Potenciales evocados durante la discriminación de movimiento en entorno intermodal asociada a envejecimiento
dc.contributor.advisor | Reyes Gavilán, Pablo Alexander | |
dc.contributor.advisor | Santamaria, Hernando | |
dc.contributor.author | Rivero-Cordero, Javier | |
dc.contributor.cvlac | Rivero, Javier Eduardo [0000030198] | spa |
dc.contributor.orcid | Rivero-Cordero, Javier [0000-0002-2651-9586] | spa |
dc.date.accessioned | 2025-04-21T20:32:00Z | |
dc.date.available | 2025-04-21T20:32:00Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, gráficas | |
dc.description.abstract | En nuestro día a día nuestro cerebro se ve inmerso en un entorno interactivo dinámico que demandan más de un sentido sensorial entrante y la repuesta de movimiento consecuente, esto exige una capacidad sofisticada de activación simultanea sincrónica y eficiente de diferentes redes neuronales; los adultos mayores no son ajenos a ello e incluso pueden encontrar mayores retos dadas modificaciones por envejecimiento. Siendo una población claramente creciente, resulta de interés el conocer mejor sus capacidades adaptativas. Razón por la cual el presente proyecto de tesis plantea como objetivo describir las respuestas de potenciales evocados asociados a envejecimiento en tareas de discriminación del movimiento dentro de ambientes intermodales. Para ello se realizó un estudio de diseño factorial analítico de 2x2 en el que se cruzaron en un nivel de edad (16 adultos jóvenes (AJ) y 15 adultos mayores (AM)) y un nivel de estimulación intermodal audiovisual (congruente e incongruente), explorando en su resultante una variable dependiente de discriminación de movimiento mediante tareas de escritorio validadas como “Random Kinematic Dots” y sus correspondientes potenciales evocados (ERP) registrados mediante electroencefalografía (EEG). El análisis de datos se realizó de acuerdo a las tendencias de datos comportamentales (aciertos y tiempos de reacción durante la prueba) y los datos de ERP fueron analizados a través de la toolbox EEGlab del software MatLab en 8 clústeres por cada hemisferio y en las ventanas temporales de componentes P80, PN130 y PN 320. Se encontró menor eficiencia por parte de AM con respecto a AJ, presentando menor cantidad de aciertos tanto en estimulo congruente como incongruente. Esto se refuerza en las diferencias de ERP en donde los AM presentaron menor amplitud de onda y mayor latencia de repolarización especialmente en potenciales intermedios como PN130 y PN320 de zonas occipito-temporales y frontales, sin diferencias significativas para potenciales tempranos como P80. Se demuestran así efectos de envejecimiento en las estrategias de procesamiento de estímulos intermodales audiovisuales como la oscilación o sincronía neuronal, con mayores dificultades para AM en la discriminación de movimiento. (Texto tomado de la fuente) | spa |
dc.description.abstract | In our daily life, our brain is immersed in a dynamic interactive environment that demands more than one incoming sensory sense and the consequent movement response. This requires a sophisticated capacity for simultaneous, synchronous and efficient activation of different neural networks. Older adults are no strangers to this and may even encounter greater challenges given the changes caused by aging. As a clearly growing population, it is of interest to better understand their adaptive capacities. For this reason, the present thesis project aims to describe the responses of evoked potentials associated with aging in movement discrimination tasks within intermodal environments. For this purpose, a 2x2 analytical factorial design study was carried out in which they were crossed at an age level (16 young adults (YA) and 15 older adults (OA)) and a level of audiovisual intermodal stimulation (congruent and incongruent), exploring in its result a dependent variable of movement discrimination through validated desktop tasks such as “Random Kinematic Dots” and their corresponding event related potentials (ERP) recorded by electroencephalography (EEG). The data analysis was carried out according to the trends of behavioral data (correct answers and reaction times during the test) and ERP data were analyzed through the EEGlab toolbox on MatLab software in 8 clusters for each hemisphere and for components P80, PN130 and PN 320. Lower efficiency was found on the part of AM with respect to AJ, presenting a lower number of correct answers in both congruent and incongruent stimuli. This is reinforced by the ERP differences, where AMs presented lower wave amplitude and higher repolarization latency, especially in intermediate potentials such as PN130 and PN320 of occipito-temporal and frontal areas, with no significant differences for early potentials such as P80. This demonstrates the effects of aging on strategies for processing intermodal audiovisual stimuli such as neuronal oscillation or synchrony, with greater difficulties for AMs in motion discrimination. | eng |
dc.description.curriculararea | Medicina.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Neurociencias | spa |
dc.description.researcharea | Neurociencia cognitiva | spa |
dc.description.researcharea | Neurociencia comportamental humana | spa |
dc.format.extent | 82 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88008 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Neurociencias | spa |
dc.relation.indexed | N/A | spa |
dc.relation.references | Beer, A. L., & Röder, B. (2004). Attention to motion enhances processing of both visual and auditory stimuli: An event-related potential study. Cognitive Brain Research, 18(2), 205–225. https://doi.org/10.1016/j.cogbrainres.2003.10.004 | spa |
dc.relation.references | Beer, A. L., & Röder, B. (2005). Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study. The European Journal of Neuroscience, 21(4), 1116–1130. https://doi.org/10.1111/J.1460-9568.2005.03927.X | spa |
dc.relation.references | Berman, R. A., & Colby, C. L. (2002). A uditory and visual attention modulate motion processing in area MT1. In Cognitive Brain Research (Vol. 14). www.elsevier.com/locate/bres | spa |
dc.relation.references | Billino, J., & Pilz, K. S. (2019). Motion perception as a model for perceptual aging. Journal of Vision, 19(4). https://doi.org/10.1167/19.4.3 | spa |
dc.relation.references | Cate, A. D., Herron, T. J., Kang, X., Yund, E. W., & Woods, D. L. (2012). Intermodal attention modulates visual processing in dorsal and ventral streams. NeuroImage, 63(3), 1295–1304. https://doi.org/10.1016/j.neuroimage.2012.08.026 | spa |
dc.relation.references | Creem-Regehr, S. H. (2009). Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiology of Learning and Memory, 91(2), 166–171. https://doi.org/10.1016/J.NLM.2008.10.004 | spa |
dc.relation.references | Freedman, D. J., & Ibos, G. (2018). An Integrative Framework for Sensory, Motor, and Cognitive Functions of the Posterior Parietal Cortex. Neuron, 97(6), 1219–1234. https://doi.org/10.1016/J.NEURON.2018.01.044 | spa |
dc.relation.references | Gao, C., Green, J. J., Yang, X., Oh, S., Kim, J., & Shinkareva, S. V. (2023). Audiovisual integration in the human brain: a coordinate-based meta-analysis. Cerebral Cortex, 33(9), 5574–5584. https://doi.org/10.1093/cercor/bhac443 | spa |
dc.relation.references | Guerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2010). The Role of Sensory Modality in Age-Related Distraction: A Critical Review and a Renewed View. Psychological Bulletin, 136(6), 975–1022. https://doi.org/10.1037/a0020731 | spa |
dc.relation.references | Hadad, B., Schwartz, S., Maurer, D., & Lewis, T. L. (2015). Motion perception: A review of developmental changes and the role of early visual experience. In Frontiers in Integrative Neuroscience (Vol. 9, Issue SEP, pp. 1–18). Frontiers Research Foundation. https://doi.org/10.3389/fnint.2015.00049 | spa |
dc.relation.references | Harada, C. N., Natelson Love, M. C., & Triebel, K. L. (2013). Normal cognitive aging. In Clinics in Geriatric Medicine (Vol. 29, Issue 4, pp. 737–752). https://doi.org/10.1016/j.cger.2013.07.002 | spa |
dc.relation.references | Hidaka, S., Higuchi, S., Teramoto, W., & Sugita, Y. (2017). Neural mechanisms underlying sound-induced visual motion perception: An fMRI study. Acta Psychologica, 178, 66–72. https://doi.org/10.1016/j.actpsy.2017.05.013 | spa |
dc.relation.references | Hillyard, S. A., Störmer, V. S., Feng, W., Martinez, A., & McDonald, J. J. (2016). Cross-modal orienting of visual attention. Neuropsychologia, 83, 170–178. https://doi.org/10.1016/j.neuropsychologia.2015.06.003 | spa |
dc.relation.references | Hirst, R. J., Cassarino, M., Kenny, R. A., Newell, F. N., & Setti, A. (2021). Aging, Neuropsychology, and Cognition A Journal on Normal and Dysfunctional Development ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nanc20 Urban and rural environments differentially shape multisensory perception in ageing. https://doi.org/10.1080/13825585.2020.1859084 | spa |
dc.relation.references | Jones, S. A., Beierholm, U., Meijer, D., & Noppeney, U. (2019). Older adults sacrifice response speed to preserve multisensory integration performance. Neurobiology of Aging, 84, 148–157. https://doi.org/10.1016/J.NEUROBIOLAGING.2019.08.017 | spa |
dc.relation.references | Jones, S. A., & Noppeney, U. (2021). Ageing and multisensory integration: A review of the evidence, and a computational perspective. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 138, 1–23. https://doi.org/10.1016/J.CORTEX.2021.02.001 | spa |
dc.relation.references | Kavcic, V., Martin, T., & Zalar, B. (2013). Aging effects on visual evoked potentials (VEPs) for motion direction discrimination. International Journal of Psychophysiology, 89(1), 78–87. https://doi.org/10.1016/j.ijpsycho.2013.05.012 | spa |
dc.relation.references | Li, S., Zhang, T., Zu, G., Wang, A., & Zhang, M. (2023). Electrophysiological evidence of crossmodal correspondence between auditory pitch and visual elevation affecting inhibition of return. Brain and Cognition, 171. https://doi.org/10.1016/j.bandc.2023.106075 | spa |
dc.relation.references | Liu, B., Wang, Z., & Jin, Z. (2009). The integration processing of the visual and auditory information in videos of real-world events: An ERP study. Neuroscience Letters, 461(1), 7–11. https://doi.org/10.1016/j.neulet.2009.05.082 | spa |
dc.relation.references | Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., & Laurienti, P. J. (2012). Multisensory Integration and Aging. The Neural Bases of Multisensory Processes, 381–392. https://doi.org/10.1201/b11092-25 | spa |
dc.relation.references | Nagy, A., Eördegh, G., Paróczy, Z., Márkus, Z., & Benedek, G. (2006). Multisensory integration in the basal ganglia. European Journal of Neuroscience, 24(3), 917–924. https://doi.org/10.1111/J.1460-9568.2006.04942.X | spa |
dc.relation.references | Nishida, S., Kawabe, T., Sawayama, M., & Fukiage, T. (2018). Motion Perception: From Detection to Interpretation. Https://Doi.Org/10.1146/Annurev-Vision-091517-034328, 4, 501–523. https://doi.org/10.1146/ANNUREV-VISION-091517-034328 | spa |
dc.relation.references | Ogawa, A., & Macaluso, E. (2013). Audio-visual interactions for motion perception in depth modulate activity in visual area V3A. NeuroImage, 71, 158–167. https://doi.org/10.1016/j.neuroimage.2013.01.012 | spa |
dc.relation.references | Organización Mundial de la Salud. (2015). Resumen Informe mundial sobre el envejecimiento y la salud. | spa |
dc.relation.references | Organización Mundial de la Salud. (2021). Decada del envejecimiento saludable informe de referencia, resumen. | spa |
dc.relation.references | Ortega Escobar, J. (2014). Evolución del cerebro y la cognición. Neurociencia Cognitiva, 2014, ISBN 978-84-15550-45-7, Págs. 57-74, 57–74. https://dialnet.unirioja.es/servlet/articulo?codigo=4985546 | spa |
dc.relation.references | Pedraza, O. L., Salazar, A. M., Sierra, F. A., Soler, D., Castro, J., Castillo, P., Hernandez, A., & Piñeros, C. (2016). Confiabilidad, validez de criterio y discriminante del Montreal Cognitive Assessment (MoCA) test, en un grupo de adultos de Bogotá. Acta Medica Colombiana, 4. | spa |
dc.relation.references | Política Pública Nacional de Envejecimiento y Vejez 2022 - 2031 , Pub. L. No. 681, 15 (2022). | spa |
dc.relation.references | Reuter, E. M., Booms, A., & Leow, L. A. (2022). Using EEG to study sensorimotor adaptation. In Neuroscience and Biobehavioral Reviews (Vol. 134). Elsevier Ltd. https://doi.org/10.1016/j.neubiorev.2021.104520 | spa |
dc.relation.references | Russell, M. K. (2022). Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. In Frontiers in Psychology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2022.831670 | spa |
dc.relation.references | Scurry, A. N., Dutcher, D., Werner, J. S., & Jiang, F. (2020). Age-Related Effects on Cross-Modal Duration Perception. Department of Health & Human Services USA, 32(8), 693–714. https://doi.org/10.6084/m9.figshare.9944027 | spa |
dc.relation.references | Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008a). Crossmodal binding through neural coherence: implications for multisensory processing. In Trends in Neurosciences (Vol. 31, Issue 8, pp. 401–409). https://doi.org/10.1016/j.tins.2008.05.002 | spa |
dc.relation.references | Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008b). Crossmodal binding through neural coherence: implications for multisensory processing. In Trends in Neurosciences (Vol. 31, Issue 8, pp. 401–409). https://doi.org/10.1016/j.tins.2008.05.002 | spa |
dc.relation.references | Sepulveda, J. A., Anderson, A. J., Wood, J. M., & McKendrick, A. M. (2020). Differential aging effects in motion perception tasks for central and peripheral vision. Journal of Vision, 20(5). https://doi.org/10.1167/jov.20.5.8 | spa |
dc.relation.references | Setti, A., Finnigan, S., Sobolewski, R., McLaren, L., Robertson, I. H., Reilly, R. B., Anne Kenny, R., & Newell, F. N. (2011). Audiovisual temporal discrimination is less efficient with aging: An event-related potential study. NeuroReport, 22(11), 554–558. https://doi.org/10.1097/WNR.0b013e328348c731 | spa |
dc.relation.references | Shams, L., & Kim, R. (2010). Crossmodal influences on visual perception. In Physics of Life Reviews (Vol. 7, Issue 3, pp. 269–284). https://doi.org/10.1016/j.plrev.2010.04.006 | spa |
dc.relation.references | Snowden, R. J., & Kavanagh, E. (2006). Motion perception in the ageing visual system: Minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35(1), 9–24. https://doi.org/10.1068/p5399 | spa |
dc.relation.references | Sperdin, H. F., Cappe, C., & Murray, M. M. (2010). The behavioral relevance of multisensory neural response interactions. In Frontiers in Neuroscience (Vol. 4, Issue MAY). https://doi.org/10.3389/neuro.01.009.2010 | spa |
dc.relation.references | Stein, B. E., Labos, E., & Kruger, L. (1973a). Determinants of response latency in neurons of superior colliculus in kittens. Journal of Neurophysiology, 36(4), 680–689. https://doi.org/10.1152/JN.1973.36.4.680 | spa |
dc.relation.references | Stein, B. E., Labos, E., & Kruger, L. (1973b). Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation. J Neurophysiol . , 36, 667–679. | spa |
dc.relation.references | Stein, B. E., & Rowland, B. A. (2019). Neural development of multisensory integration. In Multisensory Perception: From Laboratory to Clinic (pp. 57–87). Elsevier. https://doi.org/10.1016/B978-0-12-812492-5.00003-6 | spa |
dc.relation.references | Stein, B. E., Stanford, T. R., & Rowland, B. A. (2009). The neural basis of multisensory integration in the midbrain: Its organization and maturation. Hearing Research, 258(1–2), 4–15. https://doi.org/10.1016/j.heares.2009.03.012 | spa |
dc.relation.references | Talsma, D., Kok, A., & Ridderinkhof, K. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: Effects on event-related brain potentials and performance data. International Journal of Psychophysiology, 62(2), 249–261. https://doi.org/10.1016/j.ijpsycho.2006.04.006 | spa |
dc.relation.references | Torrades, S. (2004). Aspectos neurológicos del envejecimiento. La lucha para retrasar el deterioro cerebral. ÁMBITO FARMACÉUTICO. Neurofisiología, 23. https://www.elsevier.es/es-revista-offarm-4-articulo-aspectos-neurologicos-del-envejecimiento-13067353 | spa |
dc.relation.references | Ventura-Leon, J. L., Caycho-Rodríguez, T., & Barboza-Palomino, M. (2020). ¿Cuántos participantes son necesarios?: Un método para estimar el tamaño muestral en SEM. | spa |
dc.relation.references | Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. In Attention, Perception, and Psychophysics (Vol. 72, Issue 4, pp. 871–884). https://doi.org/10.3758/APP.72.4.871 | spa |
dc.relation.references | Wallace, M. T., & Stein, B. E. (1997). Development of Multisensory Neurons and Multisensory Integration in Cat Superior Colliculus. Journal of Neuroscience, 17(7), 2429–2444. https://doi.org/10.1523/JNEUROSCI.17-07-02429.1997 | spa |
dc.relation.references | Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample Size Requirements for Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. Educational and Psychological Measurement, 73(6), 913–934. https://doi.org/10.1177/0013164413495237 | spa |
dc.relation.references | Yankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. In Annual Review of Pathology: Mechanisms of Disease (Vol. 3, pp. 41–66). https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 150 - Psicología::152 - Percepción sensorial, movimiento, emociones, impulsos fisiológicos | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.lemb | Envejecimiento | spa |
dc.subject.lemb | Aging | eng |
dc.subject.lemb | Electroencefalografía | spa |
dc.subject.lemb | Electroencephalography | eng |
dc.subject.proposal | Discriminación de movimiento | spa |
dc.subject.proposal | Atención intermodal | spa |
dc.subject.proposal | Integración multisensorial | spa |
dc.subject.proposal | Envejecimiento | spa |
dc.subject.proposal | EEG | |
dc.subject.proposal | Motion discrimination | eng |
dc.subject.proposal | Intermodal attention | eng |
dc.subject.proposal | Multisensory integration | eng |
dc.subject.proposal | Aging | eng |
dc.subject.wikidata | Potencial evocado | spa |
dc.subject.wikidata | Evoked potentials | eng |
dc.title | Potenciales evocados durante la discriminación de movimiento en entorno intermodal asociada a envejecimiento | spa |
dc.title.translated | Evoked related potentials during motion discrimination in an intermodal environment associated with aging | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Javier Rivero.pdf
- Tamaño:
- 2.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Neurociencias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: