Herramienta sistemática de formulación : uso de diseño de mezclas para evaluar el efecto de las variables de formulación sobre la estabilidad y textura en emulsiones cosméticas

dc.contributor.advisorPalomeque Forero, Liliam Alexandraspa
dc.contributor.advisorGarcía Galvis, Johnbrynnerspa
dc.contributor.authorMazábel Ríos, Ángela del Pilarspa
dc.date.accessioned2025-05-15T12:35:33Z
dc.date.available2025-05-15T12:35:33Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLas emulsiones son sistemas claves en la industria cosmética debido a su versatilidad y alta demanda. Sin embargo, para cumplir con las expectativas del consumidor, el diseño de estos productos presenta grandes desafíos en cuanto a su formulación. En el presente trabajo, se evaluó el efecto de emulsificantes, emolientes y modificadores reológicos, ingredientes clave para controlar la estabilidad y la textura de las emulsiones. Como primera fase del proyecto, mediante un diseño de mezclas, se variaron tres emulsificantes (Tensoactivo 1, Tensoactivo 2 y Tensoactivo 3) y tres emolientes (triglicérido caprílico/cáprico, cocoato de isoamilo y aceite de jojoba) en una fórmula base logrando optimizar una emulsión en función de la estabilidad y textura. Con la emulsión optimizada obtenida como un sistema estable y fluido, se evaluó el impacto de tres modificadores reológicos (goma xantana, hidroxietilcelulosa y carbómero) siguiendo de nuevo, un diseño de mezclas. Para caracterizar los sistemas, se utilizó centrifugación analítica, reología, tensión interfacial y texturómetro. Con el diseño se identificó que el Tensoactivo 1 generó emulsiones más estables, con índices de inestabilidad menores a 0,7 y velocidad de separación inferiores a 28,54 µm/s. Contrario al Tensoactivo 2 y Tensoactivo 3 que presentaron índices de inestabilidad superiores a 0,75 y velocidades de separación de hasta 59 y 194 µm/s respectivamente. Además, se evidenció que los modificadores reológicos aumentan la estabilidad de los sistemas, reduciendo los índices de inestabilidad y disminuyendo hasta tres veces la velocidad de separación. Los modificadores reológicos demostraron tener la mayor influencia en: índice de consistencia, módulo elástico, extensibilidad y trabajo de adhesión. Esto se refleja en un aumento significativo en estos parámetros en comparación con las formulaciones que contenían solo tensoactivos. Todo lo anterior permite concluir que, con ayuda del diseño de mezclas, se logró evaluar el efecto de los ingredientes en las emulsiones para optimizar la estabilidad y predecir la textura. Lo encontrado permite realizar formulaciones de manera eficiente y sistemática con ayuda de las ecuaciones obtenidas (Texto tomado de la fuente).spa
dc.description.abstractEmulsions are key systems in the cosmetics industry due to their versatility and high demand. However, to satisfy the consumer expectations, the design of these products presents big challenges in their formulation. In the present work, the effect of emulsifiers, emollients and rheological modifiers, key ingredients to control the stability and texture of emulsions, was evaluated. As a first phase of the project, through a mixture design, three emulsifiers (Surfactant 1, Surfactant 2 and Surfactant 3) and three emollients (caprylic/capric triglyceride, isoamyl cocoate and jojoba oil) were varied in a base formula, obtaining an emulsion optimization based on stability and texture. With the optimized emulsion obtained as a stable and fluid system, the impact of three rheological modifiers (Xanthan gum, Hydroxyethylcellulose and Carbomer) was evaluated again following a mixture design. To characterize the systems, analytical centrifugation, rheology, interfacial tension and texturometer were used. The design identified that Surfactant 1 generated more stable emulsions, with instability indices less than 0.7 and separation velocity lower than 28.54 µm/s. In contrast, Surfactant 2 and Surfactant 3 has instability indices greater than 0.75 and separation velocities of up to 59 and 194 µm/s respectively. In addition, rheological modifiers increase the stability of the systems, reducing instability indices and decreasing the separation speed up to three times. Rheological modifiers have the most influence on: consistency index, elastic modulus, extensibility and work of adhesion. This is seen in a significant increase in these parameters compared to formulations containing only surfactants. All of the above allows us to conclude, with the help of mixture design, it was possible to evaluate the effect of ingredients in emulsions to optimize stability and predict texture. This results allow formulations to be made efficiently and systematically with the help of the equations obtained.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Químicaspa
dc.description.methodsEl uso de diseño de experimentos para la formulación de productos cosméticos es una metodología que en los últimos años se ha implementado con el fin de optimizar las formulaciones (Filipovic et al., 2017). Esto se debe, principalmente, a que minimiza costos y tiempo, a la vez que maximiza la eficiencia, productividad y calidad del producto y/o proceso (Benedetti et al., 2022). Una de las razones más importante para usar un diseño de experimentos es que permite conocer todo el sistema con la mínima cantidad de experimentos, algo que no sucede con ensayos separados de prueba y error con tanteo (Ripoll & Clement, 2016).spa
dc.format.extentxvi, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88172
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references2023 Global Beauty & Personal Care Trends—Mintel. (s. f.). Recuperado 26 de febrero de 2024, de https://clients.mintel.com/content/trend/2023-global-beauty-personal-caretrends?fromSearch=%3Ffreetext%3DTendencias%2520Globales%2520de%2520Belleza%2520y%2520Cuidado%2520Personal%2520%26resultPosition%3D1spa
dc.relation.referencesAdejokun, D. A., & Dodou, K. (2020). Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation. Cosmetics, 7(1), Article 1. https://doi.org/10.3390/cosmetics7010002spa
dc.relation.referencesAkbari, S., & Nour, A. H. (2018). Emulsion types, stability mechanisms and rheology: A review. International Journal of Innovative Research and Scientific Studies, 1(1), Article 1. https://doi.org/10.53894/ijirss.v1i1.4spa
dc.relation.referencesAlander, J. T. (2012). Chemical and Physical Properties of Emollients. En M. Lodén & H. I. Maibach (Eds.), Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers (pp. 399-417). Springer. https://doi.org/10.1007/978-3-642-27606-4_26spa
dc.relation.referencesAlbanese, J. (2016). Using Experimental Design to Optimize Formulations. En Handbook of Formulating Dermal Applications (pp. 261-286). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119364221.ch10spa
dc.relation.referencesAndersson, M. P., Bennetzen, M. V., Klamt, A., & Stipp, S. L. S. (2014). First-Principles Prediction of Liquid/Liquid Interfacial Tension. Journal of Chemical Theory and Computation, 10(8), 3401-3408. https://doi.org/10.1021/ct500266zspa
dc.relation.referencesBaki, G. (2022). Introduction to Cosmetic Formulation and Technology. John Wiley & Sons.spa
dc.relation.referencesBenedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517spa
dc.relation.referencesBerry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., & Tabor, R. F. (2015). Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 454, 226-237. https://doi.org/10.1016/j.jcis.2015.05.012spa
dc.relation.referencesBlaak, J., & Staib, P. (2022). An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. International Journal of Cosmetic Science, 44(1), 1-9. https://doi.org/10.1111/ics.12758spa
dc.relation.referencesCalixto, L. S., & Maia Campos, P. M. B. G. (2017). Physical–Mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. International Journal of Cosmetic Science, 39(5), 527-534. https://doi.org/10.1111/ics.12406spa
dc.relation.referencesCalvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2020). Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design, 161, 279-303. https://doi.org/10.1016/j.cherd.2020.07.014spa
dc.relation.referencesCasanova, F., & Santos, L. (2016). Encapsulation of cosmetic active ingredients for topical application – a review. Journal of Microencapsulation, 33(1), 1-17. https://doi.org/10.3109/02652048.2015.1115900spa
dc.relation.referencesCizauskaite, U., & Bernatoniene, J. (2018). Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation. Molecules, 23(6), 1428. https://doi.org/10.3390/molecules23061428spa
dc.relation.referencesCosmeticos | INVIMA. (s. f.). Recuperado 4 de mayo de 2024, de https://www.invima.gov.co/productos-vigilados/cosmeticos-aseo-plaguicidas-y-productos-de-higiene-domestica/cosmeticosspa
dc.relation.referencesDapčević Hadnađev, T., Dokić, P., Krstonošić, V., & Hadnađev, M. (2013). Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 115(3), 313-321. https://doi.org/10.1002/ejlt.201100321spa
dc.relation.referencesDetloff, T., Sobisch, T., & Lerche, D. (2007). Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technology, 174(1), 50-55. https://doi.org/10.1016/j.powtec.2006.10.021spa
dc.relation.referencesFabbron-Appas, C. T., Pandey, P., Parekh, H. S., Sales, C. C., Duque, M. D., Andréo-Filho, N., Lopes, P. S., de Noronha, R. L. F., & Leite-Silva, V. R. (2021). Impact of different emollient esters on body emulsions: Sensory, physicochemical, and biometrological characterization. Journal of Sensory Studies, 36(4), e12660. https://doi.org/10.1111/joss.12660spa
dc.relation.referencesFerreira, M., Matos, A., Couras, A., Marto, J., & Ribeiro, H. (2022). Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics, 9(4), Article 4. https://doi.org/10.3390/cosmetics9040072spa
dc.relation.referencesFilipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Towards satisfying performance of an O/W cosmetic emulsion: Screening of reformulation factors on textural and rheological properties using general experimental design. International Journal of Cosmetic Science, 39(5), 486-499. https://doi.org/10.1111/ics.12402spa
dc.relation.referencesGebhardt, H., Nagler, P., Buchholz, S., Cornelissen, S., Schulze, E., & Marx, A. (2016). Evonik: Bioeconomy and Biobased Products. En Industrial Biorenewables (pp. 219-243). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118843796.ch8spa
dc.relation.referencesGecol, H. (2006). The Basic Theory. En Chemistry and Technology of Surfactants (pp. 24-45). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470988596.ch2spa
dc.relation.referencesGilbert, L., Loisel, V., Savary, G., Grisel, M., & Picard, C. (2013). Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydrate Polymers, 93(2), 644-650. https://doi.org/10.1016/j.carbpol.2012.12.028spa
dc.relation.referencesGilbert, L., Picard, C., Savary, G., & Grisel, M. (2013). Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 150-163. https://doi.org/10.1016/j.colsurfa.2013.01.003spa
dc.relation.referencesGilbert, L., Savary, G., Grisel, M., & Picard, C. (2013). Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems, 124, 21-31. https://doi.org/10.1016/j.chemolab.2013.03.002spa
dc.relation.referencesGil-Castaño, G., & Cardona, R. (2020). Emolientes: Beneficios, elementos clave y aplicación clínica. Revista Alergia México, 67(2), 128-141.spa
dc.relation.referencesGómez, I., Calvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2022). A multiscale approach for the integrated design of emulsified cosmetic products. Chemical Engineering Science, 251, 117493. https://doi.org/10.1016/j.ces.2022.117493spa
dc.relation.referencesGranados-Bazán, E. L., Quiñones-Cisneros, S. E., & Deiters, U. K. (2021). Interfacial properties of binary mixtures of Lennard-Jones chains in planar interfaces by molecular dynamics simulation. The Journal of Chemical Physics, 154(8), 084704. https://doi.org/10.1063/5.0042340spa
dc.relation.referencesGuo, J., Wang, R., Zhang, S., & Antao, D. S. (2023). Temperature Dependency of the Apolar Surface Tension Component for Water and Its Role in Classifying Apolar and Polar Interfacial Interactions. The Journal of Physical Chemistry C, 127(36), 18167-18175. https://doi.org/10.1021/acs.jpcc.3c04095spa
dc.relation.referencesHong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123-131. https://doi.org/10.1016/j.jiec.2018.06.022spa
dc.relation.referencesHu, Y.-T., Ting, Y., Hu, J.-Y., & Hsieh, S.-C. (2017). Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, 25(1), 16-26. https://doi.org/10.1016/j.jfda.2016.10.021spa
dc.relation.referencesHuber, P. (2017). Chapter 37—Sensory Measurement—Evaluation and Testing of Cosmetic Products. En K. Sakamoto, R. Y. Lochhead, H. I. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology (pp. 617-633). Elsevier. https://doi.org/10.1016/B978-0-12-802005-0.00037-9spa
dc.relation.referencesHuynh, A., Garcia, A. g., Young, L. k., Szoboszlai, M., Liberatore, M. w., & Baki, G. (2021). Measurements meet perceptions: Rheology–texture–sensory relations when using green, bio-derived emollients in cosmetic emulsions. International Journal of Cosmetic Science, 43(1), 11-19. https://doi.org/10.1111/ics.12661spa
dc.relation.referencesJin, Y., Liu, D., & Hu, J. (2021). Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers, 13(7), 1127. https://doi.org/10.3390/polym13071127spa
dc.relation.referencesKhasa, H., Kilby, G., Chen, X., & Wang, C. (2021). Analytical band centrifugation for the separation and quantification of empty and full AAV particles. Molecular Therapy Methods & Clinical Development, 21, 585-591. https://doi.org/10.1016/j.omtm.2021.04.008spa
dc.relation.referencesKovács, A., Erős, I., & Csóka, I. (2016). Optimization and development of stable w/o/w cosmetic multiple emulsions by means of the Quality by Design approach. International Journal of Cosmetic Science, 38(2), 128-138. https://doi.org/10.1111/ics.12248spa
dc.relation.referencesKronberg, B., Holmberg, K., & Lindman, B. (2014). Types of Surfactants, their Synthesis, and Applications (pp. 1-47). https://doi.org/10.1002/9781118695968.ch1spa
dc.relation.referencesKrstonošić, V., Dokić, L., Nikolić, I., & Milanović, M. (2015). Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocolloids, 45, 9-17. https://doi.org/10.1016/j.foodhyd.2014.10.02spa
dc.relation.referencesLangevin, D. (2020). On the rupture of thin films made from aqueous surfactant solutions. Advances in Colloid and Interface Science, 275, 102075. https://doi.org/10.1016/j.cis.2019.102075spa
dc.relation.referencesLémery, E., Briançon, S., Chevalier, Y., Bordes, C., Oddos, T., Gohier, A., & Bolzinger, M.-A. (2015). Skin toxicity of surfactants: Structure/toxicity relationships. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 166-179. https://doi.org/10.1016/j.colsurfa.2015.01.019spa
dc.relation.referencesLima, M. T., Spiering, V. J., Kurt-Zerdeli, S. N., Brüggemann, D. Ch., Gradzielski, M., & Schomäcker, R. (2019). The hydrophilic-lipophilic balance of carboxylate and carbonate modified nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 569, 156-163. https://doi.org/10.1016/j.colsurfa.2019.03.001spa
dc.relation.referencesLv, G., Wang, F., Cai, W., Li, H., & Zhang, X. (2014). Influences of addition of hydrophilic surfactants on the W/O emulsions stabilized by lipophilic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 441-448. https://doi.org/10.1016/j.colsurfa.2014.06.031spa
dc.relation.referencesMadeira, P. P., Ferreira, L. A., Uversky, V. N., & Zaslavsky, B. Y. (2024). Polarity of Aqueous Solutions. Liquids, 4(1), Article 1. https://doi.org/10.3390/liquids4010005spa
dc.relation.referencesMarque, C., Lheritier, A., & Bacle, I. (2022). Sensory methods for cosmetics evaluation (pp. 169-196). https://doi.org/10.1016/B978-0-12-821939-3.00012-9spa
dc.relation.referencesMartínez Contreras, L. A. (2023). Contribución al desarrollo de una formulación tópica a base de panela con posible actividad cicatrizante [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/84298/1032467073.2023.pdf?sequence=2&isAllowed=yspa
dc.relation.referencesMcClements, D. J., & Jafari, S. M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, 251, 55-79. https://doi.org/10.1016/j.cis.2017.12.001spa
dc.relation.referencesMedina, C. A. C., Martínez, J. J. S., León, E. A., & Boada, W. M. (2013). Análisis reológico para predecir y mejorar el comportamiento hidráulico durante la perforación de un pozo. Fuentes, el reventón energético, 11(1), Article 1. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/3613spa
dc.relation.referencesMewis, J., & Wagner, N. J. (Eds.). (2011). Suspensions in viscoelastic media. En Colloidal Suspension Rheology (pp. 325-353). Cambridge University Press. https://doi.org/10.1017/CBO9780511977978.013spa
dc.relation.referencesMisono, T. (2019). Interfacial Tension Between Water and Oil. En M. Abe (Ed.), Measurement Techniques and Practices of Colloid and Interface Phenomena (pp. 39-44). Springer. https://doi.org/10.1007/978-981-13-5931-6_6spa
dc.relation.referencesNehme, R., Blel, W., Montillet, A., Bellettre, J., & Marchal, L. (2021). Production of oil in water emulsions in microchannels at high throughput: Evaluation of emulsions in view of cosmetic, nutraceutical or pharmaceutical applications. Chemical Engineering and Processing - Process Intensification, 161, 108301. https://doi.org/10.1016/j.cep.2021.108301spa
dc.relation.referencesNoboa, G., Márquez, L., & López, J.-C. (2017). Tamaño de gota: Factor determinante sobre la velocidad de clarificación de una emulsión o/w. 38.spa
dc.relation.referencesOs, N. M. van, Haak, J. R., & Rupert, L. A. M. (2012). Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants. Elsevierspa
dc.relation.referencesOshima, K., Nakamura, K., Guo, H., & Smith, R. L. (2022). Mini-review on application of analytical centrifugation, ultracentrifugation and centrifugal devices to phase equilibria and separation processes. Fluid Phase Equilibria, 558, 113457. https://doi.org/10.1016/j.fluid.2022.113457spa
dc.relation.referencesPasquali, R. C., Taurozzi, M. P., & Bregni, C. (2008). Some considerations about the hydrophilic–lipophilic balance system. International Journal of Pharmaceutics, 356(1), 44-51. https://doi.org/10.1016/j.ijpharm.2007.12.034spa
dc.relation.referencesPosocco, P., Perazzo, A., Preziosi, V., Laurini, E., Pricl, S., & Guido, S. (2016). Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: Comparison between experiments and molecular simulations. RSC Advances, 6(6), 4723-4729. https://doi.org/10.1039/C5RA24262Bspa
dc.relation.referencesPulido, H. G. (2008). Análisis y diseño de experimentos. McGraw-Hill.spa
dc.relation.referencesRangel, F. M. (s. f.). Análisis multiescala de propiedades asociadas a la estabilidad de emulsiones directas altamente concentradas.spa
dc.relation.referencesRavera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021a). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344. https://doi.org/10.1016/j.cis.2020.102344spa
dc.relation.referencesRavera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021b). Emulsification and emulsion stability: The role of the interfacial properties—ScienceDirect. Advances in Colloid and Interface Science, 288, 102344.spa
dc.relation.referencesRayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., & Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48-62. https://doi.org/10.1016/j.colsurfa.2014.03.053spa
dc.relation.referencesRico, F., Mazabel, A., Egurrola, G., Pulido, J., Barrios, N., Marquez, R., & García, J. (2024). Meta-Analysis and Analytical Methods in Cosmetics Formulation: A Review. 11(1), 1-45.spa
dc.relation.referencesRiemer, J., & Russo, T. (2016). The Use of Thickeners in Topically Applied Formulations. En Handbook of Formulating Dermal Applications (pp. 29-44). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119364221.ch2spa
dc.relation.referencesRipoll, L., & Clement, Y. (2016). Polyamide Microparticles Containing Vitamin C by Interfacial Polymerization: An Approach by Design of Experimentation. Cosmetics, 38(3), 1-17.spa
dc.relation.referencesRoso, A., Merat, E., & Cambos, S. (2022). Contribution of cosmetic rheology modifiers and texture to emotions, sharing experience on methodologies—ScienceDirect. Science Talks, 1, 100002.spa
dc.relation.referencesSakamoto, K., Lochhead, R. Y., Maibach, H. I., & Yamashita, Y. (2017). Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier.spa
dc.relation.referencesSavary, G., Grisel, M., & Picard, C. (2016). Cosmetics and Personal Care Products. En O. Olatunji (Ed.), Natural Polymers: Industry Techniques and Applications (pp. 219-261). Springer International Publishing. https://doi.org/10.1007/978-3-319-26414-1_8spa
dc.relation.referencesSeweryn, A. (2018). Interactions between surfactants and the skin – Theory and practice. Advances in Colloid and Interface Science, 256, 242-255. https://doi.org/10.1016/j.cis.2018.04.002spa
dc.relation.referencesShafiei, M., Balhoff, M., & Hayman, N. W. (2018). Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer, 139, 44-51. https://doi.org/10.1016/j.polymer.2018.01.080spa
dc.relation.referencesShao, P., Feng, J., Sun, P., Xiang, N., Lu, B., & Qiu, D. (2020). Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International (Ottawa, Ont.), 137, 109376. https://doi.org/10.1016/j.foodres.2020.109376spa
dc.relation.referencesSharma, S., Ahmad, U., Akhtar, J., Islam, A., Khan, M. M., Rizvi, N., Sharma, S., Ahmad, U., Akhtar, J., Islam, A., Khan, M. M., & Rizvi, N. (2023). The Art and Science of Cosmetics: Understanding the Ingredients. En Cosmetic Products and Industry—New Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.112925spa
dc.relation.referencesSilva, B. F. B., Rodríguez-Abreu, C., & Vilanova, N. (2016). Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid & Interface Science, 25, 98-108. https://doi.org/10.1016/j.cocis.2016.07.006spa
dc.relation.referencesSinzato, Y. Z., Sousa Dias, N. J., & Cunha, F. R. (2017). An experimental investigation of the interfacial tension between liquid-liquid mixtures in the presence of surfactants. Experimental Thermal and Fluid Science, 85, 370-378. https://doi.org/10.1016/j.expthermflusci.2017.03.011spa
dc.relation.referencesSun, W., Sun, D., Wei, Y., Liu, S., & Zhang, S. (2007). Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: Adsorption and thickening effect. Journal of Colloid and Interface Science, 311(1), 228-236. https://doi.org/10.1016/j.jcis.2007.02.082spa
dc.relation.referencesTadros, T. F. (2009). Emulsion Science and Technology. Wiley.spa
dc.relation.referencesTadros, T. F. (2013a). Emulsion Formation, Stability, and Rheology. En Emulsion Formation and Stability (pp. 1-75). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527647941.ch1spa
dc.relation.referencesTadros, T. F. (2013b). Rheology Modifiers, Thickeners, and Gels. En Product Design and Engineering (pp. 75-94). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527654741.ch3spa
dc.relation.referencesTadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG.spa
dc.relation.referencesTerescenco, D., Picard, C., Clemenceau, F., Grisel, M., & Savary, G. (2018). Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536, 10-19. https://doi.org/10.1016/j.colsurfa.2017.08.017spa
dc.relation.referencesTian, Y., Zhou, J., He, C., He, L., Li, X., & Sui, H. (2022). The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes, 10(4), Article 4. https://doi.org/10.3390/pr10040738spa
dc.relation.referencesTipler, P. A., & Mosca, G. (2004). Física para la ciencia y la tecnología. I. Reverte.spa
dc.relation.referencesWei, Y., Tong, Z., Dai, L., Ma, P., Zhang, M., Liu, J., Mao, L., Yuan, F., & Gao, Y. (2020). Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. Journal of Colloid and Interface Science, 563, 291-307. https://doi.org/10.1016/j.jcis.2019.12.085spa
dc.relation.referencesXie, Z., Li, K., Tang, W., Yang, S., & Sun, Y. (2022). The suspending appearance of poly(acrylic acid)-based rheology modifier in high-content surfactant: The effect of polymer structure and molecular weight on the rheological properties of the complex systems. Journal of Applied Polymer Science, 139(48), e53236. https://doi.org/10.1002/app.53236spa
dc.relation.referencesYadav, N. P., Meher, J. G., Pandey, N., Luqman, S., Yadav, K. S., & Chanda, D. (2013). Enrichment, Development, and Assessment of Indian Basil Oil Based Antiseptic Cream Formulation Utilizing Hydrophilic-Lipophilic Balance Approach. BioMed Research International, 2013, e410686. https://doi.org/10.1155/2013/410686spa
dc.relation.referencesYamashita, Y., & Sakamoto, K. (2016). Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant. En Encyclopedia of Biocolloid and Biointerface Science 2V Set (pp. 570-574). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119075691.ch45spa
dc.relation.referencesYehye, W. A., Rahman, N. A., Ariffin, A., Abd Hamid, S. B., Alhadi, A. A., Kadir, F. A., & Yaeghoobi, M. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 101, 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026spa
dc.relation.referencesZhang, X., Zhou, T., & Ng, K. M. (2021). Optimization-based cosmetic formulation: Integration of mechanistic model, surrogate model, and heuristics. AIChE Journal, 67(1), e17064. https://doi.org/10.1002/aic.17064spa
dc.relation.referencesZillich, O. V., Schweiggert-Weisz, U., Eisner, P., & Kerscher, M. (2015). Polyphenols as active ingredients for cosmetic products. International Journal of Cosmetic Science, 37(5), 455-464. https://doi.org/10.1111/ics.12218spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.lembEMULSIONESspa
dc.subject.lembEmulsionseng
dc.subject.lembMEZCLASspa
dc.subject.lembMixtureseng
dc.subject.lembCOSMETICOSspa
dc.subject.lembCosmeticseng
dc.subject.lembINDUSTRIA DE COSMETICOSspa
dc.subject.lembCosmetics industryeng
dc.subject.lembAGENTES HUMECTANTESspa
dc.subject.lembWetting agentseng
dc.subject.lembAGENTES TENSOACTIVOSspa
dc.subject.lembSurface active agentseng
dc.subject.proposalEstabilidadspa
dc.subject.proposalTexturaspa
dc.subject.proposalEmolientespa
dc.subject.proposalModificador reológicospa
dc.subject.proposalTensoactivospa
dc.subject.proposalDiseño de experimentosspa
dc.subject.proposalStabilityeng
dc.subject.proposalTextureeng
dc.subject.proposalEmollienteng
dc.subject.proposalRheology modifiereng
dc.subject.proposalSurfactanteng
dc.subject.proposalDesign of experimentseng
dc.titleHerramienta sistemática de formulación : uso de diseño de mezclas para evaluar el efecto de las variables de formulación sobre la estabilidad y textura en emulsiones cosméticasspa
dc.title.translatedSystematic formulation tool : use of mixture design to evaluate the effect of formulation variables on stability and texture in cosmetic emulsionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032492777 2024.pdf
Tamaño:
2.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: