Evaluación del papel de la Tiamina como inductor de resistencia sistémica adquirida en clavel (Dianthus Caryophyllus l.) para el control del marchitamiento vascular

dc.contributor.advisorArdila Barrantes, Harold Dubanspa
dc.contributor.advisorMelgarejo Muñoz, Luz Marinaspa
dc.contributor.authorEsquivel Pomar, José Miguelspa
dc.contributor.researchgroupFisiología del Estrés y Biodiversidad en Plantas y Microorganismosspa
dc.date.accessioned2025-04-21T20:46:53Z
dc.date.available2025-04-21T20:46:53Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa búsqueda constante de alternativas sostenibles para el manejo de enfermedades y plagas en cultivos de importancia económica ha orientado las investigaciones hacia enfoques más amigables con el medio ambiente. Esto implica un cambio en los tratamientos convencionales contra fitopatógenos, los cuales emplean sustancias químicas tóxicas tanto para el medio ambiente como para los agricultores. En este contexto, se han explorado opciones de bajo impacto ambiental y fácil disponibilidad para controlar el marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod) en el clavel (Dianthus caryophyllus L.). En el presente estudio, se determinó el efecto de la aspersión foliar de tiamina, como posible inductor de resistencia en parámetros fisiológicos de la planta como la fluorescencia de la clorofila a, la conductancia estomática y la temperatura foliar, además de los índices de severidad en dos cultivares de clavel con niveles contrastantes de resistencia al patógeno Fod: "Golem" (resistente) y "Mizuki" (susceptible). Se encontró que la tiamina incrementó la capacidad de respuesta de la planta frente al hongo patógeno y redujo la progresión de la enfermedad durante al menos ocho semanas en el cultivar susceptible "Mizuki", mostrando una respuesta diferencial en algunos de los parámetros fisiológicos evaluados. El análisis de la expresión génica mediante qRT-PCR reveló que el tratamiento con tiamina moduló genes relacionados con la resistencia sistémica adquirida (SAR), como los genes que codifican proteínas del dominio 14-3-3, enzimas tipo cisteína proteasa y el receptor de péptidos NPR1, asociado a la ruta del ácido salicílico (Texto tomado de la fuente).spa
dc.description.abstractThe constant search for sustainable alternatives for the management of diseases and pests in economically important crops has directed research towards more environmentally friendly approaches. This implies a change in conventional treatments against phytopathogens, which use toxic chemicals for both the environment and farmers. In this context, options with low environmental impact and easy availability have been explored to control vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) on the carnation (Dianthus caryophyllus L.). In the present study, the effect of foliar spraying of thiamine was determined as a possible resistance inducer on plant physiological parameters such as chlorophyll a fluorescence, stomatal conductance and leaf temperature, in addition to the severity indices in two carnation cultivars with contrasting levels of resistance to the Fod pathogen: "Golem" (resistant) and "Mizuki" (susceptible). It was found that thiamine increased the plant's response capacity against the pathogenic fungus and reduced the progression of the disease for at least eight weeks in the susceptible cultivar "Mizuki", showing a differential response in some of the physiological parameters evaluated. Gene expression analysis by qRT-PCR revealed that thiamine treatment modulated genes related to systemic acquired resistance (SAR), such as genes encoding 14-3-3 domain proteins, cysteine protease-like enzymes, and the receptor. NPR1 peptides, associated with the salicylic acid pathway.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ciencias - Bioquímicaspa
dc.description.researchareaBioquímica de las interacciones Hospedero - Patógenospa
dc.format.extent121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88012
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.indexedN/Aspa
dc.relation.referencesAbdel-Monaim, M. F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10(53), 10842–10855. https://doi.org/10.5897/ajb11.253spa
dc.relation.referencesAhn, I. P., Kim, S., & Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138(3), 1505–1515. https://doi.org/10.1104/pp.104.058693spa
dc.relation.referencesAlcázar, C., Tutor, M., Roldán, P., & Caridad Director, R. (2023). Evaluación de la capacidad bioestimulante de diferentes productos de origen natural. https://riunet.upv.es/handle/10251/200404spa
dc.relation.referencesAlisaac, E., Behmann, J., Kuska, M. T., Dehne, H. W., & Mahlein, A. K. (2018). Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. European Journal of Plant Pathology, 152(4), 869–884. https://doi.org/10.1007/S10658-018-1505-9/FIGURES/8spa
dc.relation.referencesAlvarez, M. E., Savouré, A., & Szabados, L. (2022). Proline metabolism as regulatory hub. Trends in Plant Science, 27(1), 39–55. https://doi.org/10.1016/J.TPLANTS.2021.07.009spa
dc.relation.referencesArif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. (2009). Natural products - Antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7), 621–638. https://doi.org/10.1080/10286020902942350spa
dc.relation.referencesBaayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81–94. https://doi.org/10.1007/BF01998398spa
dc.relation.referencesBaenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: A Tool for Enriching the Bioactive Composition of Foods. Molecules, 19(9), 13541. https://doi.org/10.3390/MOLECULES190913541spa
dc.relation.referencesBarreto Pulido W. (2023). Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesBaker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(Volume 59, 2008), 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759/CITE/REFWORKSspa
dc.relation.referencesBaker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55(403), 1607–1621. https://doi.org/10.1093/JXB/ERH196spa
dc.relation.referencesBenavides-Mendoza, A., Nazario Francisco-francisco, Y., Mendoza, B., & Francisco, F. (2022). Recientes aplicaciones de la fluorescencia de la clorofila en los cultivos vegetales. EPISTEMUS, 16(33), 106–114. https://doi.org/10.36790/EPISTEMUS.V16I33.285spa
dc.relation.referencesBhatt, D., Nath, M., Sharma, M., Bhatt, M. D., Bisht, D. S., & Butani, N. V. (2020). Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, 254–279. https://doi.org/10.1002/9781119552154.CH11spa
dc.relation.referencesBoubakri, H., Poutaraud, A., Wahab, M. A., Clayeux, C., Baltenweck-Guyot, R., Steyer, D., Marcic, C., Mliki, A., & Soustre-Gacougnolle, I. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13(1), 1–15. https://doi.org/10.1186/1471-2229-13-31spa
dc.relation.referencesBrestic, M., & Zivcak, M. (2013). PSII fluorescence techniques for measurement of droughtand high temperature stress signal in crop plants: Protocols and applications. Molecular Stress Physiology of Plants, 87–131. https://doi.org/10.1007/978-81-322-0807-5_4spa
dc.relation.referencesBruns, H. A. (2009). A survey of factors involved in crop maturity. Agronomy Journal, 101(1), 60–66. https://doi.org/10.2134/AGRONJ2007.0271Rspa
dc.relation.referencesBustos Caro E. (2022). Aproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesBustos-Caro, E., Melgarejo, L. M., Pinzón, A. M., & Ardila, H. D. (2024). Physiological responses and differential expression of genes involved in ABA and SA signaling during the interaction of the carnation (Dianthus caryophyllus L.) and the fungus Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 1–14. https://doi.org/10.1007/S42161-024-01687-Z/METRICSspa
dc.relation.referencesCamarena-Gutiérrez, G., & De La Torre-Almaráz; R. (2007). RESISTENCIA SISTÉMICA ADQUIRIDA EN PLANTAS: ESTADO ACTUAL. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 13(2), 157–162.spa
dc.relation.referencesCarmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., & Soto-Suárez, M. (2020). Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada. Temas Agrarios, 25(2). https://doi.org/10.21897/rta.v25i2.2457spa
dc.relation.referencesCarr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. Advances in Virus Research, 76(C), 57–121. https://doi.org/10.1016/S0065-3527(10)76003-6spa
dc.relation.referencesChakravarthy, S., Tuori, R. P., D’Ascenzo, M. D., Fobert, P. R., Després, C., & Martin, G. B. (2003). The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis Elements. Plant Cell, 15(12), 3033–3050. https://doi.org/10.1105/TPC.017574/REFERENCESspa
dc.relation.referencesCoca, M., & San Segundo, B. (2010). AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. The Plant Journal : For Cell and Molecular Biology, 63(3), 526–540. https://doi.org/10.1111/J.1365-313X.2010.04255.Xspa
dc.relation.referencesCosgrove, J., & Borowitzka, M. A. (2010). Chlorophyll Fluorescence Terminology: An Introduction. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, 1–17. https://doi.org/10.1007/978-90-481-9268-7_1spa
dc.relation.referencesCuervo-Plata, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al stress oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesda Cunha, L., McFall, A. J., & Mackey, D. (2006). Innate immunity in plants: a continuum of layered defenses. Microbes and Infection, 8(5), 1372–1381. https://doi.org/10.1016/J.MICINF.2005.12.018spa
dc.relation.referencesDelgadillo Rodríguez, I. P., Montenegro Ruíz, L. C., Pinilla Agudelo, G. A., & Marina Melgarejo, L. (2017). Medición de la fluorescencia de la clorofila a en algas encapsuladas en alginato de calcio. Acta Biologica Colombiana, 22(2), 199–208. https://doi.org/10.15446/ABC.V22N2.56166spa
dc.relation.referencesDi Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. In Molecular Plant Pathology (Vol. 4, Issue 5, pp. 315–325). https://doi.org/10.1046/j.1364-3703.2003.00180.xspa
dc.relation.referencesDiaz-Puentes, L.-N. (2012). RESISTENCIA SISTÉMICA ADQUIRIDA MEDIADA POR EL ÁCIDO SALICÍLICO SYSTEMIC ACQUIRED RESISTANCE INDUCED BY SALICYLIC ACID RESISTÊNCIA SISTÊMICA ADQUIRIDA MEDIADA POR O ÁCIDO SALICÍLICO Artículo de Revisión. In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 10, Issue 2). Julio-Diciembre.spa
dc.relation.referencesDing, B., & Wang, G. L. (2015). Chromatin versus pathogens: The function of epigenetics in plant immunity. Frontiers in Plant Science, 6(september). https://doi.org/10.3389/FPLS.2015.00675spa
dc.relation.referencesDriesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. Agronomy 2020, Vol. 10, Page 1975, 10(12), 1975. https://doi.org/10.3390/AGRONOMY10121975spa
dc.relation.referencesDurrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42(Volume 42, 2004), 185–209. https://doi.org/10.1146/ANNUREV.PHYTO.42.040803.140421/CITE/REFWORKSspa
dc.relation.referencesEl Kasmi, F., Horvath, D., & Lahaye, T. (2018). Microbial effectors and the role of water and sugar in the infection battle ground. Current Opinion in Plant Biology, 44, 98–107. https://doi.org/10.1016/J.PBI.2018.02.011spa
dc.relation.referencesFantino, E. I. (2017). Identificación y caracterización de nuevas CDPKs en la planta de papa. Estudio de su participación en respuesta a infección por P. Infestans. Producción de plantas de papa sobreexpresantes de CDPKs y evaluación de su resistencia. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n6230_Fantinospa
dc.relation.referencesFerrarotto S, M. (2003). Proline accumulation in pigweed plants (Amaranthus dubius Mart, and Amaranthus cruentus L.) growing under water stress conditions. Revista de La Facultad de Agronomía, 20(4), 453–460. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182003000400005&lng=es&nrm=iso&tlng=enspa
dc.relation.referencesFlexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond, C. B., & Medrano, H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114(2), 231–240. https://doi.org/10.1034/J.1399-3054.2002.1140209.Xspa
dc.relation.referencesFukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., & Nomoto, K. (2003). A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry, 63(1), 15–23. https://doi.org/10.1016/S0031-9422(02)00684-2spa
dc.relation.referencesFurtado, L. L. (2017). UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIAS AGRÁRIAS CURSO DE CIÊNCIAS AGRÁRIAS RELAÇÕES FILOGENÉTICAS DOS GENES DA VIA DE BIOSSÍNTESE DE TIAMINA NA EVOLUÇÃO DE PLANTAS.spa
dc.relation.referencesGaleotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/J.PHYTOL.2007.10.001spa
dc.relation.referencesGechev, T. S., & Hille, J. (2012). Molecular basis of plant stress. Cellular and Molecular Life Sciences, 69(19), 3161–3163. https://doi.org/10.1007/S00018-012-1086-2/METRICSspa
dc.relation.referencesGonzález, F. J., Walls, S., & Mancilla, M. (2005). Fusarium oxysporum f.sp. fragariae AGENTE CAUSAL DE FUSARIOSIS EN FRUTILLA. In Boletín Micológico (Vol. 20, Issue 0).spa
dc.relation.referencesGranada, E. G. De, Amezquita, M. C. O. De, Mendoza, G. R. B., & Zapata, H. A. V. (2001). Fusarium Oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana, 6(1), 7–25.spa
dc.relation.referencesGrudkowska, M., & Zagdańska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51(3), 609–624.spa
dc.relation.referencesHafizi, R., Salleh, B., & Latiffah, Z. (2013). Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology, 44(3), 959. https://doi.org/10.1590/S1517-83822013000300047spa
dc.relation.referencesHammerschmidt, R. (2009a). Chapter 5 Systemic Acquired Resistance. Advances in Botanical Research, 51(C), 173–222. https://doi.org/10.1016/S0065-2296(09)51005-1spa
dc.relation.referencesHan, S. K., & Wagner, D. (2014). Role of chromatin in water stress responses in plants. Journal of Experimental Botany, 65(10), 2785–2799. https://doi.org/10.1093/JXB/ERT403spa
dc.relation.referencesHao, K., Wang, F., Nong, X., McNeill, M. R., Liu, S., Wang, G., Cao, G., & Zhang, Z. (2017). Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports 2017 7:1, 7(1), 1–15. https://doi.org/10.1038/s41598-017-01029-3spa
dc.relation.referencesHayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11). https://doi.org/10.4161/PSB.21949spa
dc.relation.referencesHernández, J., & Montaner, D. (2022). PATRONES DE RESPUESTA ESPECTRAL. Lab. Geomática y Ecología Del Paisaje (GEP).spa
dc.relation.referencesHetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature 2003 424:6951, 424(6951), 901–908. https://doi.org/10.1038/nature01843spa
dc.relation.referencesHidalgo Rodríguez, J. E. M. (2021). Transcriptoma de Tarwi (Lupinus mutabilis Sweet) sometido a estrés hídrico. http://repositorio.lamolina.edu.pe/handle/20.500.12996/5144spa
dc.relation.referencesHuang, W. K., Ji, H. L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316spa
dc.relation.referencesIhuoma, S. O., & Madramootoo, C. A. (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141, 267–275. https://doi.org/10.1016/J.COMPAG.2017.07.026spa
dc.relation.referencesIseppon, A., Lins Galdino, S., Calsa Junior, T., Akio Kido, E., Maria Benko-Iseppon, A., Calsa Jr, T., Tossi, A., Belarmino, L. C., & Crovella, S. (2010). Overview on Plant Antimicrobial Peptides. https://doi.org/10.2174/138920310791112075spa
dc.relation.referencesJosé, M., Llopis, C., Vera, P., Jose, V., Carrasco, L., & Valencia, J. (2008). Identificación y caracterización de la familia de factores DBP, nuevos reguladores de la expresión génica en plantas.spa
dc.relation.referencesKamarudin, A. N., Seman, I. A., & Yusof, Z. N. B. (2017). Thiamine biosynthesis gene expression analysis in Elaeis guineensis during interactions with Hendersonia toruloidea. Journal of Oil Palm Research, 29(2), 218–226. https://doi.org/10.21894/JOPR.2017.2902.06spa
dc.relation.referencesKaradağ, K., Tenekeci, M. E., Taşaltın, R., & Bilgili, A. (2020). Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing: Informatics and Systems, 28, 100299. https://doi.org/10.1016/J.SUSCOM.2019.01.001spa
dc.relation.referencesKavi Kishor, P. B., Hong, Z., Miao, G. H., Hu, C. A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiology, 108(4), 1387. https://doi.org/10.1104/PP.108.4.1387spa
dc.relation.referencesKavi Kishor, P. B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300–311. https://doi.org/10.1111/PCE.12157spa
dc.relation.referencesKistler, H. C. (1997). Population Genetics of Soilborne Fungal Plant Pathogens Genetic Diversity in the Plant-Pathogenic Fungus Fusarium oxysporum.spa
dc.relation.referencesKombrink, E., & Somssich, I. E. (1995). Defense Responses of Plants to Pathogens. Advances in Botanical Research, 21(C), 1–34. https://doi.org/10.1016/S0065-2296(08)60007-5spa
dc.relation.referencesKumar, M. N., Hsieh, Y. F., & Verslues, P. E. (2015). At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10545–10550. https://doi.org/10.1073/PNAS.1510140112/SUPPL_FILE/PNAS.1510140112.SD01.XLSXspa
dc.relation.referencesKumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001spa
dc.relation.referencesKuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: a foundation and guide to modern agriculture. Journal of Plant Diseases and Protection 2022 129:3, 129(3), 457–468. https://doi.org/10.1007/S41348-022-00600-Zspa
dc.relation.referencesKuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/S10658-018-1464-1/METRICSspa
dc.relation.referencesLaluk, K., & Mengiste, T. (2010). Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion? The Arabidopsis Book, 8, e0136. https://doi.org/10.1199/tab.0136spa
dc.relation.referencesLaredo Alcalá, E. I., Martínez Hernández, J. L., Iliná, A., Guillen Cisneros, L., Hernández Castillo, F. D., Laredo Alcalá, E. I., Martínez Hernández, J. L., Iliná, A., Guillen Cisneros, L., & Hernández Castillo, F. D. (2017). Aplicación de ácido jasmónico como inductor de resistencia vegetal frente a patógenos. Revista Mexicana de Ciencias Agrícolas, 8(3), 673–683. https://doi.org/10.29312/REMEXCA.V8I3.40spa
dc.relation.referencesLeón, J., Arbeláez, G., González, M., Molina, J. C., Parra, J., Gúzman, S., Angulo, J. F., & Alvarez, J. D. (1993). Control integrado del marchitamiento vascular del clavel ocasionado por Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 10(1), 68–89.spa
dc.relation.referencesLewandowska, M., Keyl, A., & Feussner, I. (2020). Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist, 227(3), 698–713. https://doi.org/10.1111/NPH.16571spa
dc.relation.referencesLi, C., Bai, Y., Jacobsen, E., Visser, R., Lindhout, P., & Bonnema, G. (2006). Tomato defense to the powdery mildew fungus: Differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Molecular Biology, 62(1–2), 127–140. https://doi.org/10.1007/S11103-006-9008-Z/METRICSspa
dc.relation.referencesLi, Y., Kabbage, M., Liu, W., & Dickman, M. B. (2016). Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants. The Plant Cell, 28(1), 233–247. https://doi.org/10.1105/TPC.15.00626spa
dc.relation.referencesLindemose, S., O’Shea, C., Jensen, M. K., & Skriver, K. (2013). Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. International Journal of Molecular Sciences 2013, Vol. 14, Pages 5842-5878, 14(3), 5842–5878. https://doi.org/10.3390/IJMS14035842spa
dc.relation.referencesLiu, H., Hu, M., Wang, Q., Cheng, L., & Zhang, Z. (2018). Role of papain-like cysteine proteases in plant development. Frontiers in Plant Science, 871, 417367. https://doi.org/10.3389/FPLS.2018.01717/BIBTEXspa
dc.relation.referencesLiu, P., Shi, C., Liu, S., Lei, J., Lu, Q., Hu, H., Ren, Y., Zhang, N., Sun, C., Chen, L., Jiang, Y., Feng, L., Zhang, T., Zhong, K., Liu, J., Zhang, J., Zhang, Z., Sun, B., Chen, J., … Yang, J. (2023). A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43643-yspa
dc.relation.referencesMahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/J.RSE.2012.09.019spa
dc.relation.referencesMahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11(4), 413–431. https://doi.org/10.1007/S11119-010-9180-7/METRICSspa
dc.relation.referencesMalamy, J., Sánchez-Casas, P., Hennig, J., Guo, A., & Klessig, D. F. (1996). Dissection of the salicylic acid signaling pathway in tobacco. Molecular Plant-Microbe Interactions, 9(6), 474–482. https://doi.org/10.1094/MPMI-9-0474spa
dc.relation.referencesMarín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. https://doi.org/10.1016/J.SJBS.2019.05.007spa
dc.relation.referencesMartínez González A. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesMedrano, H., Na Bota, J., Cifre, J., Flexas, J., Ribas-Carbó, M., & Gulías, J. (2007). EFICIENCIA EN EL USO DEL AGUA POR LAS PLANTAS. Investigaciones Geográfi Cas, No, 43, 63–84.spa
dc.relation.referencesMelotto, M., Underwood, W., & Sheng, Y. H. (2008). Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annual Review of Phytopathology, 46, 101. https://doi.org/10.1146/ANNUREV.PHYTO.121107.104959spa
dc.relation.referencesMenéndez, E., Navarro, J., López, J., & Dalmau, A. (2020). Mecanismos de defensa en plantas. Proteínas relacionadas con la patogenicidad. Revista de Investigaciones de La Universidad Le Cordon Bleu, 7(2), 98–109. https://doi.org/10.36955/RIULCB.2020V7N2.010spa
dc.relation.referencesMiguel Rojas, C. de. (2014). Papel de los reguladores moleculares Fbp1 y Bmh2 en la virulencia de Fusarium oxysporum.spa
dc.relation.referencesMiller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R., & Zilberstein, A. (2009). Unraveling Δ1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes. Journal of Biological Chemistry, 284(39), 26482–26492. https://doi.org/10.1074/JBC.M109.009340spa
dc.relation.referencesMonroy Mena S. (2019). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesMonzón, A., Luis, J., & Tudela, R. (2008). INFECCIONES CAUSADAS POR EL GÉNERO Fusarium.spa
dc.relation.referencesMoreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129.spa
dc.relation.referencesNaik, P. M., Al–Khayri, J. M., Naik, P. M., & Al–Khayri, J. M. (2016). Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants. Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. https://doi.org/10.5772/61442spa
dc.relation.referencesNash, D., Paleg, L., & Wiskich, J. (1982). Effect of Proline, Betaine and Some Other Solutes on the Heat Stability of Mitochondrial Enzymes. Functional Plant Biology, 9(1), 47–57. https://doi.org/10.1071/PP9820047spa
dc.relation.referencesNorhana, Z., & Yusof, B. (2017). Thiamine biosynthesis gene expression analysis in Elaeis guineensis during interactions with Hendersonia toruloidea Idris Abu Seman Malaysian Palm Oil Board THIAMINE BIOSYNTHESIS GENE EXPRESSION ANALYSIS IN Elaeis guineensis DURING INTERACTIONS WITH Hendersonia toruloidea AMIRAH NOR KAMARUDIN*; IDRIS ABU SEMAN** and ZETTY NORHANA BALIA YUSOF*. Article in Journal of Oil Palm Research, 29(2), 218–226. https://doi.org/10.21894/jopr.2017.2902.06spa
dc.relation.referencesNürnberger, T., Brunner, F., Kemmerling, B., & Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews, 198(1), 249–266. https://doi.org/10.1111/J.0105-2896.2004.0119.Xspa
dc.relation.referencesOrosa Puente, B. (2011). Participación del gen AtCPK1 en la defensa de Arabidopsis thaliana frente a patógenos. Tesis Doctorals - Departament - Bioquímica i Biologia Molecular (Farmàcia). https://diposit.ub.edu/dspace/handle/2445/173980spa
dc.relation.referencesPablo Alejandro, B. R., & Alejandro, P. P. (2024). Desarrollo de un nuevo indicador del estado hídrico de las plantas basado en el espectro foliar. https://doi.org/10.31428/10317/12384spa
dc.relation.referencesPeñafiel Saquicaray, P. A. (2021). Análisis estadístico funcional de la reflectancia obtenida mediante imágenes satelitales y espectroradiometro del cultivo de Quinua en Colta. http://dspace.espoch.edu.ec/handle/123456789/14809spa
dc.relation.referencesPérez Cárcamo, J., & PEREZ CARCAMO, J. 789790. (2019). Evaluación morfológica y fisiológica de genotipos de clavel (Dianthus caryophyllus L.) infestados con Fusarium oxysporum.spa
dc.relation.referencesPérez Mora, W. H., Castillejo, M. Á., Jorrín Novo, J., Melgarejo, L. M., & Ardila, H. D. (2024). Thiamine-induced resistance in carnation against Fusarium oxysporum f. sp dianthi and mode of action studies based on the proteomics analysis of root tissue. Scientia Horticulturae, 323, 112549. https://doi.org/10.1016/J.SCIENTA.2023.112549spa
dc.relation.referencesPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734spa
dc.relation.referencesPieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. https://doi.org/10.1146/ANNUREV-PHYTO-082712-102340spa
dc.relation.referencesPinheiro, C., Passarinho, A., & Ricardo, P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. https://doi.org/10.1016/j.jplph.2004.01.016spa
dc.relation.referencesPye, M. F., Hakuno, F., MacDonald, J. D., & Bostock, R. M. (2013). Induced resistance in tomato by SAR activators during predisposing salinity stress. Frontiers in Plant Science, 4(MAY), 48682. https://doi.org/10.3389/FPLS.2013.00116/BIBTEXspa
dc.relation.referencesRobayo, M. Y. D., & Gutiérrez, M. C. (2014). MECANISMOS DE RESISTENCIA SISTÉMICA EN PLANTAS. Acta Iguazu, 3(2), 1–19. https://doi.org/10.48075/ACTAIGUAZ.V3I2.10277spa
dc.relation.referencesRomero Rincón A. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f sp. dianthi.spa
dc.relation.referencesSaenz Mariana. (2022, January 20). Evaluación de diformíl urea para el manejo de estrés abiótico en el cultivo de maracuyá. https://repositorio.ucaldas.edu.co/handle/ucaldas/17355spa
dc.relation.referencesSampaio, A. M., De Sousa Araújo, S., Rubiales, D., & Patto, M. C. V. (2020). Fusarium Wilt Management in Legume Crops. Agronomy 2020, Vol. 10, Page 1073, 10(8), 1073. https://doi.org/10.3390/AGRONOMY10081073spa
dc.relation.referencesSawahel, W. A., & Hassan, A. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 24(9), 721–725. https://doi.org/10.1023/A:1015294319114/METRICSspa
dc.relation.referencesSawinski, K., Mersmann, S., Robatzek, S., & Böhmer, M. (2013). Guarding the Green: Pathways to Stomatal Immunity. Https://Doi.Org/10.1094/MPMI-12-12-0288-CR, 26(6), 626–632. https://doi.org/10.1094/MPMI-12-12-0288-CRspa
dc.relation.referencesSewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 7(FEB2016), 170027. https://doi.org/10.3389/FPLS.2016.00187/BIBTEXspa
dc.relation.referencesShah, J. (2009). Plants under attack: systemic signals in defence. Current Opinion in Plant Biology, 12(4), 459–464. https://doi.org/10.1016/J.PBI.2009.05.011spa
dc.relation.referencesShinde, S., Villamor, J. G., Lin, W., Sharma, S., & Verslues, P. E. (2016). Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria. Plant Physiology, 172(2), 1074–1088. https://doi.org/10.1104/PP.16.01097spa
dc.relation.referencesSzabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/J.TPLANTS.2009.11.009spa
dc.relation.referencesTang, K., Struik, P. C., Amaducci, S., Stomph, T. J., & Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bio-economically sustainable crop. GCB Bioenergy, 9(10), 1573–1587. https://doi.org/10.1111/GCBB.12451spa
dc.relation.referencesTombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., Farinelli, D., Poni, S., & Palliotti, A. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports 2015 5:1, 5(1), 1–12. https://doi.org/10.1038/srep12449spa
dc.relation.referencesTurlier, M. F., Eparvier, A., & Alabouvette, C. (1994). Early dynamic interactions between Fusarium oxysporum f.sp. lini and the roots of Linum usitatissimum as revealed by transgenic GUS-marked hyphae. Canadian Journal of Botany, 72(11), 1605–1612. https://doi.org/10.1139/b94-198spa
dc.relation.referencesValeria, I. A., Directora, F. B., Marcela, D., & Ruscitti, F. (2022). Caracterización de interacciones planta-microorganismos beneficiosas para el control de Nacobbus aberrans en pimiento. https://doi.org/10.35537/10915/140520spa
dc.relation.referencesVanegas Cano L. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi.spa
dc.relation.referencesVásquez-Ramírez, L. M., & Castaño-Zapata, J. (2017). MANEJO INTEGRADO DE LA MARCHITEZ VASCULAR DEL TOMATE [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. SNYDER & H.N. HANSEN]:: UNA REVISIÓN. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 363–374.spa
dc.relation.referencesVerslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book, 8, e0140. https://doi.org/10.1199/TAB.0140spa
dc.relation.referencesVilla-Martínez, A., Pérez-Leal, R., Morales-Morales, H. A., Ba-Surto-Sotelo, M., Soto-Parra, J. M., & Martínez-Escudero, E. (2014). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronomica, 64(2). https://doi.org/10.15446/acag.v64n2.43358spa
dc.relation.referencesViña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478. https://doi.org/10.1016/J.RSE.2011.08.010spa
dc.relation.referencesVlot, A. C., Klessig, D. F., & Park, S. W. (2008). Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology, 11(4), 436–442. https://doi.org/10.1016/J.PBI.2008.05.003spa
dc.relation.referencesVorster, B. J., Cullis, C. A., & Kunert, K. J. (2019). Plant Vacuolar Processing Enzymes. Frontiers in Plant Science, 10. https://doi.org/10.3389/FPLS.2019.00479spa
dc.relation.referencesWang, G., Ding, X., Yuan, M., Qiu, D., Li, X., Xu, C., & Wang, S. (2006). Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Molecular Biology, 60(3), 437–449. https://doi.org/10.1007/s11103-005-4770-xspa
dc.relation.referencesWang, M., Sun, Y., Sun, G., Liu, X., Zhai, L., Shen, Q., & Guo, S. (2015). Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Scientific Reports 2015 5:1, 5(1), 1–7. https://doi.org/10.1038/srep07722spa
dc.relation.referencesWiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(NOV), 111484. https://doi.org/10.3389/FPLS.2014.00655/ABSTRACTspa
dc.relation.referencesWildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562–565. https://doi.org/10.1038/35107108spa
dc.relation.referencesXingming, Z., Yanling, D., Xiaowei, Z., Yu, B., Xiaofeng, L., Kai, Z., & Tao, J. (2019). Uncertainty evaluation at three spatial scales for the NDVI-based VWC estimation method used in the SMAP algorithm. Remote Sensing Letters, 10(6), 563–572. https://doi.org/10.1080/2150704X.2019.1577574spa
dc.relation.referencesXu, X., Chen, Y., Li, B., Zhang, Z., Qin, G., Chen, T., & Tian, S. (2022). Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 9. https://doi.org/10.1093/HR/UHAC066spa
dc.relation.referencesYing, W., Yang, R., Cai, Y., Wang, J., Xing, K., Zhang, Y., & Hua, X. (2023). The correlation between proline/P5C cycle and the response to avirulent pathogen infection in Arabidopsis. Current Plant Biology, 35–36, 100293. https://doi.org/10.1016/J.CPB.2023.100293spa
dc.relation.referencesZacchino, S. A., Butassi, E., Liberto, M. Di, Raimondi, M., Postigo, A., & Sortino, M. (2017). Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 37, 27–48. https://doi.org/10.1016/J.PHYMED.2017.10.018spa
dc.relation.referencesZhang, Y., Liu, R., -, al, Kou, Y., Wu, T., Xing, G., Mohammadrezaei, D., Podina, L., De Silva, J., & Fernandez, J. (2015). An optimization model to agroindustrial sector in antioquia (Colombia, South America). Journal of Physics: Conference Series, 622(1), 012002. https://doi.org/10.1088/1742-6596/622/1/012002spa
dc.relation.referencesZhang, Y., Lubberstedt, T., & Xu, M. (2013). The Genetic and Molecular Basis of Plant Resistance to Pathogens. In Journal of Genetics and Genomics (Vol. 40, Issue 1, pp. 23–35). Elsevier. https://doi.org/10.1016/j.jgg.2012.11.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembCONTROL BIOLOGICO DE PLAGASspa
dc.subject.lembPests - Biological controleng
dc.subject.lembAGENTES BIOLOGICOS PARA EL CONTROL DE PLAGASspa
dc.subject.lembBiological pest control agentseng
dc.subject.lembPLAGAS AGRICOLASspa
dc.subject.lembAgricultural pestseng
dc.subject.lembMICROORGANISMOS FITOPATOGENOSspa
dc.subject.lembMicro-organisms, phytopathogeniceng
dc.subject.lembASPERSION EN AGRICULTURAspa
dc.subject.lembSpraying and dusting in agricultureeng
dc.subject.lembVITAMINA B1spa
dc.subject.lembVitamin B1eng
dc.subject.lembENFERMEDADES DE LAS HOJASspa
dc.subject.lembLeaves - Diseases and pestseng
dc.subject.proposalTiaminaspa
dc.subject.proposalSAReng
dc.subject.proposalElicitorspa
dc.subject.proposalPrimingeng
dc.subject.proposalThiamineeng
dc.titleEvaluación del papel de la Tiamina como inductor de resistencia sistémica adquirida en clavel (Dianthus Caryophyllus l.) para el control del marchitamiento vascularspa
dc.title.translatedEvaluation of the role of Thiamine as an inducer of acquired systemic resistance in carnation (Dianthus Caryophyllus l.) For the control of vascular wilteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030634178.2025.pdf
Tamaño:
3.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: