Potenciales evocados durante la discriminación de movimiento en entorno intermodal asociada a envejecimiento

dc.contributor.advisorReyes Gavilán, Pablo Alexander
dc.contributor.advisorSantamaria, Hernando
dc.contributor.authorRivero-Cordero, Javier
dc.contributor.cvlacRivero, Javier Eduardo [0000030198]spa
dc.contributor.orcidRivero-Cordero, Javier [0000-0002-2651-9586]spa
dc.date.accessioned2025-04-21T20:32:00Z
dc.date.available2025-04-21T20:32:00Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, gráficas
dc.description.abstractEn nuestro día a día nuestro cerebro se ve inmerso en un entorno interactivo dinámico que demandan más de un sentido sensorial entrante y la repuesta de movimiento consecuente, esto exige una capacidad sofisticada de activación simultanea sincrónica y eficiente de diferentes redes neuronales; los adultos mayores no son ajenos a ello e incluso pueden encontrar mayores retos dadas modificaciones por envejecimiento. Siendo una población claramente creciente, resulta de interés el conocer mejor sus capacidades adaptativas. Razón por la cual el presente proyecto de tesis plantea como objetivo describir las respuestas de potenciales evocados asociados a envejecimiento en tareas de discriminación del movimiento dentro de ambientes intermodales. Para ello se realizó un estudio de diseño factorial analítico de 2x2 en el que se cruzaron en un nivel de edad (16 adultos jóvenes (AJ) y 15 adultos mayores (AM)) y un nivel de estimulación intermodal audiovisual (congruente e incongruente), explorando en su resultante una variable dependiente de discriminación de movimiento mediante tareas de escritorio validadas como “Random Kinematic Dots” y sus correspondientes potenciales evocados (ERP) registrados mediante electroencefalografía (EEG). El análisis de datos se realizó de acuerdo a las tendencias de datos comportamentales (aciertos y tiempos de reacción durante la prueba) y los datos de ERP fueron analizados a través de la toolbox EEGlab del software MatLab en 8 clústeres por cada hemisferio y en las ventanas temporales de componentes P80, PN130 y PN 320. Se encontró menor eficiencia por parte de AM con respecto a AJ, presentando menor cantidad de aciertos tanto en estimulo congruente como incongruente. Esto se refuerza en las diferencias de ERP en donde los AM presentaron menor amplitud de onda y mayor latencia de repolarización especialmente en potenciales intermedios como PN130 y PN320 de zonas occipito-temporales y frontales, sin diferencias significativas para potenciales tempranos como P80. Se demuestran así efectos de envejecimiento en las estrategias de procesamiento de estímulos intermodales audiovisuales como la oscilación o sincronía neuronal, con mayores dificultades para AM en la discriminación de movimiento. (Texto tomado de la fuente)spa
dc.description.abstractIn our daily life, our brain is immersed in a dynamic interactive environment that demands more than one incoming sensory sense and the consequent movement response. This requires a sophisticated capacity for simultaneous, synchronous and efficient activation of different neural networks. Older adults are no strangers to this and may even encounter greater challenges given the changes caused by aging. As a clearly growing population, it is of interest to better understand their adaptive capacities. For this reason, the present thesis project aims to describe the responses of evoked potentials associated with aging in movement discrimination tasks within intermodal environments. For this purpose, a 2x2 analytical factorial design study was carried out in which they were crossed at an age level (16 young adults (YA) and 15 older adults (OA)) and a level of audiovisual intermodal stimulation (congruent and incongruent), exploring in its result a dependent variable of movement discrimination through validated desktop tasks such as “Random Kinematic Dots” and their corresponding event related potentials (ERP) recorded by electroencephalography (EEG). The data analysis was carried out according to the trends of behavioral data (correct answers and reaction times during the test) and ERP data were analyzed through the EEGlab toolbox on MatLab software in 8 clusters for each hemisphere and for components P80, PN130 and PN 320. Lower efficiency was found on the part of AM with respect to AJ, presenting a lower number of correct answers in both congruent and incongruent stimuli. This is reinforced by the ERP differences, where AMs presented lower wave amplitude and higher repolarization latency, especially in intermediate potentials such as PN130 and PN320 of occipito-temporal and frontal areas, with no significant differences for early potentials such as P80. This demonstrates the effects of aging on strategies for processing intermodal audiovisual stimuli such as neuronal oscillation or synchrony, with greater difficulties for AMs in motion discrimination.eng
dc.description.curricularareaMedicina.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Neurocienciasspa
dc.description.researchareaNeurociencia cognitivaspa
dc.description.researchareaNeurociencia comportamental humanaspa
dc.format.extent82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88008
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.indexedN/Aspa
dc.relation.referencesBeer, A. L., & Röder, B. (2004). Attention to motion enhances processing of both visual and auditory stimuli: An event-related potential study. Cognitive Brain Research, 18(2), 205–225. https://doi.org/10.1016/j.cogbrainres.2003.10.004spa
dc.relation.referencesBeer, A. L., & Röder, B. (2005). Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. The European Journal of Neuroscience, 21(4), 1116–1130. https://doi.org/10.1111/J.1460-9568.2005.03927.Xspa
dc.relation.referencesBerman, R. A., & Colby, C. L. (2002). A uditory and visual attention modulate motion processing in area MT1. In Cognitive Brain Research (Vol. 14). www.elsevier.com/locate/bresspa
dc.relation.referencesBillino, J., & Pilz, K. S. (2019). Motion perception as a model for perceptual aging. Journal of Vision, 19(4). https://doi.org/10.1167/19.4.3spa
dc.relation.referencesCate, A. D., Herron, T. J., Kang, X., Yund, E. W., & Woods, D. L. (2012). Intermodal attention modulates visual processing in dorsal and ventral streams. NeuroImage, 63(3), 1295–1304. https://doi.org/10.1016/j.neuroimage.2012.08.026spa
dc.relation.referencesCreem-Regehr, S. H. (2009). Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiology of Learning and Memory, 91(2), 166–171. https://doi.org/10.1016/J.NLM.2008.10.004spa
dc.relation.referencesFreedman, D. J., & Ibos, G. (2018). An Integrative Framework for Sensory, Motor, and Cognitive Functions of the Posterior Parietal Cortex. Neuron, 97(6), 1219–1234. https://doi.org/10.1016/J.NEURON.2018.01.044spa
dc.relation.referencesGao, C., Green, J. J., Yang, X., Oh, S., Kim, J., & Shinkareva, S. V. (2023). Audiovisual integration in the human brain: a coordinate-based meta-analysis. Cerebral Cortex, 33(9), 5574–5584. https://doi.org/10.1093/cercor/bhac443spa
dc.relation.referencesGuerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2010). The Role of Sensory Modality in Age-Related Distraction: A Critical Review and a Renewed View. Psychological Bulletin, 136(6), 975–1022. https://doi.org/10.1037/a0020731spa
dc.relation.referencesHadad, B., Schwartz, S., Maurer, D., & Lewis, T. L. (2015). Motion perception: A review of developmental changes and the role of early visual experience. In Frontiers in Integrative Neuroscience (Vol. 9, Issue SEP, pp. 1–18). Frontiers Research Foundation. https://doi.org/10.3389/fnint.2015.00049spa
dc.relation.referencesHarada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. In Clinics in Geriatric Medicine (Vol. 29, Issue 4, pp. 737–752). https://doi.org/10.1016/j.cger.2013.07.002spa
dc.relation.referencesHidaka, S., Higuchi, S., Teramoto, W., & Sugita, Y. (2017). Neural mechanisms underlying sound-induced visual motion perception: An fMRI study. Acta Psychologica, 178, 66–72. https://doi.org/10.1016/j.actpsy.2017.05.013spa
dc.relation.referencesHillyard, S. A., Störmer, V. S., Feng, W., Martinez, A., & McDonald, J. J. (2016). Cross-modal orienting of visual attention. Neuropsychologia, 83, 170–178. https://doi.org/10.1016/j.neuropsychologia.2015.06.003spa
dc.relation.referencesHirst, R. J., Cassarino, M., Kenny, R. A., Newell, F. N., & Setti, A. (2021). Aging, Neuropsychology, and Cognition A Journal on Normal and Dysfunctional Development ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nanc20 Urban and rural environments differentially shape multisensory perception in ageing. https://doi.org/10.1080/13825585.2020.1859084spa
dc.relation.referencesJones, S. A., Beierholm, U., Meijer, D., & Noppeney, U. (2019). Older adults sacrifice response speed to preserve multisensory integration performance. Neurobiology of Aging, 84, 148–157. https://doi.org/10.1016/J.NEUROBIOLAGING.2019.08.017spa
dc.relation.referencesJones, S. A., & Noppeney, U. (2021). Ageing and multisensory integration: A review of the evidence, and a computational perspective. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 138, 1–23. https://doi.org/10.1016/J.CORTEX.2021.02.001spa
dc.relation.referencesKavcic, V., Martin, T., & Zalar, B. (2013). Aging effects on visual evoked potentials (VEPs) for motion direction discrimination. International Journal of Psychophysiology, 89(1), 78–87. https://doi.org/10.1016/j.ijpsycho.2013.05.012spa
dc.relation.referencesLi, S., Zhang, T., Zu, G., Wang, A., & Zhang, M. (2023). Electrophysiological evidence of crossmodal correspondence between auditory pitch and visual elevation affecting inhibition of return. Brain and Cognition, 171. https://doi.org/10.1016/j.bandc.2023.106075spa
dc.relation.referencesLiu, B., Wang, Z., & Jin, Z. (2009). The integration processing of the visual and auditory information in videos of real-world events: An ERP study. Neuroscience Letters, 461(1), 7–11. https://doi.org/10.1016/j.neulet.2009.05.082spa
dc.relation.referencesMozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., & Laurienti, P. J. (2012). Multisensory Integration and Aging. The Neural Bases of Multisensory Processes, 381–392. https://doi.org/10.1201/b11092-25spa
dc.relation.referencesNagy, A., Eördegh, G., Paróczy, Z., Márkus, Z., & Benedek, G. (2006). Multisensory integration in the basal ganglia. European Journal of Neuroscience, 24(3), 917–924. https://doi.org/10.1111/J.1460-9568.2006.04942.Xspa
dc.relation.referencesNishida, S., Kawabe, T., Sawayama, M., & Fukiage, T. (2018). Motion Perception: From Detection to Interpretation. Https://Doi.Org/10.1146/Annurev-Vision-091517-034328, 4, 501–523. https://doi.org/10.1146/ANNUREV-VISION-091517-034328spa
dc.relation.referencesOgawa, A., & Macaluso, E. (2013). Audio-visual interactions for motion perception in depth modulate activity in visual area V3A. NeuroImage, 71, 158–167. https://doi.org/10.1016/j.neuroimage.2013.01.012spa
dc.relation.referencesOrganización Mundial de la Salud. (2015). Resumen Informe mundial sobre el envejecimiento y la salud.spa
dc.relation.referencesOrganización Mundial de la Salud. (2021). Decada del envejecimiento saludable informe de referencia, resumen.spa
dc.relation.referencesOrtega Escobar, J. (2014). Evolución del cerebro y la cognición. Neurociencia Cognitiva, 2014, ISBN 978-84-15550-45-7, Págs. 57-74, 57–74. https://dialnet.unirioja.es/servlet/articulo?codigo=4985546spa
dc.relation.referencesPedraza, O. L., Salazar, A. M., Sierra, F. A., Soler, D., Castro, J., Castillo, P., Hernandez, A., & Piñeros, C. (2016). Confiabilidad, validez de criterio y discriminante del Montreal Cognitive Assessment (MoCA) test, en un grupo de adultos de Bogotá. Acta Medica Colombiana, 4.spa
dc.relation.referencesPolítica Pública Nacional de Envejecimiento y Vejez 2022 - 2031 , Pub. L. No. 681, 15 (2022).spa
dc.relation.referencesReuter, E. M., Booms, A., & Leow, L. A. (2022). Using EEG to study sensorimotor adaptation. In Neuroscience and Biobehavioral Reviews (Vol. 134). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2021.104520spa
dc.relation.referencesRussell, M. K. (2022). Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. In Frontiers in Psychology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2022.831670spa
dc.relation.referencesScurry, A. N., Dutcher, D., Werner, J. S., & Jiang, F. (2020). Age-Related Effects on Cross-Modal Duration Perception. Department of Health & Human Services USA, 32(8), 693–714. https://doi.org/10.6084/m9.figshare.9944027spa
dc.relation.referencesSenkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008a). Crossmodal binding through neural coherence: implications for multisensory processing. In Trends in Neurosciences (Vol. 31, Issue 8, pp. 401–409). https://doi.org/10.1016/j.tins.2008.05.002spa
dc.relation.referencesSenkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008b). Crossmodal binding through neural coherence: implications for multisensory processing. In Trends in Neurosciences (Vol. 31, Issue 8, pp. 401–409). https://doi.org/10.1016/j.tins.2008.05.002spa
dc.relation.referencesSepulveda, J. A., Anderson, A. J., Wood, J. M., & McKendrick, A. M. (2020). Differential aging effects in motion perception tasks for central and peripheral vision. Journal of Vision, 20(5). https://doi.org/10.1167/jov.20.5.8spa
dc.relation.referencesSetti, A., Finnigan, S., Sobolewski, R., McLaren, L., Robertson, I. H., Reilly, R. B., Anne Kenny, R., & Newell, F. N. (2011). Audiovisual temporal discrimination is less efficient with aging: An event-related potential study. NeuroReport, 22(11), 554–558. https://doi.org/10.1097/WNR.0b013e328348c731spa
dc.relation.referencesShams, L., & Kim, R. (2010). Crossmodal influences on visual perception. In Physics of Life Reviews (Vol. 7, Issue 3, pp. 269–284). https://doi.org/10.1016/j.plrev.2010.04.006spa
dc.relation.referencesSnowden, R. J., & Kavanagh, E. (2006). Motion perception in the ageing visual system: Minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35(1), 9–24. https://doi.org/10.1068/p5399spa
dc.relation.referencesSperdin, H. F., Cappe, C., & Murray, M. M. (2010). The behavioral relevance of multisensory neural response interactions. In Frontiers in Neuroscience (Vol. 4, Issue MAY). https://doi.org/10.3389/neuro.01.009.2010spa
dc.relation.referencesStein, B. E., Labos, E., & Kruger, L. (1973a). Determinants of response latency in neurons of superior colliculus in kittens. Journal of Neurophysiology, 36(4), 680–689. https://doi.org/10.1152/JN.1973.36.4.680spa
dc.relation.referencesStein, B. E., Labos, E., & Kruger, L. (1973b). Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. J Neurophysiol . , 36, 667–679.spa
dc.relation.referencesStein, B. E., & Rowland, B. A. (2019). Neural development of multisensory integration. In Multisensory Perception: From Laboratory to Clinic (pp. 57–87). Elsevier. https://doi.org/10.1016/B978-0-12-812492-5.00003-6spa
dc.relation.referencesStein, B. E., Stanford, T. R., & Rowland, B. A. (2009). The neural basis of multisensory integration in the midbrain: Its organization and maturation. Hearing Research, 258(1–2), 4–15. https://doi.org/10.1016/j.heares.2009.03.012spa
dc.relation.referencesTalsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: Effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62(2), 249–261. https://doi.org/10.1016/j.ijpsycho.2006.04.006spa
dc.relation.referencesTorrades, S. (2004). Aspectos neurológicos del envejecimiento. La lucha para retrasar el deterioro cerebral. ÁMBITO FARMACÉUTICO. Neurofisiología, 23. https://www.elsevier.es/es-revista-offarm-4-articulo-aspectos-neurologicos-del-envejecimiento-13067353spa
dc.relation.referencesVentura-Leon, J. L., Caycho-Rodríguez, T., & Barboza-Palomino, M. (2020). ¿Cuántos participantes son necesarios?: Un método para estimar el tamaño muestral en SEM.spa
dc.relation.referencesVroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. In Attention, Perception, and Psychophysics (Vol. 72, Issue 4, pp. 871–884). https://doi.org/10.3758/APP.72.4.871spa
dc.relation.referencesWallace, M. T., & Stein, B. E. (1997). Development of Multisensory Neurons and Multisensory Integration in Cat Superior Colliculus. Journal of Neuroscience, 17(7), 2429–2444. https://doi.org/10.1523/JNEUROSCI.17-07-02429.1997spa
dc.relation.referencesWolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample Size Requirements for Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. Educational and Psychological Measurement, 73(6), 913–934. https://doi.org/10.1177/0013164413495237spa
dc.relation.referencesYankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. In Annual Review of Pathology: Mechanisms of Disease (Vol. 3, pp. 41–66). https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc150 - Psicología::152 - Percepción sensorial, movimiento, emociones, impulsos fisiológicosspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.lembEnvejecimientospa
dc.subject.lembAgingeng
dc.subject.lembElectroencefalografíaspa
dc.subject.lembElectroencephalographyeng
dc.subject.proposalDiscriminación de movimientospa
dc.subject.proposalAtención intermodalspa
dc.subject.proposalIntegración multisensorialspa
dc.subject.proposalEnvejecimientospa
dc.subject.proposalEEG
dc.subject.proposalMotion discriminationeng
dc.subject.proposalIntermodal attentioneng
dc.subject.proposalMultisensory integrationeng
dc.subject.proposalAgingeng
dc.subject.wikidataPotencial evocadospa
dc.subject.wikidataEvoked potentialseng
dc.titlePotenciales evocados durante la discriminación de movimiento en entorno intermodal asociada a envejecimientospa
dc.title.translatedEvoked related potentials during motion discrimination in an intermodal environment associated with agingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Javier Rivero.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: