Desarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinas

dc.contributor.advisorFuenmayor Bobadilla, Carlos Alberto
dc.contributor.advisorDíaz Moreno, Amanda Consuelo
dc.contributor.authorPalencia Argel, Marcela Patricia
dc.contributor.researchgroupCaracterización y funcionalidad de alimentos / desarrollo de nuevos productosspa
dc.date.accessioned2023-04-18T16:29:10Z
dc.date.available2023-04-18T16:29:10Z
dc.date.issued2022-01-28
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractLas bebidas de frutas ricas en antocianinas han sido de especial interés como productos funcionales principalmente en razón de su actividad antioxidante. Este tipo de bebidas pueden convertirse en alimentos con potencial simbiótico a través de la adición de fibras prebióticas y de microorganismos probióticos, lo cual aumentaría sustancialmente sus propiedades funcionales. Sin embargo, la posibilidad de garantizar una adecuada viabilidad de los microorganismos probióticos, así como propiedades nutricionales, fisicoquímicas y sensoriales deseables al producto final, constituyen un reto tecnológico de gran envergadura. El objetivo del presente estudio fue determinar las condiciones para la obtención de una bebida con potencial simbiótico a partir de matrices vegetales fuente de antocianinas, seleccionando combinaciones adecuadas de microorganismos probióticos y fibras prebióticas y comparando la aptitud de pretratamientos térmicos y no térmicos (ultrasonido) como estrategia de estabilización de carga microbiana antes de la adición del probiótico. La adaptación del cultivo probiótico a través de la inducción de procesos fermentativos, la adición de prebióticos y el uso de frutas menos ácidas en la formulación, permitieron obtener una buena viabilidad del cultivo al final de 28 días de almacenamiento en refrigeración de la bebida, con un conteo superior a 10 log UFC/mL. El uso de un tratamiento de pasteurización a 85°C por 5 min, previo a la inoculación del cultivo probiótico, permitió obtener una bebida inocua conservando sus propiedades fisicoquímicas y el contenido de antocianinas, alcanzando los 4,4 mg C3G/100 g al final del periodo de almacenamiento. De manera importante, la inducción de la fermentación con el cultivo probiótico no afectó significativamente el contenido de compuestos fenólicos ni la actividad antioxidante de la bebida, la cual, además, tuvo una buena aceptabilidad en cuanto a su apariencia, olor, textura, sabor y gusto general. El producto resultante es una bebida que contiene antocianinas, es totalmente de origen vegetal y cuenta con posibles características simbióticas. (Texto tomado de la fuente)spa
dc.description.abstractAnthocyanin-rich fruit beverages have been of special interest as functional products mainly because of their antioxidant activity. These types of beverages can become foods with synbiotic potential through the addition of prebiotic fibers and probiotic microorganisms, which substantially increase their functional properties. However, the possibility of guaranteeing an adequate viability of probiotic microorganisms, as well as desirable nutritional, physicochemical and sensory properties of the final product, is a major technological challenge. The objective of the present study was to determine the conditions for obtaining a beverage with synbiotic potential from an anthocyanin-rich vegetable matrix. This was done by selecting suitable combinations of probiotic microorganisms and prebiotic fibers and comparing the suitability of thermal and non-thermal pretreatments (ultrasound) as a microbial load stabilization strategy before the addition of the probiotic. The adaptation of the probiotic culture through the induction of fermentative processes, the addition of prebiotics and the use of less acidic fruits in the formulation, allowed for an adequate viability of the culture at the end of 28 days of refrigerated storage of the beverage, with a count greater than 10 log CFU/mL. The use of a pasteurization treatment at 85°C for 5 min, prior to the inoculation of the probiotic culture, yielded an innocuous beverage that preserved its physicochemical properties and anthocyanin content, reaching 4.4 mg C3G/100 g at the end of the storage period. Importantly, the induction of fermentation with the probiotic culture did not significantly affect the phenolic compounds content or the antioxidant activity of the beverage, which also had good acceptability in terms of appearance, smell, texture, flavor and general liking. The resulting product is a beverage that contains anthocyanins, is fully of vegetable origin and has possible synbiotic characteristics.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaBioalimentosspa
dc.format.extent119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83727
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAadil, R., Zeng, X., Han, Z., & Sun, D. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141(3), 3201–3206. https://doi.org/10.1016/j.foodchem.2013.06.008spa
dc.relation.referencesAh-Hen, K., Mathias-Rettig, K., Gómez-Pérez, L., Riquelme-Asenjo, G., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2018). Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. Journal of Food Measurement and Characterization, 12(1), 602–615. https://doi.org/10.1007/s11694-017-9673-4spa
dc.relation.referencesAlqurashi, R., Alarifi, S., Walton, G., Costabile, A., Rowland, I., & Commane, D. (2017). In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chemistry, 234, 190–198. https://doi.org/10.1016/j.foodchem.2017.04.164spa
dc.relation.referencesAlves Filho, E., Cullen, P., Frias, J., Bourke, P., Tiwari, B., Brito, E., Rodrigues, S., & Fernandes, F. (2016). Evaluation of plasma, high-pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science & Technology, 51(9), 2034–2040. https://doi.org/10.1111/IJFS.13175spa
dc.relation.referencesAnjum, N., Maqsood, S., Masud, T., Ahmad, A., Sohail, A., & Momin, A. (2014). Lactobacillus acidophilus: Characterization of the Species and Application in Food Production. Critical Reviews in Food Science and Nutrition, 54(9), 1241–1251. https://doi.org/10.1080/10408398.2011.621169spa
dc.relation.referencesAshaolu, T. (2020). Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomedicine & Pharmacotherapy, 130, 110625. https://doi.org/10.1016/J.BIOPHA.2020.110625spa
dc.relation.referencesÁvila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & Pascual-Teresa, S. (2009). Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453–1461. https://doi.org/10.1016/J.FOODRES.2009.07.026spa
dc.relation.referencesAxelsson, L. (2004). Lactic Acid Bacteria: Classification and Physiology. In S. Salminen & A. von Wright (Eds.), Lactic Acid Bacteria (3rd ed.). CRC Press. https://doi.org/10.1201/9780824752033/LACTIC-ACID-BACTERIA-SEPPO-SALMINEN-ATTE-VON-WRIGHTspa
dc.relation.referencesAxelsson, L., & Ahrné, S. (2000). Lactic Acid Bacteria. In F. G. Priest & M. Goodfellow (Eds.), Applied Microbial Systematics (pp. 367–388). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_13spa
dc.relation.referencesBCC Research. (2022, June). Global Functional Foods and Beverages Market Size Analysis Report. https://www.bccresearch.com/market-research/food-and-beverage/functional-food-market.htmlspa
dc.relation.referencesBernal Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2017). Probióticos y prebióticos en matrices de origen vegetal: Avances en el desarrollo de bebidas de frutas. Revista Chile Nutrucion, 44(4), 383–392. https://doi.org/10.4067/s0717-75182017000400383spa
dc.relation.referencesBernal-Castro, C., Díaz-Moreno, C., & Gutiérrez-Cortés, C. (2019). Inclusion of prebiotics on the viability of a commercial Lactobacillus casei subsp. rhamnosus culture in a tropical fruit beverage. Journal of Food Science and Technology, 56(2), 987–994. https://doi.org/10.1007/s13197-018-03565-wspa
dc.relation.referencesBhadekar, R., & Bhola, J. (2019). Nonconventional Preservation Techniques: Current Trends and Future Prospects. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 115–147). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00004-5spa
dc.relation.referencesBhat, R., Kamaruddin, N., Min-Tze, L., & Karim, A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300. https://doi.org/10.1016/j.ultsonch.2011.04.002spa
dc.relation.referencesBiswas, D., Wideman, N., O’Bryan, C., Muthaiyan, A., Lingbeck, J., Crandall, P., & Ricke, S. (2012). Pasteurized blueberry (vaccinium corymbosum) juice inhibits growth of bacterial pathogens in milk but allows survival of probiotic bacteria. Journal of Food Safety, 32(2), 204–209. https://doi.org/10.1111/j.1745-4565.2012.00369.xspa
dc.relation.referencesBoto-Ordóñez, M., Urpi-Sarda, M., Queipo-Ortuño, M., Tulipani, S., Tinahones, F., & Andres-Lacueva, C. (2014). High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food and Function, 5(8), 1932–1938. https://doi.org/10.1039/c4fo00029cspa
dc.relation.referencesBurdulis, D., Sarkinas, A., Jasutiené, I., Stackevicené, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits - PubMed. Acta Poloniae Pharmaceutica ñ Drug Research, 66(4), 399–408. https://pubmed.ncbi.nlm.nih.gov/19702172/spa
dc.relation.referencesCanuto, G., Oliveira, D., da Conceição, L., Farah, J., & Tavares, M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. https://doi.org/10.1016/J.FOODCHEM.2015.06.095spa
dc.relation.referencesCassani, L., Tomadoni, B., & del Rosario Moreira, M. (2020). Green ultrasound-assisted processing for extending the shelf-life of prebiotic-rich strawberry juices. Journal of the Science of Food and Agriculture, 100(15), 5518–5526. https://doi.org/10.1002/JSFA.10604spa
dc.relation.referencesCastillo-Escandón, V., Fernández-Michel, S., Cueto-Wong, M., & Ramos-Clamont, G. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada En Ciencias Químico-Biológicas, 22(0), 1–17. https://doi.org/10.22201/fesz.23958723e.2019.0.173spa
dc.relation.referencesCervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C., Zafra-Rojas, Q., & Cruz-Cansino, N. (2017). Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics Sonochemistry, 34, 371–379. https://doi.org/10.1016/J.ULTSONCH.2016.06.009spa
dc.relation.referencesCharoux, C., Inguglia, E., O’Donnell, C., & Tiwari, B. (2019). Ultrasonic Waves: Inactivation of Foodborne Microorganisms Using Power Ultrasound. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.22930-2spa
dc.relation.referencesChemat, F., Zill-E-Huma, & Khan, M. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023spa
dc.relation.referencesChen, G., Li, C., & Chen, K. (2016). Fructooligosaccharides: A Review on Their Mechanisms of Action and Effects. In Studies in Natural Products Chemistry (Vol. 48, pp. 209–229). Elsevier. https://doi.org/10.1016/B978-0-444-63602-7.00006-0spa
dc.relation.referencesCheng, L., Soh, C., Liew, S., & Teh, F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104(4), 1396–1401. https://doi.org/10.1016/j.foodchem.2007.02.001spa
dc.relation.referencesChiang, S., & Pan, T. (2011). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93(3), 903–916. https://doi.org/10.1007/S00253-011-3753-Xspa
dc.relation.referencesCisowska, A., Wojnicz, D., & Hendrich, A. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149–156. https://doi.org/10.1177/1934578x1100600136spa
dc.relation.referencesComan, M., Oancea, A., Verdenelli, M., Cecchini, C., Bahrim, G., Orpianesi, C., Cresci, A., & Silvi, S. (2018). Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European Food Research and Technology, 244(4), 735–745. https://doi.org/10.1007/s00217-017-2997-9spa
dc.relation.referencesCosta, M., Fonteles, T., de Jesus, A., & Rodrigues, S. (2013). Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139(1–4), 261–266. https://doi.org/10.1016/j.foodchem.2013.01.059spa
dc.relation.referencesCummings, J., Macfarlane, G., & Englyst, H. (2001). Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, 73(2), 415s–420s. https://doi.org/10.1093/AJCN/73.2.415Sspa
dc.relation.referencesCunningham, M., Azcarate-Peril, M., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H., Hunter, K., Manurung, S., Obis, D., Petrova, M., Steinert, R., Swanson, K., van Sinderen, D., Vulevic, J., & Gibson, G. (2021). Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667–685. https://doi.org/10.1016/J.TIM.2021.01.003spa
dc.relation.referencesD’Amico, D., Silk, T., Wu, J., & Guo, M. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69(3), 556–563. https://doi.org/10.4315/0362-028X-69.3.556spa
dc.relation.referencesde Figueiredo, F., de Barros Ranke, F., & de Oliva-Neto, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT, 118, 108761. https://doi.org/10.1016/J.LWT.2019.108761spa
dc.relation.referencesde Oliveira, A., dos Santos, F., Olbrich, K., Martins, V., Castro, D., Pessanha, M., Conte, C., de Oliveira, S., de Oliveira, L., de Oliveira, R., & Miranda, E. (2020). Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT, 118, 108756. https://doi.org/10.1016/j.lwt.2019.108756spa
dc.relation.referencesde Souza, E., Rodrigues, T., dos Santos, A., Lacerda, N., & de Brito, J. (2018). Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A review. Critical Reviews in Food Science and Nutrition, 59(10), 1645–1659. https://doi.org/10.1080/10408398.2018.1425285spa
dc.relation.referencesde Souza, V., Pereira, P., da Silva, T., de Oliveira Lima, L., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368. https://doi.org/10.1016/j.foodchem.2014.01.125spa
dc.relation.referencesdi Cagno, R., Minervini, G., Rizzello, C., de Angelis, M., & Gobbetti, M. (2011). Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 28(5), 1062–1071. https://doi.org/10.1016/j.fm.2011.02.011spa
dc.relation.referencesDurazzo, A., Lucarini, M., Novellino, E., Daliu, P., & Santini, A. (2019). Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytotherapy Research, 33(7), 1754–1769. https://doi.org/10.1002/ptr.6380spa
dc.relation.referencesErcan, S., & Soysal, Ç. (2013). Use of ultrasound in food preservation. Natural Science, 5, 5–13. https://doi.org/10.4236/ns.2013.58A2002spa
dc.relation.referencesErtan, K., Türkyılmaz, M., & Özkan, M. (2020). Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners. Food Chemistry, 310, 125856. https://doi.org/10.1016/J.FOODCHEM.2019.125856spa
dc.relation.referencesFaria, A., Fernandes, I., Norberto, S., Mateus, N., & Calhau, C. (2014). Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry, 62(29), 6898–6902. https://doi.org/10.1021/jf501808aspa
dc.relation.referencesFarias, D., Fernandes, F., Neri-Numa, I., & Pastore, G. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/J.TIFS.2019.09.004spa
dc.relation.referencesFeng, X., Zhou, Z., Wang, X., Bi, X., Ma, Y., & Xing, Y. (2020). Comparison of High Hydrostatic Pressure, Ultrasound, and Heat Treatments on the Quality of Strawberry–Apple–Lemon Juice Blend. Foods, 9(2), 218. https://doi.org/10.3390/FOODS9020218spa
dc.relation.referencesFennema, O., Parkin, K., & Damodaran, S. (2008). Fennema´s Food Chemistry (4th ed.). CRC Press Taylor & Francis Group.spa
dc.relation.referencesFernandes, A., & Rodrigues, S. (2018). Turning Fruit Juice Into Probiotic Beverages. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 279–287). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802230-6.00015-1spa
dc.relation.referencesFerrario, M., Alzamora, S., & Guerrero, S. (2015). Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology, 46, 635–642. https://doi.org/10.1016/J.FM.2014.06.017spa
dc.relation.referencesFigueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318spa
dc.relation.referencesFlach, J., van der Waal, M., van den Nieuwboer, M., Claassen, E., & Larsen, O. (2017). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624spa
dc.relation.referencesFlores, G., Ruiz del Castillo, M., Costabile, A., Klee, A., Bigetti Guergoletto, K., & Gibson, G. (2015). In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods, 16, 50–57. https://doi.org/10.1016/j.jff.2015.04.022spa
dc.relation.referencesFonteles, T., Costa, M., de Jesus, A., Fontes, C., Fernandes, F., & Rodrigues, S. (2013). Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice. Food and Bioprocess Technology, 6(10), 2860–2869. https://doi.org/10.1007/s11947-012-0962-yspa
dc.relation.referencesFratianni, F., Cardinale, F., Russo, I., Iuliano, C., Tremonte, P., Coppola, R., & Nazzaro, F. (2014). Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation, 31(3), 299–305. https://doi.org/10.3109/02652048.2013.871361spa
dc.relation.referencesFreitas, H., dos Santos, A., Rodrigues, S., Abreu, V., Narain, N., Lemos, T., Gomes, W., & Pereira, A. (2021). Synbiotic açaí juice (Euterpe oleracea) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. Journal of Food Science, 86(3), 730–739. https://doi.org/10.1111/1750-3841.15617spa
dc.relation.referencesGabriel, A. (2014). Inactivation behaviors of foodborne microorganisms in multi-frequency power ultrasound-treated orange juice. Food Control, 46, 189–196. https://doi.org/10.1016/J.FOODCONT.2014.05.012spa
dc.relation.referencesGallo, M., Ferrara, L., & Naviglio, D. (2018). Application of Ultrasound in Food Science and Technology: A Perspective. Foods, 7(164). https://doi.org/10.3390/foods7100164spa
dc.relation.referencesGancel, A., Feneuil, A., Acosta, O., Pérez, A., & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44(7), 2243–2251. https://doi.org/10.1016/j.foodres.2010.06.013spa
dc.relation.referencesGiampieri, F., Tulipani, S., Alvarez-Suarez, J., Quiles, J., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/J.NUT.2011.08.009spa
dc.relation.referencesGibson, G., Hutkins, R., Sanders, M., Prescott, S., Reimer, R., Salminen, S., Scott, K., Stanton, C., Swanson, K., Cani, P., Verbeke, K., & Reid, G. (2017). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75spa
dc.relation.referencesGibson, G., & Wang, X. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied Bacteriology, 77(4), 412–420. https://doi.org/10.1111/J.1365-2672.1994.TB03443.Xspa
dc.relation.referencesGomes, W., Tiwari, B., Rodriguez, Ó., de Brito, E., Fernandes, F., & Rodrigues, S. (2017). Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 218, 261–268. https://doi.org/10.1016/J.FOODCHEM.2016.08.132spa
dc.relation.referencesGuergoletto, K., Costabile, A., Flores, G., Garcia, S., & Gibson, G. (2016). In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota. Food Chemistry, 196, 251–258. https://doi.org/10.1016/j.foodchem.2015.09.048spa
dc.relation.referencesGuimarães, J., Silva, E., Alvarenga, V., Costa, A., Cunha, R., Sant’Ana, A., Freitas, M., Meireles, M., & Cruz, A. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260. https://doi.org/10.1016/J.ULTSONCH.2018.02.012spa
dc.relation.referencesHalkman, H., & Halkman, A. (2014). Indicator Organisms. In Encyclopedia of Food Microbiology (Second Edition, pp. 358–363). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00396-7spa
dc.relation.referencesHan, D., Shi, R., Yan, Q., Shi, Y., Ma, J., & Jiang, Z. (2021). Global transcriptomic analysis of functional oligosaccharide metabolism in Pediococcus pentosaceus. Applied Microbiology and Biotechnology, 105(4), 1601–1614. https://doi.org/10.1007/S00253-021-11120-5spa
dc.relation.referencesHarzallah, D., & Belhadj, H. (2013). Lactic Acid Bacteria as Probiotics: Characteristics, Selection Criteria and Role in Immunomodulation of Human GI Muccosal Barrier. In Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes. IntechOpen. https://doi.org/10.5772/50732spa
dc.relation.referencesHerrera, M., Gao, J., Vasanthan, T., Temelli, F., & Henderson, K. (2016). β-Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science, 96(2), 183–196. https://doi.org/10.1139/CJPS-2014-0440/ASSET/IMAGES/CJPS-2014-0440TAB6.GIFspa
dc.relation.referencesHesam, F., Tarzi, B., Honarvar, M., & Jahadi, M. (2020). Valorization of sugarcane bagasse to high value-added xylooligosaccharides and evaluation of their prebiotic function in a synbiotic pomegranate juice. Biomass Conversion and Biorefinery, 1–13. https://doi.org/10.1007/s13399-020-01095-0spa
dc.relation.referencesHidalgo, G., & Almajano, M. (2017). Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants, 6(1). https://doi.org/10.3390/antiox6010007spa
dc.relation.referencesHidalgo, M., Oruna-Concha, M., Kolida, S., Walton, G., Kallithraka, S., Spencer, J., Gibson, G., & de Pascual-Teresa, S. (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, 60(15), 3882–3890. https://doi.org/10.1021/jf3002153spa
dc.relation.referencesHill, C., Guarner, F., Reid, G., Gibson, G., Merenstein, D., Pot, B., Morelli, L., Canani, R., Flint, H., Salminen, S., Calder, P., & Sanders, M. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66spa
dc.relation.referencesHu, J., Zhang, L., Lin, W., Tang, W., Chan, F., & Ng, S. (2021). Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science and Technology, 108, 187–196. https://doi.org/10.1016/j.tifs.2020.12.009spa
dc.relation.referencesHuebner, J., Wehling, R., Parkhurst, A., & Hutkins, R. (2008). Effect of processing conditions on the prebiotic activity of commercial prebiotics. International Dairy Journal, 18(3), 287–293. https://doi.org/10.1016/J.IDAIRYJ.2007.08.013spa
dc.relation.referencesHurtado-Romero, A., del Toro-Barbosa, M., Garcia-Amezquita, L., & García-Cayuela, T. (2020). Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends in Food Science & Technology, 104, 117–131. https://doi.org/10.1016/J.TIFS.2020.08.007spa
dc.relation.referencesIgwe, E., Charlton, K., Probst, Y., Kent, K., & Netzel, M. (2019). A systematic literature review of the effect of anthocyanins on gut microbiota populations. Journal of Human Nutrition and Dietetics, 32(1), 53–62. https://doi.org/10.1111/jhn.12582spa
dc.relation.referencesJakobek, L., Šeruga, M., Novak, I., & Medvidovic̀-Kosanović, M. (2007). Flavonols, phenolic acids and antioxidant activity of some red fruits. Deutsche Lebensmittel-Rundschau, 103(8), 369–378.spa
dc.relation.referencesJamar, G., Estadella, D., & Pisani, L. (2017). Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors, 43(4), 507–516. https://doi.org/10.1002/biof.1365spa
dc.relation.referencesJuraga, E., Šalamon, B., Herceg, Z., & Jambrak, A. (2011). Application of high intensity ultrasound treatment on Enterobacteriae count in milk. Mljekarstvo, 61((2)), 125–134.spa
dc.relation.referencesKaplan, H., & Hutkins, R. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69(4), 2217–2222. https://doi.org/10.1128/AEM.69.4.2217-2222.2003/ASSET/B25AC0C1-7C3C-4E1E-A718-A9FC95662AFA/ASSETS/GRAPHIC/AM0431745003.JPEGspa
dc.relation.referencesKaplan, H., & Hutkins, R. (2000). Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Applied and Environmental Microbiology, 66(6), 2682–2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000/ASSET/B7AD68D7-1E9E-4E90-839E-A7469249A238/ASSETS/GRAPHIC/AM0601981002.JPEGspa
dc.relation.referencesKaume, L., Howard, L., & Devareddy, L. (2011). The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716–5727. https://doi.org/10.1021/JF203318Pspa
dc.relation.referencesKonić-Ristić, A., Šavikin, K., Zdunić, G., Janković, T., Juranic, Z., Menković, N., & Stanković, I. (2011). Biological activity and chemical composition of different berry juices. Food Chemistry, 125(4), 1412–1417. https://doi.org/10.1016/j.foodchem.2010.10.018spa
dc.relation.referencesLacombe, A., & Wu, V. (2017). The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety, 1, 3–12. https://doi.org/10.1093/fqsafe/fyx001spa
dc.relation.referencesLacombe, A., Wu, V., White, J., Tadepalli, S., & Andre, E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiology, 30(1), 124–131. https://doi.org/10.1016/j.fm.2011.10.006spa
dc.relation.referencesLai, K., How, Y., & Pui, L. (2020). Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation, 44(12), e14965. https://doi.org/10.1111/jfpp.14965spa
dc.relation.referencesLavefve, L., Howard, L., & Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food and Function, 11(1), 45–65. https://doi.org/10.1039/c9fo01634aspa
dc.relation.referencesLebaka, V., Wee, Y., Narala, V., & Joshi, V. (2018). Development of New Probiotic Foods-A Case Study on Probiotic Juices. In Therapeutic, Probiotic, and Unconventional Foods (pp. 55–78). Elsevier. https://doi.org/10.1016/B978-0-12-814625-5.00004-2spa
dc.relation.referencesLeong, H., Show, P., Lim, M., Ooi, C., & Ling, T. (2018). Natural red pigments from plants and their health benefits: A review. Food Reviews International, 34(5), 463–482. https://doi.org/10.1080/87559129.2017.1326935spa
dc.relation.referencesLi, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57(8), 1729–1741. https://doi.org/10.1080/10408398.2015.1030064spa
dc.relation.referencesLiao, X., Li, J., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness, 7(1), 102–109. https://doi.org/10.1016/J.FSHW.2018.01.002spa
dc.relation.referencesLillo-Pérez, S., Guerra-Valle, M., Orellana-Palma, P., & Petzold, G. (2021). Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT, 151, 112106. https://doi.org/10.1016/J.LWT.2021.112106spa
dc.relation.referencesLiu, K. (2014). Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates. Journal of Cereal Science, 60(2), 317–322. https://doi.org/10.1016/J.JCS.2014.06.002spa
dc.relation.referencesLondoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Corporación Universitaria Lasallista (Ed.), Desarrollo y Transversalidad serie Lasallista Investigación y Ciencia. http://repository.lasallista.edu.co/dspace/bitstream/10567/133/3/9.%20129-162.pdfspa
dc.relation.referencesLuckow, T., Sheehan, V., Fitzgerald, G., & Delahunty, C. (2006). Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite, 47(3), 315–323. https://doi.org/10.1016/j.appet.2006.04.006spa
dc.relation.referencesMajid, I., Nayik, G., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1071022spa
dc.relation.referencesMantzourani, I., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2019). Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatalysis and Agricultural Biotechnology, 17, 347–351. https://doi.org/10.1016/j.bcab.2018.12.021spa
dc.relation.referencesMantzourani, I., Terpou, A., Bekatorou, A., Mallouchos, A., Alexopoulos, A., Kimbaris, A., Bezirtzoglou, E., Koutinas, A., & Plessas, S. (2020). Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chemistry, 308, 125658. https://doi.org/10.1016/j.foodchem.2019.125658spa
dc.relation.referencesMao, B., Li, D., Zhao, J., Liu, X., Gu, Z., Chen, Y., Zhang, H., & Chen, W. (2015). In vitro fermentation of fructooligosaccharides with human gut bacteria. Food & Function, 6(3), 947–954. https://doi.org/10.1039/C4FO01082Espa
dc.relation.referencesMarhuenda, J., Alemán, M., Gironés-Vilaplana, A., Pérez, A., Caravaca, G., Figueroa, F., Mulero, J., & Zafrilla, P. (2016). Phenolic Composition, Antioxidant Activity, and in Vitro Availability of Four Different Berries. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/5194901spa
dc.relation.referencesMarín-Arango, Z., Cortes-Rodríguez, M., Montoya-Campuzano, O., & Arango-Tobón, J. (2019). Viability of Lactobacillus casei ATCC 393 and properties in andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA, 86(210), 179–186. https://doi.org/10.15446/dyna.v86n210.72929spa
dc.relation.referencesMarinho, J., da Silva, M., Mazzocato, M., Tulini, F., & Favaro-Trindade, C. (2019). Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids. Probiotics and Antimicrobial Proteins, 11(1), 264–272. https://doi.org/10.1007/s12602-017-9346-yspa
dc.relation.referencesMarkowiak, P., & Ślizewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9, 1021. https://doi.org/10.3390/nu9091021spa
dc.relation.referencesMathias-Rettig, K., & Ah-Hen, K. (2014). El color en los alimentos un criterio de calidad medible. Agro Sur, 42(2), 57–66. https://doi.org/10.4206/AGROSUR.2014.V42N2-07spa
dc.relation.referencesMathur, R., & Barlow, G. (2015). Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 9(8), 1087–1099. https://doi.org/10.1586/17474124.2015.1051029spa
dc.relation.referencesMei, G., Carey, C., Tosh, S., & Kostrzynska, M. (2011). Utilization of different types of dietary fibres by potential probiotics. Canadian Journal of Microbiology, 57(10), 857–865. https://doi.org/10.1139/W11-077spa
dc.relation.referencesMin, M., Bunt, C., Mason, S., & Hussain, M. (2019). Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition, 59(16), 2626–2641. https://doi.org/10.1080/10408398.2018.1462760spa
dc.relation.referencesMolan, A., Liu, Z., & Kruger, M. (2010). The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World Journal of Microbiology and Biotechnology, 26(10), 1735–1743. https://doi.org/10.1007/s11274-010-0352-4spa
dc.relation.referencesMolan, A., Liu, Z., & Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research, 28(3), 416–422. https://doi.org/10.1002/ptr.5009spa
dc.relation.referencesMonteagudo-Mera, A., Rastall, R., Gibson, G., Charalampopoulos, D., &; Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7spa
dc.relation.referencesMorales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2016). Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages, 2(2), 14. https://doi.org/10.3390/BEVERAGES2020014spa
dc.relation.referencesMousavi, Z., Mousavi, S., Razavi, S., Emam-Djomeh, Z., & Kiani, H. (2011). Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology, 27, 123–128. https://doi.org/10.1007/s11274-010-0436-1spa
dc.relation.referencesMustafa, S., & Chua, L. (2020). Green technological fermentation for probioticated beverages for health enhancement. In Biotechnological Progress and Beverage Consumption (Vol. 19, pp. 407–434). Elsevier. https://doi.org/10.1016/B978-0-12-816678-9.00013-8spa
dc.relation.referencesMustafa, S., Chua, L., & El-Enshasy, H. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with lactobacillus casei. Molecules, 24(13), 2357. https://doi.org/10.3390/molecules24132357spa
dc.relation.referencesNavas, M., Jiménez-Moreno, A., Bueno, J., Sáez-Plaza, P., & Asuero, A. (2012). Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part IV: Extraction of Anthocyanins. Critical Reviews in Analytical Chemistry, 42(4), 313–342. https://doi.org/10.1080/10408347.2012.680343spa
dc.relation.referencesNematollahi, A., Sohrabvandi, S., Mortazavian, A., & Jazaeri, S. (2016). Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic Journal of Biotechnology, 21, 49–53. https://doi.org/10.1016/J.EJBT.2016.03.001spa
dc.relation.referencesNgamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243–3259. https://doi.org/10.1080/10408398.2015.1109498spa
dc.relation.referencesNualkaekul, S., Cook, M., Khutoryanskiy, V., & Charalampopoulos, D. (2013). Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 53(1), 304–311. https://doi.org/10.1016/j.foodres.2013.04.019spa
dc.relation.referencesNualkaekul, S., Salmeron, I., & Charalampopoulos, D. (2011). Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry, 129(3), 1037–1044. https://doi.org/10.1016/j.foodchem.2011.05.071spa
dc.relation.referencesOancea, S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants, 10(9), 1337. https://doi.org/10.3390/ANTIOX10091337spa
dc.relation.referencesOjha, K., Mason, T., O’Donnell, C., Kerry, J., & Tiwari, B. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/J.ULTSONCH.2016.06.001spa
dc.relation.referencesOspina-Corral, S., Cardona, C., & Orrego, C. (2019). Prebiotics in Beverages: From Health Impact to Preservation. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 339–373). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00011-2spa
dc.relation.referencesPark, Y., Biswas, R., Phillips, R., & Chen, J. (2011). Antibacterial Activities of Blueberry and Muscadine Phenolic Extracts. Journal of Food Science, 76(2), M101–M105. https://doi.org/10.1111/j.1750-3841.2010.01974.xspa
dc.relation.referencesPérez-Grijalva, B., Herrera-Sotero, M., Mora-Escobedo, R., Zebadúa-García, J., Silva-Hernández, E., Oliart-Ros, R., Pérez-Cruz, C., & Guzmán-Gerónimo, R. (2018). Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT - Food Science and Technology, 87, 47–53. https://doi.org/10.1016/j.lwt.2017.08.059spa
dc.relation.referencesPerjéssy, J., Hegyi, F., Nagy-Gasztonyi, M., & Zalán, Z. (2022). Effect of the lactic acid fermentation by probiotic strains on the sour cherry juice and its bioactive compounds. Food Science and Technology International, 28(5), 408–420. https://doi.org/10.1177/10820132211018044spa
dc.relation.referencesPerricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M., & Corbo, M. (2015). Challenges for the Production of Probiotic Fruit Juices. Beverages, 1(2), 95–103. https://doi.org/10.3390/beverages1020095spa
dc.relation.referencesPerricone, M., Corbo, M., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2014). Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods, 10, 421–426. https://doi.org/10.1016/j.jff.2014.07.020spa
dc.relation.referencesPetersen, C., Wankhade, U., Bharat, D., Wong, K., Mueller, J., Chintapalli, S., Piccolo, B., Jalili, T., Jia, Z., Symons, J., Shankar, K., & Anandh Babu, P. (2019). Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 66, 63–69. https://doi.org/10.1016/j.jnutbio.2019.01.004spa
dc.relation.referencesPimentel, T., Klososki, S., Rosset, M., Barão, C., & Marcolino, V. (2019). Fruit juices as probiotic foods. In Sports and Energy Drinks (Vol. 10, pp. 483–513). Elsevier. https://doi.org/10.1016/B978-0-12-815851-7.00014-0spa
dc.relation.referencesPisoschi, A., & Negulescu, G. (2011). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 1(1). https://doi.org/10.4172/2161-1009.1000106spa
dc.relation.referencesPuupponen-Pimiä, R., Nohynek, L., Meier, C., KaÈhkoÈnen, M., Heinonen, M., Hopia, A., & Oksman-Caldentey, K. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494–507. https://doi.org/10.1046/j.1365-2672.2001.01271.xspa
dc.relation.referencesQuigley, E. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333–344. https://doi.org/10.1016/j.cgh.2018.09.028spa
dc.relation.referencesRaccach, M. (2014). Pediococcus. In Encyclopedia of Food Microbiology: Second Edition (pp. 1–5). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00247-0spa
dc.relation.referencesRamírez‐Moreno, E., Zafra‐Rojas, Q., Arias‐Rico, J., Ariza‐Ortega, J., Alanís‐García, E., & Cruz‐Cansino, N. (2018). Effect of ultrasound on microbiological load and antioxidant properties of blackberry juice. Journal of Food Processing and Preservation, 42(2), e13489. https://doi.org/10.1111/jfpp.13489spa
dc.relation.referencesRamírez-Sucre, M., Gastélum-Martínez, E., Ayora-Talavera, T., Pacheco-López, N., Sánchez-Contreras, M., & Rodríguez-Buenfil, I. (2019). Process and Impact of the Addition of Biocompounds on the Development of Pasteurized Healthy Juices. In Preservatives and Preservation Approaches in Beverages: Volume 15: The Science of Beverages (Vol. 15, pp. 273–307). Academic Press. https://doi.org/10.1016/B978-0-12-816685-7.00009-4spa
dc.relation.referencesRanadheera, C., Vidanarachchi, J., Rocha, R., Cruz, A., & Ajlouni, S. (2017). Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation, 3(4), 67. https://doi.org/10.3390/fermentation3040067spa
dc.relation.referencesRanadheera, R., Baines, S., &; Adams, M. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1–7. https://doi.org/10.1016/j.foodres.2009.09.009spa
dc.relation.referencesReale, A., di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science and Technology, 60(2), 721–728. https://doi.org/10.1016/J.LWT.2014.10.022spa
dc.relation.referencesRežek Jambrak, A., Šimunek, M., & Djekic, I. (2018). Total quality index of ultrasound-treated blueberry and cranberry juices and nectars. Food Science and Technology International, 24(5), 434–446. https://doi.org/10.1177/1082013218764962spa
dc.relation.referencesRežek Jambrak, A., Šimunek, M., Evačić, S., Markov, K., Smoljanić, G., & Frece, J. (2018). Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics, 83, 3–17. https://doi.org/10.1016/J.ULTRAS.2017.02.011spa
dc.relation.referencesRodríguez-Daza, M., Pulido-Mateos, E., Lupien-Meilleur, J., Guyonnet, D., Desjardins, Y., & Roy, D. (2021). Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Frontiers in Nutrition, 8, 347. https://doi.org/10.3389/FNUT.2021.689456/BIBTEXspa
dc.relation.referencesRuiz, L., Zamora, V., Pescuma, M., van Nieuwenhove, C., Mozzi, F., & Sánchez, J. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/J.FOODRES.2020.109854spa
dc.relation.referencesSánchez León, D. (2012). Estudio del potencial antioxidante de la mora (Rubus glaucus benth) y sus cambios en función del proceso de maduración y bajo diferentes temperaturas de almacenamiento. Universidad Nacional de Colombia, Sede Bogotá.spa
dc.relation.referencesSantacruz, L., Carriazo, J., Almanza, O., & Osorio, C. (2012). Anthocyanin Composition of Wild Colombian Fruits and Antioxidant Capacity Measurement by Electron Paramagnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 60(6), 1397–1404. https://doi.org/10.1021/JF2042533spa
dc.relation.referencesSanthirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrasonics Sonochemistry, 20(5), 1276–1282. https://doi.org/10.1016/j.ultsonch.2013.02.005spa
dc.relation.referencesSeyed Ahmadi, M., Alizadeh, A., & Soofi, M. (2020). Effect Of Ultrasound Treatment On The Viability Of Probiotics And Physicochemical Properties Of Synbiotic Carrot Juice. Iranian Journal Of Food Science And Technology, 16(96), 15–25. https://www.sid.ir/EN/JOURNAL/ViewPaper.aspx?ID=746576spa
dc.relation.referencesSheehan, V., Ross, P., & Fitzgerald, G. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies, 8(2), 279–284. https://doi.org/10.1016/j.ifset.2007.01.007spa
dc.relation.referencesShori, A. (2016). Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, 13, 1–8. https://doi.org/10.1016/J.FBIO.2015.11.001spa
dc.relation.referencesSilva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. https://doi.org/10.1016/J.ULTSONCH.2019.104942spa
dc.relation.referencesSingh, B., Singh, J., Kaur, A., & Singh, N. (2016). Bioactive compounds in banana and their associated health benefits – A review. Food Chemistry, 206, 1–11. https://doi.org/10.1016/J.FOODCHEM.2016.03.033spa
dc.relation.referencesSingla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/J.ULTSONCH.2021.105506spa
dc.relation.referencesSkrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673spa
dc.relation.referencesSonic & Materials. (n.d.). Probes for VC 505, VC 750, VCX 500 and VCX 750. Retrieved July 8, 2022, from https://www.spectratech.gr/Web/Sonics/pdf/VCX-505.pdfspa
dc.relation.referencesSperanza, B., Campaniello, D., Petruzzi, L., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. (2020). The inoculation of probiotics in vivo is a challenge: Strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages, 6(2), 1–18. https://doi.org/10.3390/beverages6020020spa
dc.relation.referencesSrisukchayakul, P., Charalampopoulos, D., & Karatzas, K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Research International, 111, 198–204. https://doi.org/10.1016/j.foodres.2018.05.018spa
dc.relation.referencesSun, X., Zhou, T., Wei, C., Lan, W., Zhao, Y., Pan, Y., & Wu, V. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012spa
dc.relation.referencesSwanson, K., Gibson, G., Hutkins, R., Reimer, R., Reid, G., Verbeke, K., Scott, K., Holscher, H., Azad, M., Delzenne, N., & Sanders, M. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology 2020 17:11, 17(11), 687–701. https://doi.org/10.1038/s41575-020-0344-2spa
dc.relation.referencesTian, L., Tan, Y., Chen, G., Wang, G., Sun, J., Ou, S., Chen, W., & Bai, W. (2019). Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition, 59(6), 982–991. https://doi.org/10.1080/10408398.2018.1533517spa
dc.relation.referencesTiwari, B., Muthukumarappan, K., O’Donnell, C., & Cullen, P. (2010). Rheological Properties of Sonicated Guar, Xanthan and Pectin Dispersions. International Journal of Food Properties, 13(2), 223–233. https://doi.org/10.1080/10942910802317610spa
dc.relation.referencesTiwari, B., O’Donnell, C., Patras, A., Brunton, N., & Cullen, P. (2009). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 228(5), 717–724. https://doi.org/10.1007/s00217-008-0982-zspa
dc.relation.referencesTopolska, K., Florkiewicz, A., & Filipiak-Florkiewicz, A. (2021). Functional Food—Consumer Motivations and Expectations. International Journal of Environmental Research and Public Health, 18(10), 5327. https://doi.org/10.3390/IJERPH18105327spa
dc.relation.referencesTsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 5(2), 13. https://doi.org/10.3390/antiox5020013spa
dc.relation.referencesValero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80(2), 509–516. https://doi.org/10.1016/j.jfoodeng.2006.06.009spa
dc.relation.referencesValero-Cases, E., Cerdá-Bernad, D., Pastor, J., & Frutos, M. (2020). Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients, 12(6), 1666. https://doi.org/10.3390/NU12061666spa
dc.relation.referencesVaro Santos, M. (2019). Compuestos bioactivos y actividad antioxidante de frutos rojos y bebidas elaboradas a partir de ellos. Universidad de Córdoba. https://helvia.uco.es/xmlui/handle/10396/17657spa
dc.relation.referencesVerbeyst, L., Oey, I., van der Plancken, I., Hendrickx, M., & van Loey, A. (2010). Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chemistry, 123(2), 269–274. https://doi.org/10.1016/J.FOODCHEM.2010.04.027spa
dc.relation.referencesVillamiel, M., García-Pérez, J., Montilla, A., & Benedito, J. (2017). Ultrasound in Food Processing (First edit). Wiley Blackwell.spa
dc.relation.referencesVivek, K., Mishra, S., Pradhan, R., & Jayabalan, R. (2019). Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice. LWT, 108, 55–60. https://doi.org/10.1016/j.lwt.2019.03.046spa
dc.relation.referencesWang, J., Wang, J., Ye, J., Vanga, S., & Raghavan, V. (2019). Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, 96, 128–136. https://doi.org/10.1016/J.FOODCONT.2018.09.007spa
dc.relation.referencesWang, W., & Xu, S. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271–275. https://doi.org/10.1016/J.JFOODENG.2007.01.018spa
dc.relation.referencesWanna, W., Surachat, K., Kaitimonchai, P., & Phongdara, A. (2021). Evaluation of probiotic characteristics and whole genome analysis of Pediococcus pentosaceus MR001 for use as probiotic bacteria in shrimp aquaculture. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-96780-zspa
dc.relation.referencesWatson, D., O’Connell Motherway, M., Schoterman, M., van Neerven, R., Nauta, A., & van Sinderen, D. (2013). Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology, 114(4), 1132–1146. https://doi.org/10.1111/JAM.12105spa
dc.relation.referencesWhite, J., & Hekmat, S. (2018). Development of probiotic fruit juices using lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation, 4(2), 27. https://doi.org/10.3390/fermentation4020027spa
dc.relation.referencesWordon, B., Mortimer, B., & McMaster, L. (2012). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20kHz) and heat for the application of hurdle technology. Food Research International, 47(2), 134–139. https://doi.org/10.1016/j.foodres.2011.04.038spa
dc.relation.referencesWu, J., Gamage, T., Vilkhu, K., Simons, L., & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice. Innovative Food Science & Emerging Technologies, 9(2), 186–195. https://doi.org/10.1016/J.IFSET.2007.07.007spa
dc.relation.referencesWu, V., Qiu, X., Bushway, A., & Harper, L. (2008). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT - Food Science and Technology, 41(10), 1834–1841. https://doi.org/10.1016/j.lwt.2008.01.001spa
dc.relation.referencesWu, Y., Li, S., Tao, Y., Li, D., Han, Y., Show, P., Wen, G., & Zhou, J. (2021). Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry, 348, 129083. https://doi.org/10.1016/j.foodchem.2021.129083spa
dc.relation.referencesXavier-Santos, D., Bedani, R., Lima, E., &; Saad, S. (2020). Impact of probiotics and prebiotics targeting metabolic syndrome. Journal of Functional Foods, 64, 103666. https://doi.org/10.1016/j.jff.2019.103666spa
dc.relation.referencesYahia, E. (2017). Fruit and vegetable phytochemicals: Chemistry and human health: Second edition. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 1). Wiley Blackwell. https://doi.org/10.1002/9781119158042spa
dc.relation.referencesYan, Y., Zhang, F., Chai, Z., Liu, M., Battino, M., & Meng, X. (2019). Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food and Chemical Toxicology, 131, 110541. https://doi.org/10.1016/j.fct.2019.05.049spa
dc.relation.referencesYang, B., & Kortesniemi, M. (2015). Clinical evidence on potential health benefits of berries. Current Opinion in Food Science, 2, 36–42. https://doi.org/10.1016/j.cofs.2015.01.002spa
dc.relation.referencesYang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042spa
dc.relation.referencesYang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37(1), 15–20. https://doi.org/10.1016/j.foodcont.2013.08.042spa
dc.relation.referencesZafra-Rojas, Q., Cruz-Cansino, N., Ramírez-Moreno, E., Delgado-Olivares, L., Villanueva-Sánchez, J., & Alanís-García, E. (2013). Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrasonics Sonochemistry, 20(5), 1283–1288. https://doi.org/10.1016/j.ultsonch.2013.01.021spa
dc.relation.referencesZendeboodi, F., Khorshidian, N., Mortazavian, A., & da Cruz, A. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103–123. https://doi.org/10.1016/j.cofs.2020.03.009spa
dc.relation.referencesZhang, L., Zhou, J., Liu, H., Khan, M., Huang, K., & Gu, Z. (2012). Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. European Food Research and Technology, 235(4), 637–645. https://doi.org/10.1007/s00217-012-1796-6spa
dc.relation.referencesZhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. https://doi.org/10.1016/j.lwt.2019.108621spa
dc.relation.referencesZhu, J., Wang, Y., Li, X., Li, B., Liu, S., Chang, N., Jie, D., Ning, C., Gao, H., & Meng, X. (2017). Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrasonics Sonochemistry, 37, 251–259. https://doi.org/10.1016/J.ULTSONCH.2017.01.017spa
dc.relation.referencesŽuntar, I., Petric, Z., Kovacevíc, D., & Putnik, P. (2020). Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods, 9(7), 947. https://doi.org/10.3390/foods9070947spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembBebidasspa
dc.subject.lembBeverageseng
dc.subject.lembTecnología de alimentosspa
dc.subject.proposalFrutos rojosspa
dc.subject.proposalbacterias de ácido lácticospa
dc.subject.proposalbebida no lácteaspa
dc.subject.proposalcompuestos bioactivosspa
dc.subject.proposalprebióticospa
dc.subject.proposalprobióticospa
dc.subject.proposalBerrieseng
dc.subject.proposallactic acid bacteriaeng
dc.subject.proposalnon-dairy beverageeng
dc.subject.proposalbioactive compoundseng
dc.subject.proposalprebioticeng
dc.subject.proposalprobioticeng
dc.titleDesarrollo de una bebida natural con potencial simbiótico empleando frutos ricos en antocianinasspa
dc.title.translatedDevelopment of a natural beverage with synbiotic potential using anthocyanin-rich fruitseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032464975.2022.pdf
Tamaño:
3.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: