El problema de la existencia de retracciones en extensiones modulo finitas y la conjetura de Koh

dc.contributor.advisorVélez Caicedo, Juan Diego (Thesis advisor)spa
dc.contributor.authorPérez Vallejo, Juan Felipespa
dc.date.accessioned2019-06-24T13:16:45Zspa
dc.date.available2019-06-24T13:16:45Zspa
dc.date.issued2009spa
dc.description.abstractSi RcS es una extensión de anillos, una pregunta natural es cuándo existe una función R-lineal que envié el 1 en el 1; a esto se le conoce como retracción. La pregunta acerca de retracciones en extensiones módulo finitas, es sin duda alguna una de las más importantes dentro del álgebra Commutativa, pues implica la solución de muchos otros problemas abiertos tales como la nueva conjetura de la intersección o la conjetura de la syzygia de Evans y Gri¢ th. (ver [Ho83] y [EvG].) En los dos casos que consideraremos en esta tesis nos preguntamos acerca de la existen- cia de retracciones cuando R es un anillo regular, esta es la Conjetura del Sumando Directo, (C.S.D), o una hipótesis más débil, que S tenga dimensión proyectiva .finita sobre R, Conjetura de Koh. Veremos en el primer caso, que la respuesta a la pregunta de la existencia de retracciones es afirmativa cuando R contiene un campo, utilizando la función traza si el campo tiene característica cero, o apoyándonos en el homomorfismo de Frobenius cuando la característica es prima. En el caso de la Conjetura de Koh veremos que el resultado es cierto siempre y cuando R contenga un campo de característica cero. Para mostrarlo extenderemos la definición de polinomio característico a R-módulos proyectivos lo cual nos permite imitar la prueba de la C.S.D. en característica cero. Veremos luego que el resultado es falso si la característica del campo es prima. Para ello tendremos que utilizar la construcción de Yoneda para Ext, al igual que un computador para los cómputos necesarios. Al lector interesado en abordar con mayor profundidad estos temas le recomiendo revisar [Ho83] allí encontrará una reducción de C.S.D. al caso en que R es un anillo de series de potencias sobre un dominio de valuación discreta y, en el caso de la Conjetura de Koh, mirar [JD] donde encontrará una versión diferente del contraejemplo dado acá, al igual que otros contraejemplos, en particular un contraejemplo en característica mixta. Para leer este trabajo se necesitan conocimientos en álgebra conmutativa, específicamente lo que se refiere a localizaciones, completaciones, módulos planos, etc. en álgebra Homológica todo aquello relacionado con las construcciones de funtores derivados y algunas de sus propiedades, y por último un conocimiento básico de la teoría de esquemas. Una buena referencia para esto es [DE] y [RH] de donde extraí la mayoría de los resultados. Por último quiero hacer notar que este trabajo es parte de un seminario que se ha ido desarrollando desde el año pasado, 2008, dirigido por el profesor Juan Diego Vélez.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/1834/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/3353
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticasspa
dc.relation.ispartofEscuela de Matemáticasspa
dc.relation.referencesPérez Vallejo, Juan Felipe (2009) El problema de la existencia de retracciones en extensiones modulo finitas y la conjetura de Koh. Maestría thesis, Universidad Nacional de Colombia, Sede Medellìn.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalAlgebra conmutativaspa
dc.titleEl problema de la existencia de retracciones en extensiones modulo finitas y la conjetura de Kohspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017134618.2009.pdf
Tamaño:
292.67 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas