Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación

dc.contributor.advisorAgámez Pertuz, Yazmin Yaneth
dc.contributor.authorMoreno Forero, Maribel
dc.contributor.cvlacMORENO FORERO, MARIBELspa
dc.contributor.orcidMORENO FORERO, MARIBEL [0000-0002-3410-8760]spa
dc.coverage.countryColombia
dc.date.accessioned2023-07-28T13:52:00Z
dc.date.available2023-07-28T13:52:00Z
dc.date.issued2023-07-26
dc.descriptionilustraciones, diagramas, fotografías a color, mapasspa
dc.description.abstractLa caracterización química de algunas sustancias presentes en la tierra permite identificar la formación, evolución y el cambio en las condiciones ambientales derivadas de procesos naturales como la respiración, la fotosíntesis o los fenómenos geológicos dados por la dinámica interna y externa de las capas de la tierra. El conocimiento de estos cambios en matrices como el carbón, en el territorio colombiano contribuye a una mayor caracterización de los recursos del país y por ende a su mejor aprovechamiento de estos. Con este fin se desarrolló y validó un método para la determinación isotópica de carbono en carbones mediante Espectrometría de Masas de Relaciones Isotópicas (IRMS). Mediante el proceso de validación se encontró que el método es apto para las determinaciones de δ13C en carbones de las diferentes zonas carboníferas del país en el intervalo de -32,151 ‰ a -16,049 ‰ de δ13C con una precisión menor al 0,2 ‰. El método validado fue empleado en la evaluación de carbones provenientes de las zonas Boyacá, la Guajira, Cundinamarca, Santander, Córdoba, y Antioquía, cubriendo las principales zonas carboníferas del país, con el objeto de correlacionar los resultados de la relación isotópica con análisis fisicoquímicos que permitan establecer diferentes características de este recurso, así como de sus ambientes de formación. Se encontraron relaciones isotópicas en el intervalo de −27,08 ‰ y -26,20 ‰. Uno de los problemas que presenta este tipo de técnicas es el de no contar con Materiales de Referencia (MR) de matrices de las muestras similares o iguales a las muestras rutinarias del laboratorio, además que las que se consiguen en el mercado solo pueden ser adquiridas cada cierto periodo de tiempo (3 años), por lo tanto, esta investigación contribuyó en la producción, de un material de referencia in-house con el fin de ser empleado como control y aseguramiento de calidad del método desarrollado. Durante todo el proceso se evaluó su homogeneidad, estabilidad y uso repetido. (Texto tomado de la fuente)spa
dc.description.abstractThe chemical characterization of some substances present in the earth allows to identify the formation, evolution and change in environmental conditions derived from natural processes such as respiration, photosynthesis or geological phenomena given by the internal and external dynamics of the layers of the earth. The knowledge of these changes in matrices such as coal, in the Colombian territory contributes to a better characterization of the country's resources and therefore to their better use. To this end, a method for the isotopic determination of carbon in coals by Isotopic Ratio Mass Spectrometry (IRMS) was developed and validated. Through the validation process, it was found that the method is suitable for the determination of δ13C in coals from the different coal-producing areas of the country. A linear interval of -32.121 ‰ to -16.049 ‰ of δ13C and error percentages and coefficients of variation less than 5% will be completed. After the validation in a second stage, from the validated method, the coals from the Boyacá, Guajira, Cundinamarca, Santander, Córdoba y Antioquia zones were evaluated, covering the main coal-bearing zones of the country, with the in order to correlate the results of the isotopic relationship with physicochemical analyzes that allow establishing different characteristics of this resource, as well as its formation environments. Isotopic ratios between −27.96‰ to −26.11‰ were found. Due to the problem of not having enough reference materials for this type of method, the production of an in-house reference material was carried out in order to be used as control and quality assurance of the developed method.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Químicaspa
dc.description.researchareaAplicaciones Nucleares y Geocronológicasspa
dc.format.extent134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84350
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesA. N. de Míneria, “El futuro del carbón en Colombia no termina , se fortalece con las ruedas de negocios,” 2021. https://www.anm.gov.co/?q=rueda-de-negocios-carbon-termico-en-colombia.spa
dc.relation.referencesD. N. D. P. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL, REPÚBLICA DE COLOMBIA, “Política De Transición Energética - Conpes 4075,” p. 108, 2022, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf.spa
dc.relation.referencesG. Valley, “International Journal of Coal Geology Petrographic characteristics and carbon isotopic composition of Permian coal : Implications on depositional environment of Sattupalli coal fi eld ,” Int. J. Coal Geol., vol. 90–91, pp. 34–42, 2012, doi: 10.1016/j.coal.2011.10.002.spa
dc.relation.referencesM. Hámor-vidó and T. Hámor, “Sulphur and carbon isotopic composition of power supply coals in the Pannonian Basin , Hungary,” vol. 71, pp. 425–447, 2007, doi: 10.1016/j.coal.2006.11.002.spa
dc.relation.referencesM. Moreno and G. Hincapié, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” Universidad de Caldas, 2010.spa
dc.relation.referencesN. Suto and H. Kawashima, “Global mapping of carbon isotope ratios in coal,” J. Geochemical Explor., vol. 167, pp. 12–19, 2016, doi: 10.1016/j.gexplo.2016.05.001.spa
dc.relation.referencesC. T. Samec, M. Pirola, and V. A. Killian Galván, “Lineamientos para la publicación de resultados isotópicos en antropología biológica y arqueología,” Rev. Argentina Antropol. Biológica, vol. 21, no. 2, p. 007, 2019, doi: 10.24215/18536387e007.spa
dc.relation.referencesG. Skrzypek et al., “Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report),” Pure Appl. Chem., 2022, doi: 10.1515/pac-2021-1108.spa
dc.relation.referencesISO - International Organization for Standardization, “ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories.,” vol. 2017, 2009.spa
dc.relation.referencesR. Arqueol, “DIETA, SUBSISTENCIA Y MOVILIDAD EN TIBANICA A TRAVÉS DEL ESTUDIO DE RAZONES DE ISOTOPOS ESTABLES DE CARBONO (δ13C), NITRÓGENO (δ15 N) Y OXIGENO (δ18O) DEL COLÁGENO Y LA APATITA,” no. October 2018, 2012.spa
dc.relation.referencesA. Delgado and E. Reyes, “Isótopos Estables como Indicadores Paleoclimáticos y Paleohidrológicos en Medios Continentales,” Geoquímica Isotópica Apl. al Medioambiente, Semin. la Soc. Española Mineral., pp. 37–54, 2004.spa
dc.relation.referencesL. Thomas, Coal Geology. 2002.spa
dc.relation.referencesE. Herausgegeben, CHEMISTRY OF COAL UTILIZATION, vol. I. John Wiley and Sons Lowry, 1981.spa
dc.relation.referencesJ. Speight, Handbook of Coal analyses. John Willey and sons, 2005.spa
dc.relation.referencesF. S. Ajiaco Castro, “Evaluación del comportamiento térmico de carbones del Cerrejón, carbones coquizantes y sus mezclas en la producción de coque metalúrgico.” p. 107, 2011.spa
dc.relation.references“ASTM D 388-05 Classification of Coals by Rank.pdf.” 2005.spa
dc.relation.referencesUniversidad de Granada, “Petrografía del carbón,” Instituto Nacional del Carbón, 2018.spa
dc.relation.referencesA. M.-A. A. Pérez-López, A.G. Borrego, M. Sierra Aragón, “Petrografía del carbón,” Universidad de Granada - Instituto de Ciencia y Tecnología del Carbono (INCAR) - España, 2013. https://petrografiacarbon.es/.spa
dc.relation.referencesV. J. Cortés, “Carbón,” NA, pp. 1–47, 2015.spa
dc.relation.referencesPortafolio, “En carbón, el país es exportador de talla mundial,” Portafolio, p. 94036, 2012.spa
dc.relation.referencesE. País, “El incierto futuro del carbón en Colombia,” 2022.spa
dc.relation.referencesUPME, “El Carbón Colombiano. Fuente de Energía para el mundo,” Unidad Planeación Min. Energética, p. 53, 2005.spa
dc.relation.referencesF. Chiocchini, S. Portarena, M. Ciolfi, E. Brugnoli, and M. Lauteri, “Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils,” Food Chem., vol. 202, pp. 291–301, 2016, doi: 10.1016/j.foodchem.2016.01.146.spa
dc.relation.referencesAgencia Nacional de Mineria, “Carbón,” Producción Nacional de Minerales 2013, Bogotá, Colombia.spa
dc.relation.referencesS. G. Colombiano, “Zonas Carboniferas de Colombia,” 2021. https://datos.sgc.gov.co/datasets/68d1a27c05984be5b0ca1eaf524a1006_0/explore?location=3.501775%2C-73.527455%2C5.85 (accessed Aug. 25, 2022).spa
dc.relation.referencesR. Geol and G. D. E. Carb, “Zonas carboníferas de colombia,” pp. 1–6, 2021.spa
dc.relation.referencesIAEA, “International Atomic Energy Agency - What are Isotopes,” 2022. https://www.iaea.org/newscenter/news/what-are-isotopes#:~:text=Like everything we see in,Vargas%2FIAEA) (accessed Aug. 19, 2022).spa
dc.relation.referencesJ. B. West, G. J. Bowen, T. E. Cerling, and J. R. Ehleringer, “Stable isotopes as one of nature’s ecological recorders,” Trends Ecol. Evol., vol. 21, no. 7, pp. 408–414, 2006, doi: 10.1016/j.tree.2006.04.002.spa
dc.relation.referencesJ. Hoefs, Stable Isotope Geochemistry, Seventh. Springer International Publishing Switzerland, 2015.spa
dc.relation.referencesC. E. Redding, M. Schoell, J. C. Monin, and B. Durand, “Hydrogen and carbon isotopic composition of coals and kerogens,” Phys. Chem. Earth, vol. 12, no. C, pp. 711–723, 1980, doi: 10.1016/0079-1946(79)90152-6.spa
dc.relation.referencesS. In, “Stable Isotope Geochemistry III: Low Temperature Applications,” in Geol. 656 Isotope Geochemistry Chapter, 2011, pp. 276–327.spa
dc.relation.referencesZ. Muccio and G. P. Jackson, “Isotope ratio mass spectrometry,” Analyst, vol. 134, no. 2, pp. 213–222, 2009, doi: 10.1039/b808232d.spa
dc.relation.referencesG. Kaklamanos, E. Aprea, and G. Theodoridis, 11 - Mass spectrometry: principles and instrumentation, Second Edi. Elsevier Inc., 2020.spa
dc.relation.referencesCienfuegos and Morales, “Metrología de isótopos estables y materiales de referencia utilizados para la determinación isotópica de carbono, nitrógeno, oxigeno, hidrógeno, y azufre,” Simp. Metrol., 2001, [Online]. Available: http://www.cenam.mx/Memorias/descarga/Memorias Simposio/documentos/ta-or023.pdf.spa
dc.relation.referencesI. A. E. AGENCY, “Reference and intercomparison materials for stable isotopes of light elements,” 1995.spa
dc.relation.referencesW. C. Pat, S. Iii, and U. S. G. Survey, Stable Isotope Geochemistry of Mineral Deposits, 2nd ed. Elsevier Ltd., 2014spa
dc.relation.referencesM. Moreno Sánchez and G. Hincapié Jaramillo, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” p. 181, 2010.spa
dc.relation.referencesH. Carvajal-ortiz, “Carbon isotopic composition of plant-derived organic matter in tropical sedimentary sequences as a recorder of Late Cretaceous-Early Paleogene changes in the carbon cycle,” Iowa State University, 2007.spa
dc.relation.referencesM. Hail and W. Hasiah, “Biological markers and carbon isotope composition of organic matter in the Upper Cretaceous coals and carbonaceous shale succession ( Jiza – Qamar Basin , Yemen ): Origin , type and preservation,” vol. 409, pp. 84–97, 2014.spa
dc.relation.referencesA. Bhagavatula, G. Huffman, N. Shah, C. Romanek, and R. Honaker, “Source apportionment of carbon during gasi fi cation of coal – biomass blends using stable carbon isotope analysis,” Fuel Process. Technol., vol. 128, pp. 83–93, 2014, doi: 10.1016/j.fuproc.2014.06.024.spa
dc.relation.referencesP. D. Warwick and L. F. Ruppert, “International Journal of Coal Geology Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion : A preliminary study,” Int. J. Coal Geol., pp. 0–7, 2016, doi: 10.1016/j.coal.2016.06.009.spa
dc.relation.referencesM. Espinosa-Fuentes et al., “Ciclos biogeoquímicos,” no. December, 2015.spa
dc.relation.referencesP. Alexandre, Isotopes and the Natural Environment. Brandon, MB, Canada, 2020.spa
dc.relation.referencesA. Lerman, “Carbon cycle,” Encycl. Earth Sci. Ser., no. 2003, pp. 983–986, 2009, doi: 10.1007/978-1-4020-4411-3_28.spa
dc.relation.referencesX. Zhang et al., “The role of dissolved organic matter in soil organic carbon stability under water erosion,” Ecol. Indic., vol. 102, no. October 2018, pp. 724–733, 2019, doi: 10.1016/j.ecolind.2019.03.038.spa
dc.relation.referencesP. A. de Groot, Handbook of Stable Isotope Analytical Techniques Vol II, vol. 1st ed, no. Vol. 2. Amsterdam: Elsevier Science, 2009.spa
dc.relation.referencesZ. Li, S. Wang, X. Nie, Y. Sun, and F. Ran, “The application and potential non-conservatism of stable isotopes in organic matter source tracing,” Sci. Total Environ., vol. 838, no. May, p. 155946, 2022, doi: 10.1016/j.scitotenv.2022.155946.spa
dc.relation.referencesR. Newton and S. Bottrel, “Bicentennial Review Stable isotopes of carbon and sulphur as indicators of environmental change :,” J. Geol. Soc. London., vol. 164, pp. 691–708, 2015.spa
dc.relation.referencesV. N. Bashkin, Carbon biogeochemical cycle and consequences of climate changes, 2nd ed., no. February. Elsevier Inc., 2018.spa
dc.relation.referencesL. Aristizábal Losada and T. (Doctor en A.--U. de los Andes, “Alimentación y sociedad - paleodieta de una población muisca de la Sabana de Bogotá, el caso de Tibanica - Soacha,” instnameUniversidad los Andes, 2016, [Online]. Available: http://hdl.handle.net/1992/7673.spa
dc.relation.referencesM. I. García-Collado, P. Ricci, R. Catalán Ramos, S. Altieri, C. Lubritto, and J. A. Quirós Castillo, “Palaeodietary reconstruction as an alternative approach to poorly preserved early medieval human bone assemblages: the case of Boadilla (Toledo, Spain),” Archaeol. Anthropol. Sci., vol. 11, no. 8, pp. 3765–3782, 2019, doi: 10.1007/s12520-018-0672-0.spa
dc.relation.referencesM. K. Arroyo, E. Medina, and H. Ziegler, “Distribution and δ 13C Values of Portulacaceae Species of the High Andes in Northern Chile,” Bot. Acta, vol. 103, no. 3, pp. 291–295, 1990, doi: 10.1111/j.1438-8677.1990.tb00163.spa
dc.relation.referencesW. Yamori, K. Hikosaka, and D. A. Way, “Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation,” Photosynth. Res., vol. 119, no. 1–2, pp. 101–117, 2014, doi: 10.1007/s11120-013-9874-6.spa
dc.relation.referencesISO 9001:2015, “ISO 9001: 2015 Quality Management Systems- Requirements,” Int. Stand. Organ., vol. 2015, p. 13, 2015.spa
dc.relation.referencesI. and O. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd editio. 2012.spa
dc.relation.referencesC. Guide, “Traceability in Chemical Measurement A guide to achieving comparable results,” 2003.spa
dc.relation.referencesISO, Guide 35, Reference materials- Guidance for characterization and assessment of homogeneity and stability, vol. 2017. 2017.spa
dc.relation.referencesI. (International O. for Standardization), “ISO Guide 30 : 2015 Reference materials — Selected terms and definitions,” 2015.spa
dc.relation.referencesIAEA, “Reference materials for Stable Isotope analysis,” 2021, 2021. https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx (accessed Jun. 07, 2021).spa
dc.relation.referencesZ. D. Sharp, Principles of Stable Isotope Geochemistry. .spa
dc.relation.referencesC. on A. W. and I. A. IUPAC and Dances, “Atomic Weights of the Emements 1993,” in Atomic Weights of the Emements 1995, 1995, pp. 1561–1573.spa
dc.relation.referencesM. Baskaran, Handbook of Environmental Isotope Geochemistry. Detroit Michigan, 2002.spa
dc.relation.referencesK. C. MISRA, Introduction to Geochemistry Principles and Applications. Tennessee, USA, 2012spa
dc.relation.referencesM. Gröning, “International Stable Isotope Reference Materials,” Handb. Stable Isot. Anal. Tech., vol. 1, pp. 874–906, 2004, doi: 10.1016/B978-044451114-0/50042-9.spa
dc.relation.referencesT. W. Golden and R. D. Murphy, “Report of Investigation,” A Guid. to Forensic Account. Investig., vol. 1, no. January, pp. 363–387, 2015, doi: 10.1002/9781119200048.ch18.spa
dc.relation.referencesW. A. Brand, T. B. Coplen, J. Vogl, M. Rosner, and T. Prohaska, “Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report),” Pure Appl. Chem., vol. 86, no. 3, pp. 425–467, 2014, doi: 10.1515/pac-2013-1023.spa
dc.relation.referencesI. S. O. Guide, I. As, I. S. O. Guide, and C. Url, “Guidance for the in-house preparation of quality control materials (QCMs) GUIDE 80,” 2014, [Online]. Available: www.iso.org.spa
dc.relation.referencesUNODC, “la validación de métodos analíticos y la calibración del equipo utilizado para el análisis de drogas ilícitas en materiales incautados y especímenes biológicos Por,” p. 69, 2010, [Online]. Available: http://srjcstaff.santarosa.edu/~oraola/Assets/APHA_SM_20.pdf.spa
dc.relation.referencesV. Barwick et al., The Fitness for Purpose of Analytical Methods. Eurachem., Second Edi. 2014.spa
dc.relation.referencesM. Thompson, S. L. R. Ellison, and R. Wood, “Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report),” Pure Appl. Chem., vol. 74, no. 5, pp. 835–855, 2002, doi: 10.1351/pac200274050835.spa
dc.relation.referencesS. Rasul, A. M. Kajal, and A. Khan, “Quantifying Uncertainty in Analytical Measurements,” J. Bangladesh Acad. Sci., vol. 41, no. 2, pp. 145–163, 2018, doi: 10.3329/jbas.v41i2.35494.spa
dc.relation.referencesJ. C. F. G. I. M. ISBN, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” Int. Organ. Stand. Geneva ISBN, no. September, 2008, [Online]. Available: https://www.bipm.org/en/committees/jc/jcgm/publications.spa
dc.relation.referencesSGC LAB, “Cómo calcular la incertidumbre del muestreo de una manera fácil empleando el método de la Eurachem,” Octubre, 2020. https://sgc-lab.com/como-calcular-la-incertidumbre-del-muestreo-de-una-manera-facil/ (accessed Aug. 15, 2022).spa
dc.relation.referencesW. A. Schmid and J. L. Martínez, “Guía para estimar la incertidumbre de la medición,” pp. 1–27, 2000.spa
dc.relation.referencesN. D. Martínez, A. M. Rodríguez, A. R. Gutiérrez, M. D. Di Carlo Vitolino, and A. D. los Á. Durán, “Determinación de la incertidumbre del método de análisis de aflatoxinas por HPLC en pasa de uva,” Tecnura, vol. 22, no. 58, pp. 25–36, 2018, doi: 10.14483/22487638.12896.spa
dc.relation.referencesL. G. Carmona Aparicio et al., “Conciliación de inventarios top-down y bottom-up de emisiones de fuentes móviles en Bogotá, Colombia,” Rev. Tecnura, vol. 20, no. 49, p. 59, 2016, doi: 10.14483/udistrital.jour.tecnura.2016.3.a04.spa
dc.relation.referencesINM. Instituto Nacional de Metrología, “¿Qué es un Material de referencia? y ¿Qué es un material de referencia certificado?” https://inm.gov.co/web/servicios/materiales-de-referencia/.spa
dc.relation.referencesI. (International O. for Standardization), “ISO 17034, General requirements for the competence of reference material producers,” vol. 2016, 2016.spa
dc.relation.referencesT. P. J. Linsinger, J. Pauwels, A. M. H. Van Der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001, doi: 10.1007/s007690000261.spa
dc.relation.referencesE. D. F. Guimarães, E. C. P. Do Rego, H. C. M. Cunha, J. M. Rodrigues, J. D. F. Villar, and V. S. Da Cunha, “Homogeneity study for certification of a candidate reference material for polycyclic aromatic hydrocarbons,” 19th IMEKO World Congr. 2009, vol. 4, no. January, pp. 2377–2381, 2009.spa
dc.relation.referencesA. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3–4, pp. 359–361, 1998, doi: 10.1007/s002160050711.spa
dc.relation.referencesInternational Atomic Energy Agency (IAEA), “Reference Material for δ13C and δ2H. REFERENCE SHEET IAEA-CH-7,” 2022.spa
dc.relation.referencesElemental Microanalysis Ltd, “Certificate of Analysis IRMS Certified Reference Material EMA-P2,” 2012. [Online]. Available: www.sigma-aldrich.com.spa
dc.relation.referencesInternational Atomic Energy Agency (IAEA), “Reference sheet USGS24,” 2000.spa
dc.relation.referencesInstituto de Salud Pública de Chile, “Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos",” 2010.spa
dc.relation.referencesAmerican Standard Testing Material (ASTM), “ASTM D3172-13(2021)e1 Standard Practice for Proximate Analysis of Coal and Coke,” Annual Book of ASTM Standards, vol. 13. pp. 3174–3175, 2013.spa
dc.relation.referencesAmerican Standard Testing Material (ASTM), “ASTM D7582-15 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis,” Program, vol. i, no. 3. pp. 1–9, 2012.spa
dc.relation.referencesAmerican Standard Testing Material (ASTM), “ASTM D4239-18e1 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion.” pp. 4–6, 2018.spa
dc.relation.referencesAmerican Standard Testing Material (ASTM), “ASTM D5865/D5865M-19 Standard Test Method for Gross Calorific Value of Coal and Coke,” Astm D 5865 – 03, vol. 5, pp. 1–11, 2003.spa
dc.relation.referencesAmerican Standard Testing Material (ASTM), “ASTM D5373-21 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” vol. 552, pp. 1–11, 2014, [Online]. Available: http://www.astm.org/Standards/D5373.htm.spa
dc.relation.referencesR. Shimizu, H. Masaki, and S. Yasuike, “Simple and rapid quantification of chromium, arsenic, and selenium in bituminous coal samples using a desktop energy dispersive X-ray fluorescence analyzer,” Appl. Radiat. Isot., vol. 176, no. July, p. 109877, 2021, doi: 10.1016/j.apradiso.2021.109877.spa
dc.relation.referencesI. (International O. for Standardization), “GUIDE 80 Guidance for the in-house preparation of quality control materials (QCMs).” 2014.spa
dc.relation.referencesInternational Atomic Energy Agency (IAEA), “Reference Materials Website for IAEA Reference Products.” https://nucleus.iaea.org/sites/referencematerials/SitePages/Home.aspx (accessed Oct. 26, 2022).spa
dc.relation.referencesR. Barrera Zapata, J. F. Pérez Bayer, and C. Salazar Jiménez, “Colombian coals: classification and thermochemical characterization for energy applications,” Rev. ION, vol. 27, no. 2, pp. 43–54, 2014.spa
dc.relation.referencesnternational Atomic Energy Agency (IAEA), “Reference Materials Characterized for Stable Isotope Ratios.” https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx#InplviewHashf8b9c06a-d02e-4b74-b4f1-6312bc2bc774= (accessed Oct. 13, 2022).spa
dc.relation.referencesR. N. & S. BOTTRELL, “Stable isotopes of carbon and sulphur as indicators of environmental change: past and present,” Earth, vol. 164, pp. 691–708, 2007.spa
dc.relation.referencesD. Ding, G. Liu, X. Sun, and R. Sun, “Journal of Asian Earth Sciences Response of carbon isotopic compositions of Early-Middle Permian coals in North China to palaeo-climate change,” J. Asian Earth Sci., vol. 151, no. October 2017, pp. 190–196, 2018, doi: 10.1016/j.jseaes.2017.10.043.spa
dc.relation.referencesS. Africa and J. M. Smith, “A COMPARISON OF CHARCOAL AND STABLE CARBON ISOTOPE RESULTS FOR THE CALEDON RIVER VALLEY , SOUTHERN AFRICA , FOR THE PERIOD 13 500-5000 YR BP,” vol. 58, no. 177, pp. 1–5, 2014.spa
dc.relation.referencesA. Hentschel, J. S. Esterle, S. D. Golding, and D. V. Pacey, “Petrologic and stable isotopic study of the Walloon Coal Measures, Surat Basin, Queensland: Peat accumulation under changing climate and base level,” Int. J. Coal Geol., vol. 160–161, pp. 11–27, 2016, doi: 10.1016/j.coal.2016.04.010.spa
dc.relation.referencesM. W. Rahman, S. M. Rimmer, H. D. Rowe, and W. W. Huggett, “Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence for thermogenic methane generation,” Chem. Geol., vol. 453, pp. 1–11, 2017, doi: 10.1016/j.chemgeo.2017.02.012.spa
dc.relation.referencesY. Liu, G. Liu, B. Yousaf, J. Zhang, and L. Zhou, “Carbon fractionation and stable carbon isotopic fingerprint of road dusts near coal power plant with emphases on coal-related source apportionment,” Ecotoxicol. Environ. Saf., vol. 202, no. June, p. 110888, 2020, doi: 10.1016/j.ecoenv.2020.110888.spa
dc.relation.referencesM. J. Kotarba and J. L. Clayton, “A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales,” Int. J. Coal Geol., vol. 55, no. 2–4, pp. 73–94, 2003, doi: 10.1016/S0166-5162(03)00082-X.spa
dc.relation.referencesM. Panda, S. M. Equeenuddin, and D. Mohanty, “Organic petrography and stable isotopic characteristics of Permian Talcher coal, India: Implications on depositional environment,” Int. J. Coal Geol., vol. 264, no. December, 2022, doi: 10.1016/j.coal.2022.104130.spa
dc.relation.referencesT. Kanduč, M. Markič, S. Zavšek, and J. McIntosh, “Carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes,” Int. J. Coal Geol., vol. 89, no. 1, pp. 70–83, 2012, doi: 10.1016/j.coal.2011.08.008.spa
dc.relation.referencesM. K. Bertil Magnusson, Teemu Näykki, Håvard Hovind, “HANDBOOK FOR CALCULATION OF MEASUREMENT UNCERTAINTY IN Håvard Hovind,” 2003.spa
dc.relation.referencesJ. H. Lee, J. H. Choi, J. S. Youn, Y. J. Cha, W. Song, and A. J. Park, “Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty,” Clin. Chem. Lab. Med., vol. 53, no. 7, pp. 1025–1032, 2015, doi: 10.1515/cclm-2014-0801.spa
dc.relation.referencesM. 20742 Department of Physics - University of Maryland - College Park, “Random vs Systematic Error.” https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorAnalysis.html (accessed Nov. 05, 2022).spa
dc.relation.referencesB. S. K. Kumar, V. V. S. S. Sarma, and D. Cardinal, “Tracing terrestrial versus marine sources of dissolved organic carbon in the largest monsoonal Godavari estuary in India using stable carbon isotopes,” Estuar. Coast. Shelf Sci., vol. 276, no. October, 2022, doi: 10.1016/j.ecss.2022.108004.spa
dc.relation.referencesA. S. Raghavendra, B. Sunil, and R. B. Bapatla, “C3 Plants,” Encycl. Appl. Plant Sci., vol. 1, pp. 44–51, 2016, doi: 10.1016/B978-0-12-394807-6.00090-3.spa
dc.relation.referencesY. Dong et al., “Paleozoic carbon cycle dynamics: Insights from stable carbon isotopes in marine carbonates and C3 land plants,” Earth-Science Rev., vol. 222, no. November, 2021, doi: 10.1016/j.earscirev.2021.103813.spa
dc.relation.referencesG. Gleixner, N. Poirier, R. Bol, and J. Balesdent, “Molecular dynamics of organic matter in a cultivated soil,” Org. Geochem., vol. 33, no. 3, pp. 357–366, 2002, doi: 10.1016/S0146-6380(01)00166-8.spa
dc.relation.referencesD. Dortzbach, M. G. Pereira, É. Blainski, and A. P. González, “Estoque de c e abundância natural de 13c em razão da conversão de áreas de floresta e pastagem em bioma mata atlântica,” Rev. Bras. Cienc. do Solo, vol. 39, no. 6, pp. 1643–1660, 2015, doi: 10.1590/01000683rbcs20140531.spa
dc.relation.referencesC. A. Raines, “Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies,” Plant Physiol., vol. 155, no. 1, pp. 36–42, 2011, doi: 10.1104/pp.110.168559.spa
dc.relation.referencesKhan Academy, “Photorespiration: C3, C4, and CAM plants.” https://www.khanacademy.org/science/biology/photosynthesis-in-plants/photorespiration--c3-c4-cam-plants/a/c3-c4-and-cam-plants-agriculture (accessed Sep. 13, 2022).spa
dc.relation.referencesL. Stryer, Biochemmistry, Fourth Edition, Fourth Edi. New York: 1995, 1995.spa
dc.relation.referencesK. R. Hanson and R. B. Peterson, “The stoichiometry of photorespiration during C3-photosynthesis is not fixed: Evidence from combined physical and stereochemical methods,” Arch. Biochem. Biophys., vol. 237, no. 2, pp. 300–313, 1985, doi: 10.1016/0003-9861(85)90281-4.spa
dc.relation.referencesS. Schulze, P. Westhoff, and U. Gowik, “Glycine decarboxylase in C3, C4 and C3-C4 intermediate species,” Curr. Opin. Plant Biol., vol. 31, pp. 29–35, 2016, doi: 10.1016/j.pbi.2016.03.011.spa
dc.relation.referencesA. Scott Holaday, S. Talkmitt, and M. E. Doohan, “Anatomical and enzymic studies of leaves of a C3 × C4 Flaveria F1 hybrid exhibiting reduced photorespiration,” Plant Sci., vol. 41, no. 1, pp. 31–39, 1985, doi: 10.1016/0168-9452(85)90062-7.spa
dc.relation.referencesR. ISHII, T. TAKEHARA, Y. MURATA, and S. MIYACHI, Effects of Light Intensity on the Rates of Photosynthesis and Photorespiration in C3 and C4 Plants. ACADEMIC PRESS, INC., 1977.spa
dc.relation.referencesZ. S. Zhang et al., “Contribution of the Alternative Respiratory Pathway to PSII Photoprotection in C3 and C4 Plants,” Mol. Plant, vol. 10, no. 1, pp. 131–142, 2017, doi: 10.1016/j.molp.2016.10.004.spa
dc.relation.referencesL. S. Jeremy M. Berg, John L. Tymoczko, BIOCHEMISTRY FIFTH EDITION, FIFTH EDIT. New York, 2001.spa
dc.relation.referencesR. F. Sage, P. A. Christin, and E. J. Edwards, “The C 4 plant lineages of planet Earth,” J. Exp. Bot., vol. 62, no. 9, pp. 3155–3169, 2011, doi: 10.1093/jxb/err048.spa
dc.relation.referencesJ. R. E. á T. E. C. B. R. Helliker, “C4 photosynthesis, atmospheric CO2, and climate,” Ecologia, vol. 112, pp. 285–299, 1997.spa
dc.relation.referencesMARY LUZ PEÑA URUEÑA, “CARACTERIZACIÓN DE CENIZAS DE ALGUNOS CARBONES COLOMBIANOS IN SITU POR RETRODISPERSIÓN GAMMA-GAMMA MARY,” Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesI. Journal and C. Geology, “First insights into mineralogy , geochemistry , and isotopic signatures of the Upper Triassic high-sulfur coals from the Thai Nguyen Coal field , NE Vietnam,” vol. 261, no. September, pp. 2022–2023, 2022.spa
dc.relation.referencesY. Lin, S. Wang, H. H. Schobert, Q. Guo, and X. Li, “Sulfur and nitrogen isotopic composition of Late Permian bark coals: Source identification and associated environmental assessment,” Org. Geochem., vol. 164, no. February, 2022, doi: 10.1016/j.orggeochem.2022.104369.spa
dc.relation.referencesN. Islam, B. K. Saikia, C. H. Sampaio, T. J. Crissien, and L. F. O. Silva, “Petrography and geochemistry of exported Colombian coals : Implications from correlation and regression analyses,” Energy Geosci., vol. 2, 2021.spa
dc.relation.referencesE. GALLEGO CARMONA and J. V. REALPE SALCEDO, “Poder calorífico de carbones colombianos a partir de análisis próximo,” pp. 1–78, 2015.spa
dc.relation.referencesIGME, “Abundancia y fracionamiento de los isótopos estables,” Inst. Geológico y Min. España.spa
dc.relation.referencesA. N. De Hidrocarburos and H. Office, “Análisis de tecnología y estrategia de promoción para desarrollos de Gas Metano Asociado al Carbón ( CBM ) en Colombia Fase I : Caracterización de Cuencas de CBM en Colombia,” no. 1, 2010.spa
dc.relation.referencesJ. C. M. James N. Miller, Estadística y Quimiometría para Química Analítica, 4th ed. Madrid, 2002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.decsFenómenos químicosspa
dc.subject.decsChemical Phenomenaeng
dc.subject.lembCiclos biogeoquímicosspa
dc.subject.lembBiogeochemical cycleseng
dc.subject.lembCiclo del carbono (biogeoquímica)spa
dc.subject.lembCarbon cycle (biogeochemistry)eng
dc.subject.proposalIsótopos establesspa
dc.subject.proposalIRMS (Espectrometría de Masas de Relaciones Isotópicas)spa
dc.subject.proposalCarbónspa
dc.subject.proposalValidaciónspa
dc.subject.proposalMaterial de referenciaspa
dc.subject.proposalStables Isotopeseng
dc.subject.proposalIRMS (Isotopic Ratio Mass Spectrometry)eng
dc.subject.proposalCarboneng
dc.subject.proposalValidationeng
dc.subject.proposalReference Materialeng
dc.titleEstudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formaciónspa
dc.title.translatedIsotopic study of carbon (δ13C) in colombian coals and its relationship with physicochemical properties for the identification of biogeochemical processes associated with their formation environmentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52861348.2023.pdf
Tamaño:
3.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: