Herramienta sistemática de formulación : uso de diseño de mezclas para evaluar el efecto de las variables de formulación sobre la estabilidad y textura en emulsiones cosméticas
dc.contributor.advisor | Palomeque Forero, Liliam Alexandra | spa |
dc.contributor.advisor | García Galvis, Johnbrynner | spa |
dc.contributor.author | Mazábel Ríos, Ángela del Pilar | spa |
dc.date.accessioned | 2025-05-15T12:35:33Z | |
dc.date.available | 2025-05-15T12:35:33Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Las emulsiones son sistemas claves en la industria cosmética debido a su versatilidad y alta demanda. Sin embargo, para cumplir con las expectativas del consumidor, el diseño de estos productos presenta grandes desafíos en cuanto a su formulación. En el presente trabajo, se evaluó el efecto de emulsificantes, emolientes y modificadores reológicos, ingredientes clave para controlar la estabilidad y la textura de las emulsiones. Como primera fase del proyecto, mediante un diseño de mezclas, se variaron tres emulsificantes (Tensoactivo 1, Tensoactivo 2 y Tensoactivo 3) y tres emolientes (triglicérido caprílico/cáprico, cocoato de isoamilo y aceite de jojoba) en una fórmula base logrando optimizar una emulsión en función de la estabilidad y textura. Con la emulsión optimizada obtenida como un sistema estable y fluido, se evaluó el impacto de tres modificadores reológicos (goma xantana, hidroxietilcelulosa y carbómero) siguiendo de nuevo, un diseño de mezclas. Para caracterizar los sistemas, se utilizó centrifugación analítica, reología, tensión interfacial y texturómetro. Con el diseño se identificó que el Tensoactivo 1 generó emulsiones más estables, con índices de inestabilidad menores a 0,7 y velocidad de separación inferiores a 28,54 µm/s. Contrario al Tensoactivo 2 y Tensoactivo 3 que presentaron índices de inestabilidad superiores a 0,75 y velocidades de separación de hasta 59 y 194 µm/s respectivamente. Además, se evidenció que los modificadores reológicos aumentan la estabilidad de los sistemas, reduciendo los índices de inestabilidad y disminuyendo hasta tres veces la velocidad de separación. Los modificadores reológicos demostraron tener la mayor influencia en: índice de consistencia, módulo elástico, extensibilidad y trabajo de adhesión. Esto se refleja en un aumento significativo en estos parámetros en comparación con las formulaciones que contenían solo tensoactivos. Todo lo anterior permite concluir que, con ayuda del diseño de mezclas, se logró evaluar el efecto de los ingredientes en las emulsiones para optimizar la estabilidad y predecir la textura. Lo encontrado permite realizar formulaciones de manera eficiente y sistemática con ayuda de las ecuaciones obtenidas (Texto tomado de la fuente). | spa |
dc.description.abstract | Emulsions are key systems in the cosmetics industry due to their versatility and high demand. However, to satisfy the consumer expectations, the design of these products presents big challenges in their formulation. In the present work, the effect of emulsifiers, emollients and rheological modifiers, key ingredients to control the stability and texture of emulsions, was evaluated. As a first phase of the project, through a mixture design, three emulsifiers (Surfactant 1, Surfactant 2 and Surfactant 3) and three emollients (caprylic/capric triglyceride, isoamyl cocoate and jojoba oil) were varied in a base formula, obtaining an emulsion optimization based on stability and texture. With the optimized emulsion obtained as a stable and fluid system, the impact of three rheological modifiers (Xanthan gum, Hydroxyethylcellulose and Carbomer) was evaluated again following a mixture design. To characterize the systems, analytical centrifugation, rheology, interfacial tension and texturometer were used. The design identified that Surfactant 1 generated more stable emulsions, with instability indices less than 0.7 and separation velocity lower than 28.54 µm/s. In contrast, Surfactant 2 and Surfactant 3 has instability indices greater than 0.75 and separation velocities of up to 59 and 194 µm/s respectively. In addition, rheological modifiers increase the stability of the systems, reducing instability indices and decreasing the separation speed up to three times. Rheological modifiers have the most influence on: consistency index, elastic modulus, extensibility and work of adhesion. This is seen in a significant increase in these parameters compared to formulations containing only surfactants. All of the above allows us to conclude, with the help of mixture design, it was possible to evaluate the effect of ingredients in emulsions to optimize stability and predict texture. This results allow formulations to be made efficiently and systematically with the help of the equations obtained. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Química | spa |
dc.description.methods | El uso de diseño de experimentos para la formulación de productos cosméticos es una metodología que en los últimos años se ha implementado con el fin de optimizar las formulaciones (Filipovic et al., 2017). Esto se debe, principalmente, a que minimiza costos y tiempo, a la vez que maximiza la eficiencia, productividad y calidad del producto y/o proceso (Benedetti et al., 2022). Una de las razones más importante para usar un diseño de experimentos es que permite conocer todo el sistema con la mínima cantidad de experimentos, algo que no sucede con ensayos separados de prueba y error con tanteo (Ripoll & Clement, 2016). | spa |
dc.format.extent | xvi, 103 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88172 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | 2023 Global Beauty & Personal Care Trends—Mintel. (s. f.). Recuperado 26 de febrero de 2024, de https://clients.mintel.com/content/trend/2023-global-beauty-personal-caretrends?fromSearch=%3Ffreetext%3DTendencias%2520Globales%2520de%2520Belleza%2520y%2520Cuidado%2520Personal%2520%26resultPosition%3D1 | spa |
dc.relation.references | Adejokun, D. A., & Dodou, K. (2020). Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation. Cosmetics, 7(1), Article 1. https://doi.org/10.3390/cosmetics7010002 | spa |
dc.relation.references | Akbari, S., & Nour, A. H. (2018). Emulsion types, stability mechanisms and rheology: A review. International Journal of Innovative Research and Scientific Studies, 1(1), Article 1. https://doi.org/10.53894/ijirss.v1i1.4 | spa |
dc.relation.references | Alander, J. T. (2012). Chemical and Physical Properties of Emollients. En M. Lodén & H. I. Maibach (Eds.), Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers (pp. 399-417). Springer. https://doi.org/10.1007/978-3-642-27606-4_26 | spa |
dc.relation.references | Albanese, J. (2016). Using Experimental Design to Optimize Formulations. En Handbook of Formulating Dermal Applications (pp. 261-286). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119364221.ch10 | spa |
dc.relation.references | Andersson, M. P., Bennetzen, M. V., Klamt, A., & Stipp, S. L. S. (2014). First-Principles Prediction of Liquid/Liquid Interfacial Tension. Journal of Chemical Theory and Computation, 10(8), 3401-3408. https://doi.org/10.1021/ct500266z | spa |
dc.relation.references | Baki, G. (2022). Introduction to Cosmetic Formulation and Technology. John Wiley & Sons. | spa |
dc.relation.references | Benedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517 | spa |
dc.relation.references | Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., & Tabor, R. F. (2015). Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 454, 226-237. https://doi.org/10.1016/j.jcis.2015.05.012 | spa |
dc.relation.references | Blaak, J., & Staib, P. (2022). An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. International Journal of Cosmetic Science, 44(1), 1-9. https://doi.org/10.1111/ics.12758 | spa |
dc.relation.references | Calixto, L. S., & Maia Campos, P. M. B. G. (2017). Physical–Mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. International Journal of Cosmetic Science, 39(5), 527-534. https://doi.org/10.1111/ics.12406 | spa |
dc.relation.references | Calvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2020). Integrated design of emulsified cosmetic products: A review. Chemical Engineering Research and Design, 161, 279-303. https://doi.org/10.1016/j.cherd.2020.07.014 | spa |
dc.relation.references | Casanova, F., & Santos, L. (2016). Encapsulation of cosmetic active ingredients for topical application – a review. Journal of Microencapsulation, 33(1), 1-17. https://doi.org/10.3109/02652048.2015.1115900 | spa |
dc.relation.references | Cizauskaite, U., & Bernatoniene, J. (2018). Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation. Molecules, 23(6), 1428. https://doi.org/10.3390/molecules23061428 | spa |
dc.relation.references | Cosmeticos | INVIMA. (s. f.). Recuperado 4 de mayo de 2024, de https://www.invima.gov.co/productos-vigilados/cosmeticos-aseo-plaguicidas-y-productos-de-higiene-domestica/cosmeticos | spa |
dc.relation.references | Dapčević Hadnađev, T., Dokić, P., Krstonošić, V., & Hadnađev, M. (2013). Influence of oil phase concentration on droplet size distribution and stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 115(3), 313-321. https://doi.org/10.1002/ejlt.201100321 | spa |
dc.relation.references | Detloff, T., Sobisch, T., & Lerche, D. (2007). Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technology, 174(1), 50-55. https://doi.org/10.1016/j.powtec.2006.10.021 | spa |
dc.relation.references | Fabbron-Appas, C. T., Pandey, P., Parekh, H. S., Sales, C. C., Duque, M. D., Andréo-Filho, N., Lopes, P. S., de Noronha, R. L. F., & Leite-Silva, V. R. (2021). Impact of different emollient esters on body emulsions: Sensory, physicochemical, and biometrological characterization. Journal of Sensory Studies, 36(4), e12660. https://doi.org/10.1111/joss.12660 | spa |
dc.relation.references | Ferreira, M., Matos, A., Couras, A., Marto, J., & Ribeiro, H. (2022). Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics, 9(4), Article 4. https://doi.org/10.3390/cosmetics9040072 | spa |
dc.relation.references | Filipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Towards satisfying performance of an O/W cosmetic emulsion: Screening of reformulation factors on textural and rheological properties using general experimental design. International Journal of Cosmetic Science, 39(5), 486-499. https://doi.org/10.1111/ics.12402 | spa |
dc.relation.references | Gebhardt, H., Nagler, P., Buchholz, S., Cornelissen, S., Schulze, E., & Marx, A. (2016). Evonik: Bioeconomy and Biobased Products. En Industrial Biorenewables (pp. 219-243). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118843796.ch8 | spa |
dc.relation.references | Gecol, H. (2006). The Basic Theory. En Chemistry and Technology of Surfactants (pp. 24-45). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470988596.ch2 | spa |
dc.relation.references | Gilbert, L., Loisel, V., Savary, G., Grisel, M., & Picard, C. (2013). Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydrate Polymers, 93(2), 644-650. https://doi.org/10.1016/j.carbpol.2012.12.028 | spa |
dc.relation.references | Gilbert, L., Picard, C., Savary, G., & Grisel, M. (2013). Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 150-163. https://doi.org/10.1016/j.colsurfa.2013.01.003 | spa |
dc.relation.references | Gilbert, L., Savary, G., Grisel, M., & Picard, C. (2013). Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems, 124, 21-31. https://doi.org/10.1016/j.chemolab.2013.03.002 | spa |
dc.relation.references | Gil-Castaño, G., & Cardona, R. (2020). Emolientes: Beneficios, elementos clave y aplicación clínica. Revista Alergia México, 67(2), 128-141. | spa |
dc.relation.references | Gómez, I., Calvo, F., Gómez, J. M., Ricardez-Sandoval, L., & Alvarez, O. (2022). A multiscale approach for the integrated design of emulsified cosmetic products. Chemical Engineering Science, 251, 117493. https://doi.org/10.1016/j.ces.2022.117493 | spa |
dc.relation.references | Granados-Bazán, E. L., Quiñones-Cisneros, S. E., & Deiters, U. K. (2021). Interfacial properties of binary mixtures of Lennard-Jones chains in planar interfaces by molecular dynamics simulation. The Journal of Chemical Physics, 154(8), 084704. https://doi.org/10.1063/5.0042340 | spa |
dc.relation.references | Guo, J., Wang, R., Zhang, S., & Antao, D. S. (2023). Temperature Dependency of the Apolar Surface Tension Component for Water and Its Role in Classifying Apolar and Polar Interfacial Interactions. The Journal of Physical Chemistry C, 127(36), 18167-18175. https://doi.org/10.1021/acs.jpcc.3c04095 | spa |
dc.relation.references | Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123-131. https://doi.org/10.1016/j.jiec.2018.06.022 | spa |
dc.relation.references | Hu, Y.-T., Ting, Y., Hu, J.-Y., & Hsieh, S.-C. (2017). Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, 25(1), 16-26. https://doi.org/10.1016/j.jfda.2016.10.021 | spa |
dc.relation.references | Huber, P. (2017). Chapter 37—Sensory Measurement—Evaluation and Testing of Cosmetic Products. En K. Sakamoto, R. Y. Lochhead, H. I. Maibach, & Y. Yamashita (Eds.), Cosmetic Science and Technology (pp. 617-633). Elsevier. https://doi.org/10.1016/B978-0-12-802005-0.00037-9 | spa |
dc.relation.references | Huynh, A., Garcia, A. g., Young, L. k., Szoboszlai, M., Liberatore, M. w., & Baki, G. (2021). Measurements meet perceptions: Rheology–texture–sensory relations when using green, bio-derived emollients in cosmetic emulsions. International Journal of Cosmetic Science, 43(1), 11-19. https://doi.org/10.1111/ics.12661 | spa |
dc.relation.references | Jin, Y., Liu, D., & Hu, J. (2021). Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers, 13(7), 1127. https://doi.org/10.3390/polym13071127 | spa |
dc.relation.references | Khasa, H., Kilby, G., Chen, X., & Wang, C. (2021). Analytical band centrifugation for the separation and quantification of empty and full AAV particles. Molecular Therapy Methods & Clinical Development, 21, 585-591. https://doi.org/10.1016/j.omtm.2021.04.008 | spa |
dc.relation.references | Kovács, A., Erős, I., & Csóka, I. (2016). Optimization and development of stable w/o/w cosmetic multiple emulsions by means of the Quality by Design approach. International Journal of Cosmetic Science, 38(2), 128-138. https://doi.org/10.1111/ics.12248 | spa |
dc.relation.references | Kronberg, B., Holmberg, K., & Lindman, B. (2014). Types of Surfactants, their Synthesis, and Applications (pp. 1-47). https://doi.org/10.1002/9781118695968.ch1 | spa |
dc.relation.references | Krstonošić, V., Dokić, L., Nikolić, I., & Milanović, M. (2015). Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocolloids, 45, 9-17. https://doi.org/10.1016/j.foodhyd.2014.10.02 | spa |
dc.relation.references | Langevin, D. (2020). On the rupture of thin films made from aqueous surfactant solutions. Advances in Colloid and Interface Science, 275, 102075. https://doi.org/10.1016/j.cis.2019.102075 | spa |
dc.relation.references | Lémery, E., Briançon, S., Chevalier, Y., Bordes, C., Oddos, T., Gohier, A., & Bolzinger, M.-A. (2015). Skin toxicity of surfactants: Structure/toxicity relationships. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 166-179. https://doi.org/10.1016/j.colsurfa.2015.01.019 | spa |
dc.relation.references | Lima, M. T., Spiering, V. J., Kurt-Zerdeli, S. N., Brüggemann, D. Ch., Gradzielski, M., & Schomäcker, R. (2019). The hydrophilic-lipophilic balance of carboxylate and carbonate modified nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 569, 156-163. https://doi.org/10.1016/j.colsurfa.2019.03.001 | spa |
dc.relation.references | Lv, G., Wang, F., Cai, W., Li, H., & Zhang, X. (2014). Influences of addition of hydrophilic surfactants on the W/O emulsions stabilized by lipophilic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 441-448. https://doi.org/10.1016/j.colsurfa.2014.06.031 | spa |
dc.relation.references | Madeira, P. P., Ferreira, L. A., Uversky, V. N., & Zaslavsky, B. Y. (2024). Polarity of Aqueous Solutions. Liquids, 4(1), Article 1. https://doi.org/10.3390/liquids4010005 | spa |
dc.relation.references | Marque, C., Lheritier, A., & Bacle, I. (2022). Sensory methods for cosmetics evaluation (pp. 169-196). https://doi.org/10.1016/B978-0-12-821939-3.00012-9 | spa |
dc.relation.references | Martínez Contreras, L. A. (2023). Contribución al desarrollo de una formulación tópica a base de panela con posible actividad cicatrizante [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/84298/1032467073.2023.pdf?sequence=2&isAllowed=y | spa |
dc.relation.references | McClements, D. J., & Jafari, S. M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, 251, 55-79. https://doi.org/10.1016/j.cis.2017.12.001 | spa |
dc.relation.references | Medina, C. A. C., Martínez, J. J. S., León, E. A., & Boada, W. M. (2013). Análisis reológico para predecir y mejorar el comportamiento hidráulico durante la perforación de un pozo. Fuentes, el reventón energético, 11(1), Article 1. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/3613 | spa |
dc.relation.references | Mewis, J., & Wagner, N. J. (Eds.). (2011). Suspensions in viscoelastic media. En Colloidal Suspension Rheology (pp. 325-353). Cambridge University Press. https://doi.org/10.1017/CBO9780511977978.013 | spa |
dc.relation.references | Misono, T. (2019). Interfacial Tension Between Water and Oil. En M. Abe (Ed.), Measurement Techniques and Practices of Colloid and Interface Phenomena (pp. 39-44). Springer. https://doi.org/10.1007/978-981-13-5931-6_6 | spa |
dc.relation.references | Nehme, R., Blel, W., Montillet, A., Bellettre, J., & Marchal, L. (2021). Production of oil in water emulsions in microchannels at high throughput: Evaluation of emulsions in view of cosmetic, nutraceutical or pharmaceutical applications. Chemical Engineering and Processing - Process Intensification, 161, 108301. https://doi.org/10.1016/j.cep.2021.108301 | spa |
dc.relation.references | Noboa, G., Márquez, L., & López, J.-C. (2017). Tamaño de gota: Factor determinante sobre la velocidad de clarificación de una emulsión o/w. 38. | spa |
dc.relation.references | Os, N. M. van, Haak, J. R., & Rupert, L. A. M. (2012). Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants. Elsevier | spa |
dc.relation.references | Oshima, K., Nakamura, K., Guo, H., & Smith, R. L. (2022). Mini-review on application of analytical centrifugation, ultracentrifugation and centrifugal devices to phase equilibria and separation processes. Fluid Phase Equilibria, 558, 113457. https://doi.org/10.1016/j.fluid.2022.113457 | spa |
dc.relation.references | Pasquali, R. C., Taurozzi, M. P., & Bregni, C. (2008). Some considerations about the hydrophilic–lipophilic balance system. International Journal of Pharmaceutics, 356(1), 44-51. https://doi.org/10.1016/j.ijpharm.2007.12.034 | spa |
dc.relation.references | Posocco, P., Perazzo, A., Preziosi, V., Laurini, E., Pricl, S., & Guido, S. (2016). Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: Comparison between experiments and molecular simulations. RSC Advances, 6(6), 4723-4729. https://doi.org/10.1039/C5RA24262B | spa |
dc.relation.references | Pulido, H. G. (2008). Análisis y diseño de experimentos. McGraw-Hill. | spa |
dc.relation.references | Rangel, F. M. (s. f.). Análisis multiescala de propiedades asociadas a la estabilidad de emulsiones directas altamente concentradas. | spa |
dc.relation.references | Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021a). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344. https://doi.org/10.1016/j.cis.2020.102344 | spa |
dc.relation.references | Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021b). Emulsification and emulsion stability: The role of the interfacial properties—ScienceDirect. Advances in Colloid and Interface Science, 288, 102344. | spa |
dc.relation.references | Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., & Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48-62. https://doi.org/10.1016/j.colsurfa.2014.03.053 | spa |
dc.relation.references | Rico, F., Mazabel, A., Egurrola, G., Pulido, J., Barrios, N., Marquez, R., & García, J. (2024). Meta-Analysis and Analytical Methods in Cosmetics Formulation: A Review. 11(1), 1-45. | spa |
dc.relation.references | Riemer, J., & Russo, T. (2016). The Use of Thickeners in Topically Applied Formulations. En Handbook of Formulating Dermal Applications (pp. 29-44). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119364221.ch2 | spa |
dc.relation.references | Ripoll, L., & Clement, Y. (2016). Polyamide Microparticles Containing Vitamin C by Interfacial Polymerization: An Approach by Design of Experimentation. Cosmetics, 38(3), 1-17. | spa |
dc.relation.references | Roso, A., Merat, E., & Cambos, S. (2022). Contribution of cosmetic rheology modifiers and texture to emotions, sharing experience on methodologies—ScienceDirect. Science Talks, 1, 100002. | spa |
dc.relation.references | Sakamoto, K., Lochhead, R. Y., Maibach, H. I., & Yamashita, Y. (2017). Cosmetic Science and Technology: Theoretical Principles and Applications. Elsevier. | spa |
dc.relation.references | Savary, G., Grisel, M., & Picard, C. (2016). Cosmetics and Personal Care Products. En O. Olatunji (Ed.), Natural Polymers: Industry Techniques and Applications (pp. 219-261). Springer International Publishing. https://doi.org/10.1007/978-3-319-26414-1_8 | spa |
dc.relation.references | Seweryn, A. (2018). Interactions between surfactants and the skin – Theory and practice. Advances in Colloid and Interface Science, 256, 242-255. https://doi.org/10.1016/j.cis.2018.04.002 | spa |
dc.relation.references | Shafiei, M., Balhoff, M., & Hayman, N. W. (2018). Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel. Polymer, 139, 44-51. https://doi.org/10.1016/j.polymer.2018.01.080 | spa |
dc.relation.references | Shao, P., Feng, J., Sun, P., Xiang, N., Lu, B., & Qiu, D. (2020). Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International (Ottawa, Ont.), 137, 109376. https://doi.org/10.1016/j.foodres.2020.109376 | spa |
dc.relation.references | Sharma, S., Ahmad, U., Akhtar, J., Islam, A., Khan, M. M., Rizvi, N., Sharma, S., Ahmad, U., Akhtar, J., Islam, A., Khan, M. M., & Rizvi, N. (2023). The Art and Science of Cosmetics: Understanding the Ingredients. En Cosmetic Products and Industry—New Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.112925 | spa |
dc.relation.references | Silva, B. F. B., Rodríguez-Abreu, C., & Vilanova, N. (2016). Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid & Interface Science, 25, 98-108. https://doi.org/10.1016/j.cocis.2016.07.006 | spa |
dc.relation.references | Sinzato, Y. Z., Sousa Dias, N. J., & Cunha, F. R. (2017). An experimental investigation of the interfacial tension between liquid-liquid mixtures in the presence of surfactants. Experimental Thermal and Fluid Science, 85, 370-378. https://doi.org/10.1016/j.expthermflusci.2017.03.011 | spa |
dc.relation.references | Sun, W., Sun, D., Wei, Y., Liu, S., & Zhang, S. (2007). Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: Adsorption and thickening effect. Journal of Colloid and Interface Science, 311(1), 228-236. https://doi.org/10.1016/j.jcis.2007.02.082 | spa |
dc.relation.references | Tadros, T. F. (2009). Emulsion Science and Technology. Wiley. | spa |
dc.relation.references | Tadros, T. F. (2013a). Emulsion Formation, Stability, and Rheology. En Emulsion Formation and Stability (pp. 1-75). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527647941.ch1 | spa |
dc.relation.references | Tadros, T. F. (2013b). Rheology Modifiers, Thickeners, and Gels. En Product Design and Engineering (pp. 75-94). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527654741.ch3 | spa |
dc.relation.references | Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. Walter de Gruyter GmbH & Co KG. | spa |
dc.relation.references | Terescenco, D., Picard, C., Clemenceau, F., Grisel, M., & Savary, G. (2018). Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536, 10-19. https://doi.org/10.1016/j.colsurfa.2017.08.017 | spa |
dc.relation.references | Tian, Y., Zhou, J., He, C., He, L., Li, X., & Sui, H. (2022). The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes, 10(4), Article 4. https://doi.org/10.3390/pr10040738 | spa |
dc.relation.references | Tipler, P. A., & Mosca, G. (2004). Física para la ciencia y la tecnología. I. Reverte. | spa |
dc.relation.references | Wei, Y., Tong, Z., Dai, L., Ma, P., Zhang, M., Liu, J., Mao, L., Yuan, F., & Gao, Y. (2020). Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. Journal of Colloid and Interface Science, 563, 291-307. https://doi.org/10.1016/j.jcis.2019.12.085 | spa |
dc.relation.references | Xie, Z., Li, K., Tang, W., Yang, S., & Sun, Y. (2022). The suspending appearance of poly(acrylic acid)-based rheology modifier in high-content surfactant: The effect of polymer structure and molecular weight on the rheological properties of the complex systems. Journal of Applied Polymer Science, 139(48), e53236. https://doi.org/10.1002/app.53236 | spa |
dc.relation.references | Yadav, N. P., Meher, J. G., Pandey, N., Luqman, S., Yadav, K. S., & Chanda, D. (2013). Enrichment, Development, and Assessment of Indian Basil Oil Based Antiseptic Cream Formulation Utilizing Hydrophilic-Lipophilic Balance Approach. BioMed Research International, 2013, e410686. https://doi.org/10.1155/2013/410686 | spa |
dc.relation.references | Yamashita, Y., & Sakamoto, K. (2016). Hydrophilic–Lipophilic Balance (HLB): Classical Indexation and Novel Indexation of Surfactant. En Encyclopedia of Biocolloid and Biointerface Science 2V Set (pp. 570-574). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119075691.ch45 | spa |
dc.relation.references | Yehye, W. A., Rahman, N. A., Ariffin, A., Abd Hamid, S. B., Alhadi, A. A., Kadir, F. A., & Yaeghoobi, M. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 101, 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026 | spa |
dc.relation.references | Zhang, X., Zhou, T., & Ng, K. M. (2021). Optimization-based cosmetic formulation: Integration of mechanistic model, surrogate model, and heuristics. AIChE Journal, 67(1), e17064. https://doi.org/10.1002/aic.17064 | spa |
dc.relation.references | Zillich, O. V., Schweiggert-Weisz, U., Eisner, P., & Kerscher, M. (2015). Polyphenols as active ingredients for cosmetic products. International Journal of Cosmetic Science, 37(5), 455-464. https://doi.org/10.1111/ics.12218 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | spa |
dc.subject.ddc | 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos | spa |
dc.subject.lemb | EMULSIONES | spa |
dc.subject.lemb | Emulsions | eng |
dc.subject.lemb | MEZCLAS | spa |
dc.subject.lemb | Mixtures | eng |
dc.subject.lemb | COSMETICOS | spa |
dc.subject.lemb | Cosmetics | eng |
dc.subject.lemb | INDUSTRIA DE COSMETICOS | spa |
dc.subject.lemb | Cosmetics industry | eng |
dc.subject.lemb | AGENTES HUMECTANTES | spa |
dc.subject.lemb | Wetting agents | eng |
dc.subject.lemb | AGENTES TENSOACTIVOS | spa |
dc.subject.lemb | Surface active agents | eng |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Textura | spa |
dc.subject.proposal | Emoliente | spa |
dc.subject.proposal | Modificador reológico | spa |
dc.subject.proposal | Tensoactivo | spa |
dc.subject.proposal | Diseño de experimentos | spa |
dc.subject.proposal | Stability | eng |
dc.subject.proposal | Texture | eng |
dc.subject.proposal | Emollient | eng |
dc.subject.proposal | Rheology modifier | eng |
dc.subject.proposal | Surfactant | eng |
dc.subject.proposal | Design of experiments | eng |
dc.title | Herramienta sistemática de formulación : uso de diseño de mezclas para evaluar el efecto de las variables de formulación sobre la estabilidad y textura en emulsiones cosméticas | spa |
dc.title.translated | Systematic formulation tool : use of mixture design to evaluate the effect of formulation variables on stability and texture in cosmetic emulsions | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032492777 2024.pdf
- Tamaño:
- 2.63 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: