterization, catalytic activity and reaction path, Appl Catal A Gen 355 (2009) 83–93. https://doi.org/10.1016/J.APCATA.2008.11.029.
dc.relation.referencesA.M. da Silva, L. v. Mattos, J. Múnera, E. Lombardo, F.B. Noronha, L. Cornaglia, Study of the performance of Rh/La2O3–SiO2 and Rh/CeO2 catalysts for SR of ethanol in a conventional fixed-bed reactor and a membrane reactor, Int J Hydrogen Energy 40 (2015) 4154–4166. https://doi.org/10.1016/J.IJHYDENE.2015.01.106.
dc.relation.referencesY. Ando, K. Matsuoka, Role of Fe in Co–Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production, Int J Hydrogen Energy 41 (2016) 12862–12868. https://doi.org/10.1016/J.IJHYDENE.2016.06.059.
dc.relation.referencesS.J. Han, Y. Bang, J. Yoo, K.H. Kang, J.H. Song, J.G. Seo, I.K. Song, Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 aerogel catalyst, Int J Hydrogen Energy 38 (2013) 15119–15127. https://doi.org/10.1016/J.IJHYDENE.2013.09.114.
dc.relation.referencesM. Greluk, G. Słowik, M. Rotko, A. Machocki, Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst, Fuel 183 (2016) 518–530. https://doi.org/10.1016/J.FUEL.2016.06.068.
dc.relation.referencesM. Tóth, E. Varga, A. Oszkó, K. Baán, J. Kiss, A. Erdohelyi, Partial oxidation of ethanol on supported Rh catalysts: Effect of the oxide support, J Mol Catal A Chem 411 (2016) 377–387. https://doi.org/10.1016/J.MOLCATA.2015.11.010.
dc.relation.referencesS.M. de Lima, A.M. da Silva, L.O.O. da Costa, U.M. Graham, G. Jacobs, B.H. Davis, L. v. Mattos, F.B. Noronha, Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst, J Catal 268 (2009) 268–281. https://doi.org/10.1016/J.JCAT.2009.09.025.
dc.relation.referencesG. Rabenstein, V. Hacker, Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis, J Power Sources 185 (2008) 1293–1304. https://doi.org/10.1016/J.JPOWSOUR.2008.08.010.
dc.relation.referencesL. v. Mattos, F.B. Noronha, Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism, J Catal 233 (2005) 453–463. https://doi.org/10.1016/J.JCAT.2005.04.022.
dc.relation.referencesL. v. Mattos, F.B. Noronha, The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol, J Power Sources 152 (2005) 50–59. https://doi.org/10.1016/J.JPOWSOUR.2004.12.052.
dc.relation.referencesC.E.M. Guarido, D. v. Cesar, M.M.V.M. Souza, M. Schmal, Ethanol reforming and partial oxidation with Cu/Nb2O5 catalyst, Catal Today 142 (2009) 252–257. https://doi.org/10.1016/J.CATTOD.2008.08.030.
dc.relation.referencesM.H. Youn, J.G. Seo, S. Park, D.R. Park, J.C. Jung, P. Kim, I.K. Song, Hydrogen production by auto-thermal reforming of ethanol over Ni-Ti-Zr metal oxide catalysts, Renew Energy 34 (2009) 731–735. https://doi.org/10.1016/J.RENENE.2008.04.021.
dc.relation.referencesJ.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal Today 139 (2009) 244–260. https://doi.org/10.1016/J.CATTOD.2008.08.039.
dc.relation.referencesT. Mondal, K.K. Pant, A.K. Dalai, Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst, Int J Hydrogen Energy 40 (2015) 2529–2544. https://doi.org/10.1016/J.IJHYDENE.2014.12.070.
dc.relation.referencesI. Melián-Cabrera, Catalytic Materials: Concepts To Understand the Pathway to Implementation, Ind Eng Chem Res 60 (2021) 18545–18559. https://doi.org/10.1021/ACS.IECR.1C02681/ASSET/IMAGES/LARGE/IE1C02681_0008.JPEG.
dc.relation.referencesV.L. Hartmann, A. V. Obysov, A. V. Dulnev, S. V. Afanas’ev, New basic shape of catalysts for natural gas reforming reactors, Chemical Engineering Journal 176–177 (2011) 102–105. https://doi.org/10.1016/j.cej.2011.08.031.
dc.relation.referencesCatalyst Pelletizing for Enhanced Performance and Longevity, (n.d.). https://feeco.com/catalyst-pelletizing-for-enhanced-performance-and-longevity/?utm_source=chatgpt.com (accessed March 26, 2025).
dc.relation.referencesF. Kapteijn, J.A. Moulijn, Structured catalysts and reactors – Perspectives for demanding applications, Catal Today 383 (2022) 5–14. https://doi.org/10.1016/J.CATTOD.2020.09.026.
dc.relation.referencesT. Eppinger, G.D. Wehinger, A Generalized Contact Modification for Fixed-Bed Reactor CFD Simulations, Chemie Ingenieur Technik 93 (2021) 143–153. https://doi.org/10.1002/CITE.202000182.
dc.relation.referencesL.M. Martínez Tejada, M.I. Domínguez, O. Sanz, M.A. Centeno, J.A. Odriozola, Au/CeO2 metallic monolith catalysts: Influence of the metallic substrate, Gold Bull 46 (2013) 221–231. https://doi.org/10.1007/S13404-013-0102-0/FIGURES/10.
dc.relation.referencesH. Zhang, W.J. Suszynski, K.V. Agrawal, M. Tsapatsis, S. Al Hashimi, L.F. Francis, Coating of open cell foams, Ind Eng Chem Res 51 (2012) 9250–9259. https://doi.org/10.1021/IE300266P/SUPPL_FILE/IE300266P_SI_001.PDF.
dc.relation.referencesR. Balzarotti, G. Drago Ferrante, C. Italiano, M. Laganà, L.F. Francis, A. Vita, C. Cristiani, L. Pino, RhNi/CeO2 catalytic activation of alumina open cell foams by dip-spin coating for the CO2 methanation of biogas, Surf Coat Technol 441 (2022) 128563. https://doi.org/10.1016/j.surfcoat.2022.128563.
dc.relation.referencesF. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin, L. Bergström, Structuring adsorbents and catalysts by processing of porous powders, J Eur Ceram Soc 34 (2014) 1643–1666. https://doi.org/10.1016/J.JEURCERAMSOC.2014.01.008.
dc.relation.referencesB. Sosna, O. Korup, R. Horn, Probing local diffusion and reaction in a porous catalyst pellet, J Catal 381 (2020) 285–294. https://doi.org/10.1016/J.JCAT.2019.11.005.
dc.relation.referencesJ. Chen, H. Yang, N. Wang, Z. Ring, T. Dabros, Mathematical modeling of monolith catalysts and reactors for gas phase reactions, Appl Catal A Gen 345 (2008) 1–11. https://doi.org/10.1016/J.APCATA.2008.04.010.
dc.relation.referencesM.Á. Stegmayer, M.L. Godoy, J.F. Múnera, E.E. Miró, V.G. Milt, In situ growth of ceria nanofibers on cordierite monoliths for diesel soot combustion, Surf Coat Technol 439 (2022) 128451. https://doi.org/10.1016/J.SURFCOAT.2022.128451.
dc.relation.referencesF. Yan, Z. Cai, J. Hu, The state-of-the-art of soot load estimation in diesel particulate filters: A review, E3S Web of Conferences 268 (2021) 01021. https://doi.org/10.1051/E3SCONF/202126801021.
dc.relation.referencesK. Tsuneyoshi, K. Yamamoto, A study on the cell structure and the performances of wall-flow diesel particulate filter, Energy 48 (2012) 492–499. https://doi.org/10.1016/J.ENERGY.2012.10.007.
dc.relation.referencesR.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal 82 (2001) 149–156. https://doi.org/10.1016/S1385-8947(00)00365-X.
dc.relation.referencesI. Cornejo, P. Nikrityuk, C. Lange, R.E. Hayes, Influence of upstream turbulence on the pressure drop inside a monolith, Chemical Engineering and Processing - Process Intensification 147 (2020) 107735. https://doi.org/10.1016/J.CEP.2019.107735.
dc.relation.referencesM. Tu, R. Ratnakar, V. Balakotaiah, Reduced order models with local property dependent transfer coefficients for real time simulations of monolith reactors,Chemical Engineering Journal 383 (2020) 123074. https://doi.org/10.1016/J.CEJ.2019.123074.
dc.relation.referencesN. Kovacev, S. Li, S. Zeraati-Rezaei, H. Hemida, A. Tsolakis, K. Essa, Effects of the internal structures of monolith ceramic substrates on thermal and hydraulic properties: additive manufacturing, numerical modelling and experimental testing, The International Journal of Advanced Manufacturing Technology 112 (2021) 1115–1132. https://doi.org/10.1007/s00170-020-06493-2/Published.
dc.relation.referencesT.S. Moraes, L.E.P. Borges, R. Farrauto, F.B. Noronha, ScienceDirect Steam reforming of ethanol on Rh / SiCeO 2 washcoated monolith catalyst : Stable catalyst performance, Int J Hydrogen Energy 43 (2017) 115–126. https://doi.org/10.1016/j.ijhydene.2017.10.180.
dc.relation.referencesA. Casanovas, C. de Leitenburg, A. Trovarelli, J. Llorca, Catalytic monoliths for ethanol steam reforming, Catal Today 138 (2008) 187–192. https://doi.org/10.1016/j.cattod.2008.05.028.
dc.relation.referencesY. Escalante, O.J. Furlong, M.S. Nazzarro, M.N. Barroso, M.C. Abello, ScienceDirect Hydrogen production by ethanol steam reforming : A study of Co- and Ce-based catalysts over FeCrAlloy monoliths, 5 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.188.
dc.relation.referencesE.M. Izurieta, D.O. Borio, M.N. Pedernera, L. Eduardo, U. Nacional, U.N.S. Conicet, ScienceDirect Parallel plates reactor simulation : Ethanol steam reforming thermally coupled with ethanol combustion pez, 2 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.134.
dc.relation.referencesC. Gaudillere, J.J. González, A. Chica, J.M. Serra, Applied Catalysis A : General YSZ monoliths promoted with Co as catalysts for the production of H 2 by steam reforming of ethanol, Appl Catal A Gen 538 (2017) 165–173. https://doi.org/10.1016/j.apcata.2017.03.008.
dc.relation.referencesA. Cifuentes, R. Torres, J. Llorca, ScienceDirect Modelling of the ethanol steam reforming over Rh- Pd / CeO 2 catalytic wall reactors, Int J Hydrogen Energy 45 (2019) 26265–26273. https://doi.org/10.1016/j.ijhydene.2019.11.034.
dc.relation.referencesM. Schmal, Applied Catalysis B : Environmental Effect of metal oxides concentration over supported cordierite monoliths on the partial oxidation of ethanol, Appl Catal B 148–149 (2014) 1–10. https://doi.org/10.1016/j.apcatb.2013.10.036.
dc.relation.referencesC.P. Rodrigues, M. Schmal, Nickel e alumina washcoating on monoliths for the partial oxidation of ethanol to hydrogen production, Int J Hydrogen Energy 36 (2011) 10709–10718. https://doi.org/10.1016/j.ijhydene.2011.05.175.
dc.relation.referencesC.P. Rodrigues, V. Teixeira, M. Schmal, Partial oxidation of ethanol on Cu / Alumina / cordierite monolith, Catal Commun 10 (2009) 1697–1701. https://doi.org/10.1016/j.catcom.2009.05.010.
dc.relation.referencesD.K. Liguras, K. Goundani, X.E. Verykios, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts, 130 (2004) 30–37. https://doi.org/10.1016/j.jpowsour.2003.12.008.
dc.relation.referencesC.P. Rodrigues, E. Kraleva, H. Ehrich, F.B. Noronha, Structured Reactors as an Alternative to Fixed-bed Reactors : Influence of catalyst preparation methodology on the partial oxidation of ethanol, Catal Today 273 (2016) 12–24. https://doi.org/10.1016/j.cattod.2016.02.061.
dc.relation.referencesC. Wongkhorsub, E. Sukjit, Modeling of Hydrogen Production from Catalytic Partial Oxidation of Ethanol over a Platinum − Rhodium-Supported Catalyst, (2021). https://doi.org/10.1021/acs.energyfuels.0c04125.
dc.relation.referencesT. Mondal, K.K. Pant, A.K. Dalai, Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst, Int J Hydrogen Energy 40 (2015) 2529–2544. https://doi.org/10.1016/j.ijhydene.2014.12.070.
dc.relation.referencesC. Burgos, N. Galindo, Evaluación de un catalizador de níquel-cobalto en pellet para el reformado de etanol con vapor oxidativo (OSRE) en un reactor de lecho fijo., Universidad de América, 2021.
dc.relation.referencesY. Takahashi, S. Okada, R. Bel Hadj Tahar, K. Nakano, T. Ban, Y. Ohya, Dip-coating of ITO films, J Non Cryst Solids 218 (1997) 129–134. https://doi.org/10.1016/S0022-3093(97)00199-3.
dc.relation.referencesR. Balzarotti, C. Cristiani, L.F. Francis, Combined dip-coating/spin-coating depositions on ceramic honeycomb monoliths for structured catalysts preparation, Catal Today 334 (2019) 90–95. https://doi.org/10.1016/j.cattod.2019.01.037.
dc.relation.referencesE. Bindini, G. Naudin, M. Faustini, D. Grosso, C. Boissière, The Critical Role of the Atmosphere in Dip-Coating Process, 2017. http://pubs.acs.org.
dc.relation.referencesZ. Zhang, F. Peng, K.G. Kornev, The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States, Micromachines 2022, Vol. 13, Page 982 13 (2022) 982. https://doi.org/10.3390/MI13070982.
dc.relation.referencesS.L. Patil, S.R. Sankapal, F.M.A. Almuntaser, Dip Coating: Simple Way of Coating Thin Films, Simple Chemical Methods for Thin Film Deposition (2023) 425–447. https://doi.org/10.1007/978-981-99-0961-2_10.
dc.relation.referencesA. Nayfeh, N. El-Atab, Agglomeration-based nanoparticle fabrication, Nanomaterials-Based Charge Trapping Memory Devices (2020) 133–153. https://doi.org/10.1016/B978-0-12-822342-0.00006-7.
dc.relation.referencesV. Meille, Review on methods to deposit catalysts on structured surfaces, (2006). https://doi.org/10.1016/j.apcata.2006.08.031.
dc.relation.referencesM.A. Butt, Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration, Coatings 12 (2022). https://doi.org/10.3390/coatings12081115.
dc.relation.referencesR. Sathyanath, A. Aarthi, S.K. Kalpathy, Liquid film entrainment during dip coating on a saturated porous substrate, Chem Eng Sci 218 (2020) 115552. https://doi.org/10.1016/J.CES.2020.115552.
dc.relation.referencesR. Sathyanath, S.K. Kalpathy, Thickness regimes of power law liquids dip coated onto permeable substrates, International Communications in Heat and Mass Transfer 123 (2021) 105186. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105186.
dc.relation.referencesC. Datt, M. Kansal, J.H. Snoeijer, A thin-film equation for a viscoelastic fluid, and its application to the Landau–Levich problem, J Nonnewton Fluid Mech 305 (2022) 104816. https://doi.org/10.1016/J.JNNFM.2022.104816.
dc.relation.referencesA. Nayfeh, N. El-Atab, Agglomeration-based nanoparticle fabrication, in: Nanomaterials-Based Charge Trapping Memory Devices, Elsevier, 2020: pp. 133–153. https://doi.org/10.1016/b978-0-12-822342-0.00006-7.
dc.relation.referencesA. Evertz, D. Schrein, E. Olsen, G.A. Hoffmann, L. Overmeyer, Dip coating of thin polymer optical fibers, Optical Fiber Technology 66 (2021) 102638. https://doi.org/10.1016/J.YOFTE.2021.102638.
dc.relation.referencesR.S. Sonawane, B.B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of FeTiO2 thin films prepared by sol–gel dip coating, Mater Chem Phys 85 (2004) 52–57. https://doi.org/10.1016/J.MATCHEMPHYS.2003.12.007.
dc.relation.referencesC. Ge, C. Xie, S. Cai, Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating, Materials Science and Engineering: B 137 (2007) 53–58. https://doi.org/10.1016/J.MSEB.2006.10.006.
dc.relation.referencesM.E. Azzoni, F.S. Franchi, N. Usberti, N.D. Nasello, L. Castoldi, I. Nova, E. Tronconi, Dual-layer AdSCR monolith catalysts: A new solution for NOx emissions control in cold start applications, Appl Catal B 315 (2022). https://doi.org/10.1016/j.apcatb.2022.121544.
dc.relation.referencesM. Roustapisheh, D. Karami, N. Mahinpey, The fabrication of Ce promoted Ni/Mg/Al mixed oxides hydrotalcite washcoated alloy, monolith catalyst for catalytic steam cracking of vacuum gas oil, Catal Today 397–399 (2022) 497–510. https://doi.org/10.1016/j.cattod.2021.06.022.
dc.relation.referencesF.J. Echave, O. Sanz, M. Montes, Washcoating of microchannel reactors with PdZnO catalyst for methanol steam reforming, Appl Catal A Gen 474 (2014) 159–167. https://doi.org/10.1016/j.apcata.2013.07.058.
dc.relation.referencesD. Frederichi, M.H.N.O. Scaliante, R. Bergamasco, Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants—a short review, Environmental Science and Pollution Research 28 (2021) 23610–23633. https://doi.org/10.1007/S11356-020-10022-9.
dc.relation.referencesH. Ohshima, DLVO theory of colloid stability, Interface Science and Technology 37 (2024) 217–244. https://doi.org/10.1016/B978-0-443-16116-2.00009-6.
dc.relation.referencesImpact of organic carbon-Mn oxide interactions on colloid stability and contaminant metals in aquatic environments, Water Res 280 (2025) 123445. https://doi.org/10.1016/J.WATRES.2025.123445.
dc.relation.referencesT. Missana, A. Adell, On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability, J Colloid Interface Sci 230 (2000) 150–156. https://doi.org/10.1006/JCIS.2000.7003.
dc.relation.referencesG. Trefalt, F.J.M. Ruiz-Cabello, M. Borkovec, Interaction forces, heteroaggregation, and deposition involving charged colloidal particles, Journal of Physical Chemistry B 118 (2014) 6346–6355. https://doi.org/10.1021/jp503564p.
dc.relation.referencesG. Trefalt, M. Borkovec, Overview of DLVO Theory, (2014). www.colloid.ch/dlvo (accessed March 28, 2025).
dc.relation.referencesF.J.M. Ruiz-Cabello, P. Maroni, M. Borkovec, Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO), Journal of Chemical Physics 138 (2013). https://doi.org/10.1063/1.4810901/192311.
dc.relation.referencesH.K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 80 (1984) 1933–1946. https://doi.org/10.1039/F19848001933.
dc.relation.referencesD. Grasso, K. Subramaniam, M. Butkus, K. Strevett, J. Bergendahl, A review of non-DLVO interactions in environmental colloidal systems, Rev Environ Sci Biotechnol 1 (2002) 17–38. https://doi.org/10.1023/A:1015146710500/METRICS.
dc.relation.referencesS. Ohki, H. Ohshima, Interaction and aggregation of lipid vesicles (DLVO theory versus modified DLVO theory), Colloids Surf B Biointerfaces 14 (1999) 27–45. https://doi.org/10.1016/S0927-7765(99)00022-3.
dc.relation.referencesJ. N. Israelachvili, Intermolecular and Surface Forces , Third edition, Academic Press, Santa Barbara, California, USA, 2011.
dc.relation.referencesY. Lorenzo-Acosta, Estado del arte del tratamiento de aguas por coagulación-floculación, ICIDCA. Sobre Los Derivados de La Caña de Azúcar XL (2006) 10–17. https://www.redalyc.org/articulo.oa?id=223120664002 (accessed March 28, 2025).
dc.relation.referencesN. Marie, S. Hidalgo, K. Ximena, M. Crispin, M. Velásquez, M. Mtr, Comparison of flocculants and natural coagulants for wastewater remediation in South America in the last 10 years: a review of the scientific literature, (n.d.). https://doi.org/10.18687/LACCEI2023.1.1.584.
dc.relation.referencesC. Marraco-Borderas, A. Nistal, E. García, M.A. Sainz, F. Martín De La Escalera, Y. Essa, P. Miranzo, Análisis de la adhesión de recubrimientos del sistema Y2O3-Al2O3-SiO2 sobre sustratos de interés para la industria aeroespacial, Boletín de La Sociedad Española de Cerámica y Vidrio 55 (2016) 127–135. https://doi.org/10.1016/J.BSECV.2016.01.005.
dc.relation.referencesP. Yu, C. Wang, J. Zhou, L. Jiang, J. Xue, W. Li, Influence of Surface Properties on Adhesion Forces and Attachment of Streptococcus mutans to Zirconia In Vitro, Biomed Res Int 2016 (2016). https://doi.org/10.1155/2016/8901253.
dc.relation.referencesJ.H. Clint, Adhesion and components of solid surface energies, Curr Opin Colloid Interface Sci 6 (2001) 28–33. https://doi.org/10.1016/S1359-0294(00)00084-4.
dc.relation.referencesAdhesion Factors of Surface Energy & Surface Tension • Cork Industries, (n.d.). https://corkindustries.com/adhesion-factors-of-surface-energy-surface-tension/ (accessed March 28, 2025).
dc.relation.referencesL. Cai, D. Wu, J. Xia, H. Shi, H. Kim, Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics, Science of The Total Environment 671 (2019) 1101–1107. https://doi.org/10.1016/J.SCITOTENV.2019.03.434.
dc.relation.referencesM. Alejandra Osorio-Zabala, E.A. Baquero, C. Daza, Dry reforming of methane using cordierite monoliths with immobilized Ni-Ce catalysts, Int J Hydrogen Energy 60 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.267.
dc.relation.referencesM. Muñoz, S. Moreno, R. Molina, Promoter effect of Ce and Pr on the catalytic stability of the Ni-Co system for the oxidative steam reforming of ethanol, Appl Catal A Gen 526 (2016) 84–94. https://doi.org/10.1016/j.apcata.2016.08.010.
dc.relation.referencesM. Muñoz, S. Moreno, R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method, Int J Hydrogen Energy 37 (2012) 18827–18842. https://doi.org/10.1016/J.IJHYDENE.2012.09.132.
dc.relation.referencesC. Rodríguez, S. Moreno, R. Molina, Oxygen mobility and its relationship with the oxidative steam reforming of ethanol (OSRE), Appl Surf Sci 485 (2019) 293–303. https://doi.org/10.1016/J.APSUSC.2019.04.183.
dc.relation.referencesM. Muñoz, M. Muñoz, S. Moreno, R. Molina, Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol, Catal Today 213 (2013) 33–41. https://doi.org/10.1016/j.cattod.2013.04.037.
dc.relation.referencesC. Rodríguez, S. Moreno, R. Molina, Revealing oxygen’s influence on ethanol steam reforming: A transient-state operando DRIFT-MS study with Ni-Co catalysts, Appl Mater Today 43 (2025) 102674. https://doi.org/10.1016/J.APMT.2025.102674.
dc.relation.referencesM. Muñ Oz, S. Moreno, R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method, (2012). https://doi.org/10.1016/j.ijhydene.2012.09.132.
dc.relation.referencesR. Trujillano, F.M. Labajos, V. Rives, Hydrotalcites, a rapid survey on the very recent synthesis and applications procedures, Appl Clay Sci 238 (2023) 106927. https://doi.org/10.1016/J.CLAY.2023.106927.
dc.relation.referencesS. Zaneva, T. Stanimirova, CRYSTAL CHEMISTRY, CLASSIFICATION POSITION AND NOMENCLATURE OF LAYERED DOUBLE HYDROXYDES, Geology 12 (2004) 16–17. http://www.webmineral.com/strunz.shtml (accessed March 30, 2025).
dc.relation.referencesM. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
dc.relation.referencesA.N. Shigapov, G.W. Graham, R.W. Mccabe, M.P. Peck, H. Kiel Plummer, The preparation of high-surface-area cordierite monolith by acid treatment, n.d.
dc.relation.referencesPham Thi Mai Phuong, Le Minh Thang, Isabel Van Driessche, STUDY ON THE IMPREGNATION PROCEDURES TO PREPARE CATALYTIC COMPLEXES FOR THE TREATMENT OF MOTORBIKE’S EXHAUST GASES, Hanoi, 2013.
dc.relation.referencesJ.L. Valentín, M.A. López-Manchado, A. Rodríguez, P. Posadas, L. Ibarra, Novel anhydrous unfolded structure by heating of acid pre-treated sepiolite, Appl Clay Sci 36 (2007) 245–255. https://doi.org/10.1016/J.CLAY.2006.10.005.
dc.relation.referencesM.J. Climent, A. Corma, S. Iborra, K. Epping, A. Velty, Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures, J Catal 225 (2004) 316–326. https://doi.org/10.1016/j.jcat.2004.04.027.
dc.relation.referencesJ.S. Valente, F. Figueras, M. Gravelle, P. Kumbhar, J. Lopez, J.P. Besse, Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions, J Catal 189 (2000) 370–381. https://doi.org/10.1006/jcat.1999.2706.
dc.relation.referencesA. Boudrioua, M. Chakaroun, A. Fischer, Organic Light-emitting Diodes, in: Organic Lasers, Elsevier, 2017: pp. 49–93. https://doi.org/10.1016/B978-1-78548-158-1.50002-X.
dc.relation.referencesR. Pal, Historical Perspective Non-Newtonian behaviour of suspensions and emulsions: Review of different mechanisms, (2024). https://doi.org/10.1016/j.cis.2024.103299.
dc.relation.referencesM.J. Armstrong, A.N. Beris, S.A. Rogers, N.J. Wagner, Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments Oscillatory shear of suspensions of noncolloidal particles Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments, Citation: Journal of Rheology 60 (2016) 71. https://doi.org/10.1122/1.4943986.
dc.relation.referencesM. Worgull, Modeling and Process Simulation, William Andrew Publishing, 2009. https://doi.org/10.1016/B978-0-8155-1579-1.50012-4.
dc.relation.referencesJ. Labanda, P. Marco, J. Llorens, Rheological model to predict the thixotropic behaviour of colloidal dispersions, Colloids Surf A Physicochem Eng Asp 249 (2004) 123–126. https://doi.org/10.1016/J.COLSURFA.2004.08.062.
dc.relation.referencesG.S. Barozzi, D. Angeli, A Note on Capillary Rise in Tubes, Energy Procedia 45 (2014) 548–557. https://doi.org/10.1016/J.EGYPRO.2014.01.059.
dc.relation.referencesC. Wan, X. Wei, G. Cai, D. Li, Y. Zhan, Y. Xiao, L. Jiang, Hydrotalcite-derived aluminum-doped cobalt oxides for catalytic benzene combustion: Effect of calcination atmosphere, Molecular Catalysis 520 (2022) 112160. https://doi.org/10.1016/J.MCAT.2022.112160.
dc.relation.referencesJ. Pérez-Ramírez, S. Abelló, Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM): Comparison with TGA and DTA, Thermochim Acta 444 (2006) 75–82. https://doi.org/10.1016/J.TCA.2006.02.031.
dc.relation.referencesR. Guil-López, R.M. Navarro, M.A. Peña, J.L.G. Fierro, Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts, Int J Hydrogen Energy 36 (2011) 1512–1523. https://doi.org/10.1016/J.IJHYDENE.2010.10.084.
dc.relation.referencesC. Agrafiotis, A. Tsetsekou, The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats, J Eur Ceram Soc 20 (2000) 815–824. https://doi.org/10.1016/S0955-2219(99)00218-6.
dc.relation.referencesJ. Jia, J. Zhou, J. Zhang, Z. Yuan, S. Wang, The influence of preparative parameters on the adhesion of alumina washcoats deposited on metallic supports, Appl Surf Sci 253 (2007) 9099–9104. https://doi.org/10.1016/J.APSUSC.2007.05.034.
dc.relation.referencesJ. Hwang, H.J. Ha, J. Ryu, J.J. Choi, C.W. Ahn, J.W. Kim, B.D. Hahn, W.H. Yoon, H. Lee, J.H. Choi, Enhancement of washcoat adhesion for SCR catalysts to convert nitrogen oxide using powder spray coating of TiO2 on metallic honeycomb substrate, Catal Commun 94 (2017) 1–4. https://doi.org/10.1016/J.CATCOM.2017.02.002.
dc.relation.referencesX. Zhang, J. Liu, J. Tian, J. Liu, X. Yang, Y. Liu, J. Li, C. Zhang, Z. Li, Suspension-washcoat optimization for preparing copper-manganese oxide structured catalyst towards flue gas CO purification, Colloids Surf A Physicochem Eng Asp 705 (2025) 135714. https://doi.org/10.1016/J.COLSURFA.2024.135714.
dc.relation.referencesC. Agrafiotis, A. Tsetsekou, C.J. Stournaras, A. Julbe, L. Dalmazio, C. Guizard, Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. Part I: preparation of coatings, J Eur Ceram Soc 22 (2002) 15–25. https://doi.org/10.1016/S0955-2219(01)00246-1.
dc.relation.referencesJ.R. González-Velasco, M.A. Gutiérrez-Ortiz, J.L. Marc, J.A. Botas, M.P. González-Marcos, G. Blanchard, Pt/Ce0.68Zr0.32O2 Washcoated Monoliths for Automotive Emission Control, Ind Eng Chem Res 42 (2002) 311–317. https://doi.org/10.1021/IE020157V.
dc.relation.referencesP. Jiang, G. Lu, Y. Guo, Y. Guo, S. Zhang, X. Wang, Preparation and properties of a γ-Al2O3 washcoat deposited on a ceramic honeycomb, Surf Coat Technol 190 (2005) 314–320. https://doi.org/10.1016/J.SURFCOAT.2004.05.029.
dc.relation.referencesC. Pirez, W. Fang, M. Capron, S. Paul, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst, Appl Catal A Gen 518 (2016) 78–86. https://doi.org/10.1016/J.APCATA.2015.10.035.
dc.relation.referencesT. Mondal, K.K. Pant, A.K. Dalai, Mechanistic Kinetic Modeling of Oxidative Steam Reforming of Bioethanol for Hydrogen Production over Rh-Ni/CeO2-ZrO2 Catalyst, Ind Eng Chem Res 55 (2016) 86–98. https://doi.org/10.1021/ACS.IECR.5B03828/ASSET/IMAGES/MEDIUM/IE-2015-03828R_0011.GIF.
dc.relation.referencesM. Cobo, D. Pieruccini, R. Abello, L. Ariza, L. Fernando Córdoba, J.A. Conesa, Steam reforming of ethanol over bimetallic RhPt/La 2 O 3 : Long-term stability under favorable reaction conditions, (2013). https://doi.org/10.1016/j.ijhydene.2013.02.044.
dc.relation.referencesY. Ju, D. Bae, M. Kim, T. Ryu, M.J. Hazlett, H. Min, J. Park, Y.J. Kim, S.B. Kang, Low-temperature catalytic CO2 methanation over nickel supported on praseodymium oxide, J Environ Chem Eng 13 (2025) 116129. https://doi.org/10.1016/J.JECE.2025.116129.
dc.relation.referencesN. Ebrahimi, F. Bibak, M. Shakeri, F. Meshkani, The influence of Ce, La, and Y promoters on the catalytic performance of Ni/Cr2O3 catalysts for CO2 methanation, J Mol Struct 1328 (2025) 141369. https://doi.org/10.1016/J.MOLSTRUC.2025.141369.
dc.relation.referencesJ. Guo, J. Yang, Q. Wang, N. Zhao, F. Xiao, Effect of Ni-Ov-Ce interface on low temperature CO2 methanation, Fuel 381 (2025) 133568. https://doi.org/10.1016/J.FUEL.2024.133568.
dc.relation.referencesY. Pei, X. Qiu, L. Wang, S. Kawi, Low-temperature CO2 methanation over SiO2 supported Ni catalysts derived from sol-gel precursors: Effect of pretreatment process, Fuel 390 (2025) 134651. https://doi.org/10.1016/J.FUEL.2025.134651.
dc.relation.referencesO.E. Medina, A.A. Amell, D. López, A. Santamaría, Comprehensive review of nickel-based catalysts advancements for CO2 methanation, Renewable and Sustainable Energy Reviews 207 (2025) 114926. https://doi.org/10.1016/J.RSER.2024.114926.
dc.relation.referencesB. Miao, S. Kang, S. Tong, S. Hou, W. Sai, Z. Pan, S.H. Chan, Maximizing CH4 yield by thermodynamically optimizing the temperature profile of fixed-bed CO2 methanation reactors, Energy 360 3 (2025) 100018. https://doi.org/10.1016/J.ENERG.2025.100018.
dc.relation.referencesJ.L. Contreras, J. Salmones, J.A. Colín-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, G.A. Fuentes, Catalysts for H2 production using the ethanol steam reforming (a review), Int J Hydrogen Energy 39 (2014) 18835–18853. https://doi.org/10.1016/J.IJHYDENE.2014.08.072.
dc.relation.referencesR.M. West, Best practice in statistics: Use the Welch t-test when testing the difference between two groups, Ann Clin Biochem 58 (2021) 267–269. https://doi.org/10.1177/0004563221992088/ASSET/0554FC87-E57F-471C-AC3E-97423E3D74C7/ASSETS/IMAGES/LARGE/10.1177_0004563221992088-FIG1.JPG.
dc.relation.referencesM.L. Heiredal, Particle Dynamics in Monolithic Catalysts, Citation (2010). https://orbit.dtu.dk/en/publications/particle-dynamics-in-monolithic-catalysts (accessed April 2, 2025).
dc.relation.referencesM. Bilal, S.D. Jackson, Ethanol steam reforming over Rh and Pt catalysts: effect of temperature and catalyst deactivation, Catal Sci Technol 3 (2013) 754–766. https://doi.org/10.1039/C2CY20703F.
dc.relation.referencesJ.A. Gómez-Cuaspud, M. Schmal, Effect of metal oxides concentration over supported cordierite monoliths on the partial oxidation of ethanol, Appl Catal B 148–149 (2014) 1–10. https://doi.org/10.1016/J.APCATB.2013.10.036.
dc.relation.referencesC.P. Rodrigues, M. Schmal, Nickel–alumina washcoating on monoliths for the partial oxidation of ethanol to hydrogen production, Int J Hydrogen Energy 36 (2011) 10709–10718. https://doi.org/10.1016/J.IJHYDENE.2011.05.175.
dc.relation.referencesC.P. Rodrigues, E. Kraleva, H. Ehrich, F.B. Noronha, Structured Reactors as an Alternative to Fixed-bed Reactors: Influence of catalyst preparation methodology on the partial oxidation of ethanol, Catal Today 273 (2016) 12–24. https://doi.org/10.1016/J.CATTOD.2016.02.061.
dc.relation.referencesL. Pérez-Moreno, J. Soler, J. Herguido, M. Menéndez, Stable Steam Reforming of Ethanol in a Two-Zone Fluidized-Bed Reactor, Ind Eng Chem Res 51 (2011) 8840–8848. https://doi.org/10.1021/IE201968U.
dc.relation.referencesM. Greluk, P. Rybak, G. Słowik, M. Rotko, A. Machocki, Comparative study on steam and oxidative steam reforming of ethanol over 2KCo/ZrO2 catalyst, Catal Today 242 (2015) 50–59. https://doi.org/10.1016/J.CATTOD.2014.07.032.
dc.relation.referencesJ. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.H. Chin, Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol, J Catal 238 (2006) 430–440. https://doi.org/10.1016/J.JCAT.2006.01.001.
dc.relation.referencesE.B. Pereira, N. Homs, S. Martí, J.L.G. Fierro, P. Ramírez de la Piscina, Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: Catalytic behavior and deactivation/regeneration processes, J Catal 257 (2008) 206–214. https://doi.org/10.1016/J.JCAT.2008.05.001.
dc.relation.referencesN. Srisiriwat, S. Therdthianwong, A. Therdthianwong, Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2, Int J Hydrogen Energy 34 (2009) 2224–2234. https://doi.org/10.1016/J.IJHYDENE.2008.12.058.
dc.relation.referencesR. Guil-López, R.M. Navarro, M.A. Peña, J.L.G. Fierro, Hydrogen production by oxidative ethanol reforming on Co, Ni and Cu ex-hydrotalcite catalysts, Int J Hydrogen Energy 36 (2011) 1512–1523. https://doi.org/10.1016/J.IJHYDENE.2010.10.084.
dc.relation.referencesM. Muñ Oz, S. Moreno, R. Molina, The effect of the absence of Ni, Co, and NieCo catalyst pretreatment on catalytic activity for hydrogen production via oxidative steam reforming of ethanol, (2014). https://doi.org/10.1016/j.ijhydene.2014.04.131.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.bneCatalizadoresspa
dc.subject.bneCatalystseng
dc.subject.bneCatálisis -- Investigaciónspa
dc.subject.bneCatalysis -- Researcheng
dc.subject.ddc540 - Química y ciencias afines
dc.subject.decsHidrógeno -- Químicaspa
dc.subject.decsHydrogen -- Chemistryeng
dc.subject.decsHidrógeno -- Químicaspa
dc.subject.decsHydrogen -- Chemistryeng
dc.subject.otherCatálisis heterogéneasspa
dc.subject.otherHeterogeneous catalysiseng
dc.subject.otherCatalizadores heterogéneosspa
dc.subject.otherHeterogeneous catalystseng
dc.subject.otherCordierita -- Catálisisspa
dc.subject.otherCordierite -- Catalysiseng
dc.subject.otherProducción de hidrógenospa
dc.subject.otherHydrogen productioneng
dc.subject.proposalMonolito cerámicospa
dc.subject.proposalAdhesiónspa
dc.subject.proposalRecubrimientospa
dc.subject.proposalHidrógenospa
dc.subject.proposalOSREspa
dc.subject.proposalHoneycomb monolitheng
dc.subject.proposalAdhesioneng
dc.subject.proposalCoatingeng
dc.subject.proposalDip-coatingeng
dc.subject.proposalHydrogeneng
dc.subject.wikidataRecubrimiento por inmersiónspa
dc.subject.wikidataDip-coatingeng
dc.titleEstudio de un catalizador de Ni-Co promovido con Ce anclado en un monolito cerámico para la obtención de hidrógeno a partir del proceso OSREspa
dc.title.translatedStudy of a Ni–Co catalyst promoted with Ce anchored on a ceramic monolith for hydrogen production via the OSRE processeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentMedios de comunicación
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Gustavo Novoa.pdf
Tamaño:
5.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: