Evaluación de la actividad antagonista de mutantes aleatorios de la cepa Bacillus velezensis IBUN 2755 contra hongos fitopatógenos de arroz

dc.contributor.advisorUribe Velez, Danielspa
dc.contributor.advisorPedraza Herrera, Luz Adrianaspa
dc.contributor.authorGuerra Luran, Emmanuel Joséspa
dc.contributor.researchgroupMicrobiología Agrícolaspa
dc.date.accessioned2025-04-21T18:25:03Z
dc.date.available2025-04-21T18:25:03Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractBacillus velezensis IBUN 2755 es una cepa aislada de la rizosfera de Solanum phureja (papa criolla), que ha demostrado en estudios previos, actividad antagonista contra los hongos fitopatógenos Rhizoctonia solani y Gaeumannomyces graminis, fitopatógenos asociados al cultivo de arroz. No obstante, los mecanismos de acción de la cepa aún no se conocen con precisión. Para dilucidar estos mecanismos, se empleó una estrategia de mutagénesis aleatoria en la cepa silvestre utilizando irradiación con luz ultravioleta (UV). El objetivo principal de este estudio fue generar y evaluar mutantes de B. velezensis IBUN 2755. Para ello se realizó un tamizaje in vitro del antagonismo de 145 mutantes putativos, identificándose la cepa mutante 39A, la cual mostró una disminución significativa en la actividad inhibitoria, del 51,9% contra G. graminis y 51,1% contra R. solani. Asimismo, se evidenció que a partir del sobrenadante del medio de cultivo (MOLP), la cepa se presentó una disminución en la actividad inhibidora frente a ambos hongos. Posteriormente se analizó el perfil metabólico de la cepa a partir de extractos del sobrenadante mediante cromatografía líquida de alta resolución (HPLC), esto reveló diferencias en los perfiles cromatográficos entre la cepa silvestre y la mutante. En particular, se observó la pérdida de un pico asociado a compuestos de tipo fengicina, según un patrón comercial. Para comprobar estos compuestos se utilizó la técnica HPLC MS/MS a partir de esto se evidenció cambios en el perfil cromatográfico encontrándose ausencias en el compuesto denominado Lipopeptide N°56362, sin embargo, también se encontró diferencias en la intensidad de compuestos de tipo Bacillopeptina, Surfactina y un compuesto de la familia de las fengicinas. Otras características fenotípicas encontradas fueron: cambios en la morfología la cual difirió con respecto a la cepa control. Además, al evaluar su curva de crecimiento hasta las 72 horas, se evidenció un crecimiento similar, para la estabilidad de la mutante en el tiempo se evaluaron hasta 10 generaciones encontrándose que la mutación fue estable en todas; adicionalmente se evaluó la actividad antagonista de compuestos orgánicos volátiles (VOCs) producidos por la cepa mutante, demostrando que esta perdió parcialmente su capacidad inhibitoria en comparación con la cepa silvestre. Finalmente, el genoma de la cepa 39A fue secuenciado mediante la tecnología Illumina, identificándose 23 SNPs en genes relevantes como spo0A, el cual codifica el regulador maestro de la esporulación, también se identificó otros SNPs de interés como en los genes pksF, el cual codifica un módulo de una sintetasa de policétidos y ppsA que codifica el módulo A de la sintetasa de fengicinas y por lo tanto pueden afectar la producción de dichos compuestos. Se concluye que compuestos de la familia de las fengicinas podrían estar asociados a la actividad antagonista de la cepa IBUN 2755 contra hongos fitopatógenos de arroz. (Texto tomado de la fuente).spa
dc.description.abstractBacillus velezensis IBUN 2755 is a strain isolated from the rhizosphere of Solanum phureja (criolla potato) that has previously demonstrated antagonistic activity against the phytopathogenic fungi Rhizoctonia solani and Gaeumannomyces graminis, pathogens associated with rice cultivation. However, the strain's mechanisms of action remain unclear. To elucidate these mechanisms, a random mutagenesis strategy was applied to the wild-type strain using ultraviolet (UV) irradiation. The primary objective of this study was to generate and evaluate B. velezensis IBUN 2755 mutants. To achieve this, an-in vitro screening of 145 putative mutants was performed, identifying the mutant strain 39A, which exhibited a significant reduction in inhibitory activity: 51.9% against G. graminis and 51.1% against R. solani. Additionally, supernatant from the MOLP culture medium showed a decrease in inhibitory activity against both fungi. Subsequently, the strain's metabolic profile was analyzed using high-performance liquid chromatography (HPLC) of supernatant extracts, revealing differences between the wild-type and mutant strains. Notably, the mutant strain exhibited the loss of a peak associated with fengycin-type compounds, based on a commercial standard. To confirm these findings, HPLC-MS/MS analysis was conducted, revealing alterations in the chromatographic profile, from this, changes were evidenced, with the absence of the compound named Lipopeptide N°56362. However, differences were also found in the intensity of compounds belonging to the Bacillopeptin, Surfactin, and a compound from the Fengycin family. Other phenotypic characteristics included morphological changes compared to the control strain. Additionally, growth curve analysis up to 72 hours showed similar growth patterns. The mutant strain's stability over time was assessed across 10 generations, confirming that the mutation remained stable. Furthermore, the antagonistic activity of volatile organic compounds (VOCs) produced by the mutant strain was evaluated, demonstrating a partial loss of inhibitory capacity compared to the wild-type strain. Finally, the genome of strain 39A was sequenced using Illumina technology, identifying 23 SNPs in relevant genes, including spo0A, which encodes the master regulator of sporulation. Other noteworthy SNPs were found in pksF, which encodes a module of a polyketide synthase, and ppsA, responsible for encoding module A of fengycin synthase, potentially affecting the production of these compounds. In conclusion, fengycin-family compounds may be associated with the antagonistic activity of B. velezensis IBUN 2755 against rice phytopathogenic fungi.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaMicrobiología agrícolaspa
dc.format.extentxiv, 143 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87983
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with imageJ. In Biophotonics International (Vol. 11, Issue 7, pp. 36–41). https://doi.org/10.1201/9781420005615.ax4spa
dc.relation.referencesAcevedo, M. A., Castrillo, W. A., & Belmonte, U. C. (2006). Origen, evolución y diversidad del arroz. Agronomía Tropical, 56(2), 151–170.spa
dc.relation.referencesAdrio, J. L., & Demain, A. L. (2006a). Genetic improvement of processes yielding microbial products. FEMS Microbiology Reviews, 30(2), 187–214. https://doi.org/10.1111/J.1574-6976.2005.00009.Xspa
dc.relation.referencesAhimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27(10), 749–754. https://doi.org/10.1016/S0141-0229(00)00295-7spa
dc.relation.referencesAlizaga, R. (2002). Hongos patógenos en semilla de arroz asociados con la incidencia de plántulas anormales en la prueba de germinación. Tecnología En Marcha, 15(1), 60–70.spa
dc.relation.referencesAljohani, A. B., Al-Hejin, A. M., & Shori, A. B. (2023). Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Science and Technology (Brazil), 43. https://doi.org/10.1590/fst.118021spa
dc.relation.referencesAljowaie, R. M., Abdel Gawwad, M. R., Al Farraj, D. A., H, J. K., & Rajendran, P. (2021). In-vitro antimicrobial susceptibility pattern of lipopeptide against drug resistant Vibrio species. Journal of Infection and Public Health, 14(12), 1887–1892. https://doi.org/10.1016/J.JIPH.2021.10.015spa
dc.relation.referencesAlmaguer, M., Rojas, T., & Hernández, A. (2008). Perspectivas de los estudios aeromicológicos para la protección del cultivo del arroz. Rev. Protección Veg. , 23(3), 137–143.spa
dc.relation.referencesAranda, F. J., Teruel, J. A., & Ortiz, A. (2005). Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochimica et Biophysica Acta, 1713(1), 51–56. https://doi.org/10.1016/J.BBAMEM.2005.05.003spa
dc.relation.referencesArcos, J., & Zúñiga, D. (2015). Efecto de rizobacterias en el control de Rhizoctonia solani en el cultivo de papa. Ecología Aplicada, 14(2), 95–101.spa
dc.relation.referencesAriza, Y., & Sánchez, L. (2012). Determinación de metabolitos secundarios a partir de Bacillus subtilis con efecto biocontrolador sobre Fusarium sp. Ciencias Biomédicas, 10(18), 7.spa
dc.relation.referencesAshwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127–136. https://doi.org/10.1007/s13205-013-0134-4spa
dc.relation.referencesBarboza-Corona, J. E., & Escudero Abarca, B. I. (2002). Combate de plagas y hongos. Comunicaciones Libres-Ciencia, Figura 1, 76–83.spa
dc.relation.referencesBarnett, H., & Hunter, B. (1998). Ilustred genera of infect fungi (p. 218).spa
dc.relation.referencesBarsoum, M., Kusch, S., Frantzeskakis, L., Schaffrath, U., & Panstruga, R. (2020). Ultraviolet mutagenesis coupled with next-generation sequencing as a method for functional interrogation of powdery mildew genomes. Molecular Plant-Microbe Interactions, 33(8), 1008–1021. https://doi.org/10.1094/MPMI-02-20-0035-TAspa
dc.relation.referencesBéchet, M., Castéra-Guy, J., Guez, J. S., Chihib, N. E., Coucheney, F., Coutte, F., Fickers, P., Leclère, V., Wathelet, B., & Jacques, P. (2013). Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresource Technology, 145, 264–270. https://doi.org/10.1016/j.biortech.2013.03.123spa
dc.relation.referencesBetancourth, C. A., Sañudo, B. A., Flórez, C. A., & Salazar, C. E. (2021). Management of the black scurf (Rhizoctonia solani) in potato by using green manure. Informacion Tecnologica, 32(2), 165–174. https://doi.org/10.4067/S0718-07642021000200165spa
dc.relation.referencesBetancourth-García, C. A., Castro-Caicedo, B. L., Quiroz-Ojeda, C., Sañudo-Sotelo, B., Florez-Casanova, C., & Salazar-Gonzalez, C. (2021). Morphology and pathogenicity of Rhizoctonia solani Kühn associated with potato black scurf in Nariño (Colombia). Revista Colombiana de Ciencias Horticolas, 15(1), 0–3. https://doi.org/10.17584/rcch.2021v15i1.11821spa
dc.relation.referencesBiswas, J., & Paul, A. K. (2016). Chemical Mutagenesis for Improvement of Production of a Biologically Active Extracellular Polymeric Substance by Halomonas xianhensis SUR308. American Journal of Microbiology, 7(1), 1–11. https://doi.org/10.3844/ajmsp.2016.1.11spa
dc.relation.referencesBleisch, R., Freitag, L., Ihadjadene, Y., Sprenger, U., Steingröwer, J., Walther, T., & Krujatz, F. (2022). Strain Development in Microalgal Biotechnology—Random Mutagenesis Techniques. Life, 12(7), 961. https://doi.org/10.3390/life12070961spa
dc.relation.referencesBóka, B., Manczinger, L., Kocsubé, S., Shine, K., Alharbi, N. S., Khaled, J. M., Münsterkötter, M., Vágvölgyi, C., & Kredics, L. (2019). Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World Journal of Microbiology and Biotechnology, 35(3), 0. https://doi.org/10.1007/s11274-019-2625-xspa
dc.relation.referencesBouassida, M., Ghazala, I., Ellouze-Chaabouni, S., & Ghribi, D. (2018a). Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System. J. Microbiol. Biotechnol, 28(1), 95–104. https://doi.org/10.4014/jmb.1701.01033spa
dc.relation.referencesBouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In Bacteria in Agrobiology: Disease Management (Vol. 9783642336, pp. 15–47). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_2spa
dc.relation.referencesBrash, D. E., Heffernan, T. P., Nghiem, P., & Cho, R. J. (2017). Carcinogenesis: UV Radiation. Textbook of Aging Skin, 887–902. https://doi.org/10.1007/978-3-662-47398-6_56spa
dc.relation.referencesBridges, B. A., & Woodgate, R. (1985). The two-step model of bacterial UV mutagenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 150(1–2), 133–139. https://doi.org/10.1016/0027-5107(85)90110-1spa
dc.relation.referencesBush, S. J., Foster, D., Eyre, D. W., Clark, E. L., de Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), 1–21. https://doi.org/10.1093/GIGASCIENCE/GIAA007spa
dc.relation.referencesCalderone, C. T., Kowtoniuk, W. E., Kelleher, N. L., Walsh, C. T., & Dorrestein, P. C. (2006). Convergence of isoprene and polyketide biosynthetic machinery: Isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. https://www.pnas.orgspa
dc.relation.referencesCardona, R., Rodriguez, H. A., & Nass, H. (1995). 1. Gaeumannomyces graminis var graminis Hongo causante de la pudrición negra de la hoja envainadora del arroz de Venezuela. Bioagro, 7(2), 31–37.spa
dc.relation.referencesCarrasco-Ríos, L. (2009). EFECTO DE LA RADIACIÓN ULTRAVIOLETA-B EN PLANTAS.spa
dc.relation.referencesCarreres, R. (2005). Enfermedades del arroz, técnicas de cultivo y control químico. Vida Rural, 53–57spa
dc.relation.referencesCaulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. In Frontiers in Microbiology (Vol. 10, Issue FEB, p. 435128). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.00302spa
dc.relation.referencesCawoy, H., Bettiol, W., Fickers, P., Ongena, M., Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-Based Biological Control of Plant Diseases. Pesticides in the Modern World - Pesticides Use and Management. https://doi.org/10.5772/17184spa
dc.relation.referencesCawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8(2), 281–295. https://doi.org/10.1111/1751-7915.12238spa
dc.relation.referencesCellini, A., Spinelli, F., Donati, I., Ryu, C. M., & Kloepper, J. W. (2021). Bacterial volatile compound-based tools for crop management and quality. Trends in Plant Science, 26(9), 968–983. https://doi.org/10.1016/J.TPLANTS.2021.05.006spa
dc.relation.referencesCesa-Luna, C., Alatorre-Cruz, J. M., Carreño-López, R., Quintero-Hernández, V., & Baez, A. (2021). Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish Journal of Microbiology, 70(2), 143. https://doi.org/10.33073/PJM-2021-020spa
dc.relation.referencesChaudhary, R., Nanda, J., Tran, D.(2003). Guia para identificar las limitaciones de campo en la produccion de arroz. In Comision Internacional Del Arroz.spa
dc.relation.referencesChecinska, A., Paszczynski, A., & Burbank, M. (2015). Bacillus and other spore-forming genera: variations in responses and mechanisms for survival. Annual Review of Food Science and Technology, 6, 351–369. https://doi.org/10.1146/ANNUREV-FOOD-030713-092332spa
dc.relation.referencesChen, L., Heng, J., Qin, S., & Bian, K. (2018a). A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PloS One, 13(6). https://doi.org/10.1371/JOURNAL.PONE.0198560spa
dc.relation.referencesChen, Y., Liu, S. A., Mou, H., Ma, Y., Li, M., & Hu, X. (2017). Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Frontiers in Microbiology, 8(MAY). https://doi.org/10.3389/fmicb.2017.00871spa
dc.relation.referencesChen, Y., Zhang, A. F., Wang, W. X., Zhang, Y., & Gao, T. C. (2012). Baseline sensitivity and efficacy of thifluzamide in Rhizoctonia solani. Annals of Applied Biology, 161(3), 247–254. https://doi.org/10.1111/J.1744-7348.2012.00569.Xspa
dc.relation.referencesChica L., J., Tirado O., Y. C., & Barreto O., J. M. (2016). Indicadores de competitividad del cultivo del arroz en Colombia y Estados Unidos. Revista de Ciencias Agrícolas, 33(2), 16. https://doi.org/10.22267/rcia.163302.49spa
dc.relation.referencesCotes, A. (2014). Control biológico de enfermedades de plantas en Colombia. In Control Biológico de Enfermedades de Plantas en América Latina y el Caribe (Issue February).spa
dc.relation.referencesCotes Prado, A. M., Fargetton, X., Köhl, J., Díaz García, A., Gómez Álvarez, M. I., Grijalba Bernal, E. P., Santos Diaz, A. M., Cruz Barrera, F. M., León Moreno, D. M., Alarcón Torres, E. A., Uribe, L. A., Torres Torres, L., Moreno, F., Betancourt, R. A., Aragón Rodríguez, S. M., Martínez Vargas, Y. A., Sabogal, A. E., Rodríguez, M. L., Borrero Echeverry, F., … Kondo, T. (2018). Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas (volumen 2). In Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas (volumen 2). https://doi.org/10.21930/agrosavia.investigation.7402544spa
dc.relation.referencesCuevas, A., Higuera, H., & FEDEARROZ. (2018). Guía para el monitoreo y manejo de enfermedades. Journal of Chemical Information and Modeling,spa
dc.relation.referencesDANE. (2020). Encuesta Nacional de arroz mecanizado. In DANE Boletín Técnico (Vol. 2014).spa
dc.relation.referencesDANE. (2023). Encuesta Nacional de Arroz Mecanizado (ENAM), segundo semestre de 2022.spa
dc.relation.referencesDegiovanni, V. B., Martínez R, C. P., & Motta, F. O. (2010). Producción eco-eficiente del arroz en América Latina. Tomo I: Capítulos 1-24.spa
dc.relation.referencesDiabankana, R. G. C., Shulga, E. U., Validov, S. Z., & Afordoanyi, D. M. (2022). Genetic Characteristics and Enzymatic Activities of Bacillus velezensis KS04AU as a Stable Biocontrol Agent against Phytopathogens. International Journal of Plant Biology, 13(3), 201–222. https://doi.org/10.3390/ijpb13030018spa
dc.relation.referencesDong, Y., Lin, H., Wang, H., Mo, X., Fu, K., & Wen, H. (2011). Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Minerals Engineering, 24(8), 870–875. https://doi.org/10.1016/J.MINENG.2011.03.020spa
dc.relation.referencesDong, Y., Lin, H., Wang, H., Mo, X., Fu, K., & Wen, H. (2011). Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Minerals Engineering, 24(8), 870–875. https://doi.org/10.1016/J.MINENG.2011.03.020spa
dc.relation.referencesEcheverri Rico, J. (2016). "Mal Del Pie”,Objetivo Prioritario De La Investigacion En Arroz. Revista Arroz, September, 10–19.spa
dc.relation.referencesEscalona, Y., González, A., Hernández, A., & Querales, P. (2023). Evaluación de lesiones foliares y síntomas del manchado del grano de arroz producidos por bacteriosis en Venezuela. Bioagro, 35(1), 147–158. https://doi.org/10.51372/bioagro352.7spa
dc.relation.referencesFAO. (2023). Perspectivas de cosechas y situación alimentaria. In Perspectivas de cosechas y situación alimentaria. https://doi.org/10.4060/cc6806esspa
dc.relation.referencesFAO, Spencer-Lopes, M., Forster, B. P., & Jankuloski, L. (2021). Manual de mejoramiento por mutaciones - Tercera edición. In Manual de mejoramiento por mutaciones - Tercera edición (Tercera ed). https://doi.org/10.4060/i9285esspa
dc.relation.referencesFEDEARROZ. (2018). Plan Estratégico Fondo Nacional Del Arroz 2011 – 2020. Fondo Nacional Del Arroz, 40.spa
dc.relation.referencesFEDEARROZ, F. (2022). Informe de Gestión Fondo Nacional del Arroz. Revista Arroz, 1–141.spa
dc.relation.referencesFeng, X. (2024). Current Status of Research on Ultraviolet Mutagenesis of Bacillus Subtilis. Saudi Journal of Pathology and Microbiology, 3362, 176–181.spa
dc.relation.referencesFeng, Z., Xu, M., Yang, J., Zhang, R., Geng, Z., Mao, T., Sheng, Y., Wang, L., Zhang, J., & Zhang, H. (2022). Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. Frontiers in Plant Science, 13(October), 1–14. https://doi.org/10.3389/fpls.2022.1019512spa
dc.relation.referencesFINAGRO. (2020). Ficha de inteligencia: Cultivo de arroz.spa
dc.relation.referencesFira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044spa
dc.relation.referencesFujii, I. (2010). Functional analysis of fungal polyketide biosynthesis genes. In Journal of Antibiotics (Vol. 63, Issue 5, pp. 207–218). https://doi.org/10.1038/ja.2010.17spa
dc.relation.referencesGao, L., Guo, J., Fan, Y., Ma, Z., Lu, Z., Zhang, C., Zhao, H., & Bie, X. (2018). Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microbial Cell Factories, 17(1). https://doi.org/10.1186/s12934-018-0929-4spa
dc.relation.referencesGfeller, A., Fuchsmann, P., De Vrieze, M., Gindro, K., & Weisskopf, L. (2022). Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms, 10(8). https://doi.org/10.3390/MICROORGANISMS10081510/S1spa
dc.relation.referencesGonzález-León, Y., Ortega-Bernal, J., Anducho-Reyes, M. A., & Mercado-Flores, Y. (2022). Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura. Revista Especializada En Ciencias Químico-Biológicas, 25. https://doi.org/10.22201/fesz.23958723e.2022.520spa
dc.relation.referencesGrabski, A. C. (2009). Chapter 18 Advances in Preparation of Biological Extracts for Protein Purification. Methods in Enzymology, 463(C), 285–303. https://doi.org/10.1016/S0076-6879(09)63018-4spa
dc.relation.referencesGuirao-abad, J. P., Sánchez-fresneda, R., Martínez-esparza, M., & Argüelles, J.-C. (2010). Análisis comparativo del efecto de la Validamicina A y la Anfotericina B sobre Candida albicans. 45–53.spa
dc.relation.referencesGuleria, S., Aggarwal, R., Thind, T. S., & Sharma, T. R. (2007). Morphological and pathological variability in rice isolates of Rhizoctonia solani and molecular analysis of their genetic variability. Journal of Phytopathology, 155(11–12), 654–661. https://doi.org/10.1111/j.1439-0434.2007.01291.xspa
dc.relation.referencesGuo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., & Ma, P. (2014). Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research, 169(7–8), 533–540. https://doi.org/10.1016/j.micres.2013.12.001spa
dc.relation.referencesGutiérrez, S. A., Cúndom, M. A., & Dirchwolf, P. M. (2017). Patógenos de suelo causantes de enfermedades en cultivos de arroz en Corrientes. Agrotecnia, 25(25), 16. https://doi.org/10.30972/agr.0252454spa
dc.relation.referencesGutiérrez, S., & Cúndom, M. A. (2013). Guía para la Identificación de Enfermedades del Cultivo del Arroz (Oryza sativa L.) en la Provincia de Corrientes. Ministerio de Producción, Trabajo y Turismo., 28.spa
dc.relation.referencesHarwood, C. R., Mouillon, J. M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. In FEMS Microbiology Reviews (Vol. 42, Issue 6, pp. 721–738). Oxford University Press. Https://doi.org/10.1093/femsre/fuy028spa
dc.relation.referencesHawerroth, C., Araujo, L., & Rodrigues, F. Á. (2017). Infection process of Gaeumannomyces graminis var. graminis on the roots and culms of rice. Journal of Phytopathology, 165(10), 692–700. https://doi.org/10.1111/jph.12608spa
dc.relation.referencesHenkel, M., & Hausmann, R. (2019). Diversity and Classification of Microbial Surfactants. In Biobased Surfactants: Synthesis, Properties, and Applications (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812705-6.00002-2spa
dc.relation.referencesHipólito, C., Pérez Iglesias, I., Irán, M., Delgado, R., Rigoberto, C., & García Batista, M. (2018). Principales enfermedades que afectan al cultivo del arroz en Ecuador y alternativas para su control. Revista Científica Agroecosistemas, 6(1), 16–27.spa
dc.relation.referencesHipólito Pérez Iglesias, & Delgado, I. R. (2020). Cultivos tropicales de importancia económica en Ecuador (arroz, yuca, caña de azúcar y maíz). In Suparyanto dan Rosad (2015 (Vol. 5, Issue 3).spa
dc.relation.referencesICA. (2022). Plan De Monitoreo De Residuos De Plaguicidas Quimicos En Especies Vegetales En Colombia. 1–23.spa
dc.relation.referencesIkehata, H., & Ono, T. (2011). The mechanisms of UV mutagenesis. Journal of Radiation Research, 52(2), 115–125. https://doi.org/10.1269/JRR.10175spa
dc.relation.referencesJaved, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. In Progress in Biophysics and Molecular Biology (Vol. 132, pp. 23–34). Pergamon. https://doi.org/10.1016/j.pbiomolbio.2017.07.014spa
dc.relation.referencesJiao, R., Cai, Y., He, P., Munir, S., Li, X., Wu, Y., Wang, J., Xia, M., He, P., Wang, G., Yang, H., Karunarathna, S. C., Xie, Y., & He, Y. (2021). Bacillus amyloliquefaciens YN201732 Produces Lipopeptides With Promising Biocontrol Activity Against Fungal Pathogen Erysiphe cichoracearum. Frontiers in Cellular and Infection Microbiology, 11(June), 1–11. https://doi.org/10.3389/fcimb.2021.598999spa
dc.relation.referencesJiménez, M. (2021). Importancia de los factores climáticos en el cultivo de arroz. 30-04-2021, 6(1), 28–34.spa
dc.relation.referencesJohnston, C. D., Cotton, S. L., Rittling, S. R., Starr, J. R., Borisy, G. G., Dewhirst, F. E., & Lemon, K. P. (2019). Systematic evasion of the restriction-modification barrier in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 166(23), 11454–11459. https://doi.org/10.1073/PNAS.1820256116/-/DCSUPPLEMENTALspa
dc.relation.referencesJoshi, R., & McSpadden Gardener, B. B. (2006). Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology, 96(2), 145–154. https://doi.org/10.1094/PHYTO-96-0145/SUPPL_FILE/PHYTO-96-0145E.PDFspa
dc.relation.referencesKanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6(MAR). https://doi.org/10.3389/FPLS.2015.00151spa
dc.relation.referencesKang, X., Zhang, W., Cai, X., Zhu, T., Xue, Y., & Liu, C. (2018). Bacillus velezensis CC09: A potential ‘Vaccine’ for controlling wheat diseases. Molecular Plant-Microbe Interactions, 31(6), 623–632. https://doi.org/10.1094/MPMI-09-17-0227-R/SUPPL_FILE/MPMI-09-17-0227-R.ST1.PDFspa
dc.relation.referencesKashyap, P., & Deswal, R. (2017). A novel class I Chitinase from Hippophae rhamnoidesIndications for participating in ICE-CBF cold stress signaling pathway. Plant Science, 259, 62–70. https://doi.org/10.1016/j.plantsci.2017.03.004spa
dc.relation.referencesKavitha, S., Senthilkumar, S., Gnanamanickam, S., Inayathullah, M., & Jayakumar, R. (2005). Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochemistry, 40(10), 3236–3243. https://doi.org/10.1016/j.procbio.2005.03.060spa
dc.relation.referencesKiesewalter, H. T., Lozano-Andrade, C. N., Wibowo, M., Strube, M. L., Maróti, G., Snyder, D., Jørgensen, T. S., Larsen, T. O., Cooper, V. S., Weber, T., & Kovács, Á. T. (2021). Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. MSystems, 6(1). https://doi.org/10.1128/msystems.00770-20spa
dc.relation.referencesKim, Y. S., Lee, Y., Cheon, W., Park, J., Kwon, H. T., Balaraju, K., Kim, J., Yoon, Y. J., & Jeon, Y. (2021). Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-020-80231-2spa
dc.relation.referencesKim, Y. T., Kim, S. E., Lee, W. J., Fumei, Z., Cho, M. S., Moon, J. S., Oh, H. W., Park, H. Y., & Kim, S. U. (2020). Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS ONE, 15(12). https://doi.org/10.1371/JOURNAL.PONE.0234177spa
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 454982. https://doi.org/10.3389/fpls.2019.00845spa
dc.relation.referencesLastochkina, O., Seifikalhor, M., Aliniaeifard, S., Baymiev, A., Pusenkova, L., Garipova, S., Kulabuhova, D., & Maksimov, I. (2019). Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. In Plants (Vol. 8, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants8040097spa
dc.relation.referencesLenhart, J. S., Schroeder, J. W., Walsh, B. W., & Simmons, L. A. (2012). DNA Repair and Genome Maintenance in Bacillus subtilis. Microbiology and Molecular Biology Reviews, 76(3), 530–564. https://doi.org/10.1128/mmbr.05020-11spa
dc.relation.referencesLiu, J., Liu, M., Wang, J., Yao, J. M., Pan, R. R., & Yu, Z. L. (2005). Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation. Applied Microbiology and Biotechnology, 69(2), 223–228. https://doi.org/10.1007/S00253-005-1981-7spa
dc.relation.referencesLu, F., Chao, J., Zhao, X., Betchem, G., Ding, Y., Yang, X., Li, Y., & Ma, H. (2022). Enhancing protease activity of Bacillus subtilis using UV-laser random mutagenesis and high-throughput screening. Process Biochemistry, 119, 119–127. https://doi.org/10.1016/J.PROCBIO.2022.05.018spa
dc.relation.referencesLu, F., Ruan, S., Wang, Y., Li, Y., Ma, F., & Ma, H. (2024). Unveiling underlying mechanism of combined He–Ne laser and UV mutagenesis in Bacillus subtilis CICC 21927: A transcriptomic analysis. Food Bioscience, 61(July), 104694. https://doi.org/10.1016/j.fbio.2024.104694spa
dc.relation.referencesLu, M. (2024). Impact of climate change on rice and adaptation strategies: A review. 4(2), 252–262. https://doi.org/10.50908/arr.4.2_252spa
dc.relation.referencesLuo, L., Zhao, C., Wang, E., Raza, A., & Yin, C. (2022). Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiological Research, 259(January), 127016. https://doi.org/10.1016/j.micres.2022.127016spa
dc.relation.referencesMahadtanapuk, S., Yu, L. D., Cutler, R., Vilaithong, T., & Anuntalabhochai, S. (2007). Mutation of Bacillus licheniformis using low-energy ion beam bombardment. Surface and Coatings Technology, 201(19-20 SPEC. ISS.), 8029–8033. https://doi.org/10.1016/j.surfcoat.2006.08.148spa
dc.relation.referencesMajumdar, A. (2023). Molecular techniques for the improvement of microbial biocontrol agents against plant pathogens. Egyptian Journal of Biological Pest Control, 33(1). https://doi.org/10.1186/s41938-023-00746-4spa
dc.relation.referencesManikandan, A., Johnson, I., Jaivel, N., Krishnamoorthy, R., Senthilkumar, M., Raghu, R., Gopal, N. O., Mukherjee, P. K., & Anandham, R. (2022). Gamma-induced mutants of Bacillus and Streptomyces display enhanced antagonistic activities and suppression of the root rot and wilt diseases in pulses. Biomolecular Concepts, 13(1), 103–118. https://doi.org/10.1515/BMC-2022-0004/ASSET/GRAPHIC/J_BMC-2022-0004_FIG_004.JPGspa
dc.relation.referencesMartínez Bautista, A., Osorio Hernández, E., & Patishtan, J. (2022). Incremento de la patogenicidad de hongos en arroz bajo condiciones de desbalance nutricional. Ciencia Latina Revista Científica Multidisciplinar, 6(4), 2006–2019. https://doi.org/10.37811/cl_rcm.v6i4.2726spa
dc.relation.referencesMeena, K. R., & Kanwar, S. S. (2015). Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics. BioMed Research International, 2015. https://doi.org/10.1155/2015/473050spa
dc.relation.referencesMéndez, P. (2021). Producción y comercialización mundial del arroz. En Un Contexto Internacional 1920 - 2020, Cuadro 1, 302–313.spa
dc.relation.referencesMendoza, H., Loor, B., & Vilema, S. (2019). Rice and its importance in rural entrepreneurships of agri-cultural bussiness as a local development mechanism of sam-borondón. Revista Científica de La Universidad de Cienfuegos, 11(1), 324–330.spa
dc.relation.referencesMeng, Y., Zhao, W., You, J., Gang, H. Z., Liu, J. F., Yang, S. Z., Ye, R. Q., & Mu, B. Z. (2016). Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Applied Biochemistry and Biotechnology, 179(6), 973–985. https://doi.org/10.1007/s12010-016-2044-5spa
dc.relation.referencesMiranda Martinez, Y. L. (2022). Caracterización de los metabolitos secundarios producidos por la cepa IBUN2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz.spa
dc.relation.referencesMosher, S., Caro Quintero, A., Massart, S., Belaich, M. N., Barrera, G. P., & Ghiringhelli, P. D. (2018). Las ómicas en el control biológico (pp. 950–987).spa
dc.relation.referencesMuis, A. (2016). BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL. Indonesian Journal of Agricultural Science, 7(2), 51. https://doi.org/10.21082/ijas.v7n2.2006.p51-56spa
dc.relation.referencesNarváez-Montaño, M. de J., Mendoza-López, M. R., Sánchez-Viveros, G., Almaraz-Suarez, J. J., & Argumedo-Delira, R. (2023). Actividad inhibitoria de extractos alcohólicos de hongos comestibles contra Rhizoctonia solani. Revista Mexicana de Ciencias Agricolas, 14(4), 615–625. https://doi.org/10.29312/remexca.v14i4.3200spa
dc.relation.referencesNCBI Resource Coordinators. (2021). Bacillus velezensis IBUN 2755 genome assembly (GCF_033798645.1). National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine. Disponible en: https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_033798645.1/spa
dc.relation.referencesNtushelo, K., Ledwaba, L. K., Rauwane, M. E., Adebo, O. A., & Njobeh, P. B. (2019). The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects. Toxins 2019, Vol. 11, Page 606, 11(10), 606. https://doi.org/10.3390/TOXINS11100606spa
dc.relation.referencesOgasawara, N. (2000). Systematic function analysis of Bacillus subtilis genes. Research in Microbiology, 151(2), 129–134. https://doi.org/10.1016/S0923-2508(00)00118-2spa
dc.relation.referencesOlishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. In Applied Microbiology and Biotechnology (Vol. 103, Issue 3, pp. 1189–1215). Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-9541-0spa
dc.relation.referencesOngena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009spa
dc.relation.referencesOspina, J. (2009). Alternativas de control de la mancha naranja (Gaeumannomyces graminis var. graminis). Revista Arroz, 129–134.spa
dc.relation.referencesParekh, S., Vinci, V. A., & Strobel, R. J. (2000). Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology, 54(3), 287–301. https://doi.org/10.1007/s002530000403spa
dc.relation.referencesPedraza, L. A., López, C. E., & Uribe-Vélez, D. (2020). Mechanisms of action of bacillus spp. (bacillaceae) against phytopathogenic microorganisms during their interaction with plants. Acta Biologica Colombiana, 25(1), 112–125. https://doi.org/10.15446/abc.v25n1.75045spa
dc.relation.referencesPedraza-Herrera, L. A. (2022). Genomic comparative reveal that biocontroler strain IBUN 2755 is a Bacillus velezensis asociated with plants - In preparation.spa
dc.relation.referencesPedraza-Herrera, L. A. (2023). Identificación y análisis funcional de determinantes asociados a los mecanismos de acción de la cepa de BAFE IBUN 2755 en el biocontrol de Burkholderia glumae en plantas de arroz. Universidad Nacional de Colombia.spa
dc.relation.referencesPedraza-Reyes, M., Abundiz-Yañez, K., Rangel-Mendoza, A., Martínez, L. E., Barajas-Ornelas, R. C., Cuéllar-Cruz, M., Leyva-Sánchez, H. C., Ayala-García, V. M., Valenzuela-García, L. I., & Robleto, E. A. (2024). Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiology andspa
dc.relation.referencesPeixoto, C. N., Ottoni, G., Filippi, M. C. C., Silva-Lobo, V. L., & Prabhu, A. S. (2013). Biology of Gaeumannomyces graminis var. graminis isolates from rice and grasses and epidemiological aspects of crown sheath rot of rice. Tropical Plant Pathology, 38(6), 495–504. https://doi.org/10.1590/S1982-56762013000600005spa
dc.relation.referencesPerea-Molina, P. A., Pedraza-Herrera, L. A., Beauregard, P. B., & Uribe-Vélez, D. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176. https://doi.org/10.1016/j.biocontrol.2022.105067spa
dc.relation.referencesPerez C, C., & Saavedra, E. (2011). Avances en el manejo integrado de la bacteria burkholderia glumae en el cultivo de arroz en el caribe colombiano. Revista Colombiana de Ciencia Animal - RECIA, 3(1), 111. https://doi.org/10.24188/recia.v3.n1.2011.344spa
dc.relation.referencesPérez-Bryan, M. C. M. (2016). Análisis genómico y funcional de las singularidades de dos cepas de Bacillus amyloliquefaciens con capacidad de biocontrol. 235.spa
dc.relation.referencesPineda, M., & González García, H. (2020). Sensibilidad de una cepa nativa Trichoderma harzianum Rifai a dos fungicidas: Sensitivity of Trichoderma harzianum Rifai to two fungicides. Ciencia y Tecnología Agropecuaria, 5(2), 95–100.spa
dc.relation.referencesPinilla Forero, N. F. (2019). EFECTO DEL SILICIO COMO INDUCTOR DE RESISTENCIA SISTÉMICA ANTE gaeumannomyces graminis var graminis, AGENTE CAUSAL DEL “MAL DEL PIE” EN EL CULTIVO DE ARROZ (Oryza sativa). Universidad del tolima.spa
dc.relation.referencesPino Meléndez, V. E., Cobos Mora, F. J., Troya Guerrero, G., & Reyes Villón, H. (2024). Avances en la evaluación de microorganismos como agentes biocontroladores de patógenos causantes de enfermedades en el cultivo de arroz. 9(1), 27–35.spa
dc.relation.referencesPrabhu, A. S., & Filippi, M. C. C. (2002). Ocorrência do mal-do-pé causado por Gaeumannomyces graminis var. graminis, uma nova enfermidade em arroz no Brasil. Fitopatologia Brasileira, 27(4), 417–419. https://doi.org/10.1590/s0100-41582002000400016spa
dc.relation.referencesPrakash, A., Khobragade, C. N., & Sakharam Mane, R. (2021). Ultraviolet induced random mutagenesis in Bacillus amyloliquefaciens (MF 510169) for improving biodiesel production. Fuel, 304, 121380. https://doi.org/10.1016/j.fuel.2021.121380spa
dc.relation.referencesQuiroz Ojeda, C. M., Salazar González, C. E., & Betancourth García, C. A. (2023). Revisión del estado actual de las investigaciones sobre Rhizoctonia solani Kühn. Revista Facultad de Ciencias Básicas, 18(1), 61–74. https://doi.org/10.18359/rfcb.6523spa
dc.relation.referencesRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6).spa
dc.relation.referencesRani, A., Saini, K. C., Bast, F., Varjani, S., Mehariya, S., Bhatia, S. K., Sharma, N., & Funk, C. (2021). A review on microbial products and their perspective application as antimicrobial agents. In Biomolecules (Vol. 11, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/biom11121860spa
dc.relation.referencesRivera Rivas, R. M. (2021). Morfología, proceso infeccioso y sensibilidad a fungicidas comerciales de tres aislados de Gaeumannomyces spp en Nicaragua. In Tesis.spa
dc.relation.referencesRivera, M. V, & Gómez, L. C. (2012). Identificación y patogenicidad de Fusarium spp y Rhizoctonia solan i en cultivos de arroz del Cesar . Identification and pathogenicity of Fusarium spp and Rhizoctonia solani in rice crops of Cesar . Revista Colombiana de Microbiología, 2(2), 63–68.spa
dc.relation.referencesRodríguez, D. (2013). Mancha naranja (Gaeumannomyces graminis var. graminis)” Nuevo patógeno esta afectando los cultivos de arroz en Costa Rica Generalidades. 1–8.spa
dc.relation.referencesRodríguez, H., Arteaga, L., Cardona, R., & Alemán, L. (2001). Control químico del añublo de la vaina causado por Rhizoctonia solani Kühn en arroz. Bioagro, 13(1), 32–38.spa
dc.relation.referencesSalazar Zuluaga, L. (2014). Elaboración de escalas diagramáticas de severidad en hoja y tallos para evaluar la enfermedad (mal del pie) Gaeumannomyces graminis Sacc.) Von Arx & d. Oliver var. graminis en diferentes estados fenológicos del arroz. Universidad Nacional de Colombia.spa
dc.relation.referencesSarti, G. (2019). Metabolitos con actividad antifúngica producidos por el Género Bacillus. Terra Mundus, 5, 40–51.spa
dc.relation.referencesSenasica. (2018). FICHA TÉCNICA Pudrición de la raíz, Rhizoctonia solani DIRECCIÓN GENERAL DE SANIDAD VEGETAL DIRECCIÓN DEL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA CONTENIDO (pp. 2–21).spa
dc.relation.referencesSetlow, P. (2014). Spore Resistance Properties. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.tbs-0003-2012spa
dc.relation.referencesShahid, M., Usman, M., Shahzad, T., Ali, I., Hassan, M. U., Mahmood, F., & Qari, S. H. (2022). Enhancement of Wheat Growth by UV-Mutagenesis of Potential Chromium Tolerant Bacillus sp. Strain SR-2-1/1. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215341spa
dc.relation.referencesShao, J., Liu, Y., Xie, J., Štefanič, P., Lv, Y., Fan, B., Mandic-Mulec, I., Zhang, R., Xu, Z., & Shen, Q. (2021). Annulment of antagonism shifts properties that are beneficial to plants in two-member consortia of Bacillus velezensis. BioRxiv, 2021.10.13.464333. https://doi.org/10.1101/2021.10.13.464333spa
dc.relation.referencesSharma, D., Singh, S. S., Baindara, P., Sharma, S., Khatri, N., Grover, V., Patil, P. B., & Korpole, S. (2020). Surfactin Like Broad Spectrum Antimicrobial Lipopeptide Co-produced With Sublancin From Bacillus subtilis Strain A52: Dual Reservoir of Bioactives. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01167spa
dc.relation.referencesSharma, K. M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. In Journal of Genetic Engineering and Biotechnology (Vol. 15, Issue 1, pp. 115–126). Elsevier. https://doi.org/10.1016/j.jgeb.2017.02.001spa
dc.relation.referencesShemesh, M., & Ostrov, I. (2020). Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. Journal of the Science of Food and Agriculture, 100(6), 2327–2336. https://doi.org/10.1002/jsfa.10285spa
dc.relation.referencesSingleton, P. (2010). Front Matter. In Dictionary of DNA and Genome Technology (pp. i–xvi). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470689127.fmatterspa
dc.relation.referencesSwathi, M., Jyosthna, M. K., Sarada, R., Devi, J., Prasanthi, L., & Gopalakrishnan, S. (2023). EVALUATION OF DIFFERENT METHODS OF ARTIFICIAL INOCULATION OF Rhizoctonia solani OF RICE. Andhra Pradesh J Agril. Sci, 9(1), 76–81.spa
dc.relation.referencesTejera, B., Heydrich, M., & Rojas, M. M. (2012). Antagonismo de Bacillus spp. frente a hongos fitopatógenos del cultivo del arroz (Oryza sativa L.). Revista de Protección Vegetal, 27(2), 117–122.spa
dc.relation.referencesTejera-hernández, B., & Heydrich-pérez, M. M. R. M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. Ciencias Biológicas, 42(3), 131–138.spa
dc.relation.referencesToledo, M. (2013). Secretaría de Agricultura y Ganadería Dirección de Ciencia y Tecnología Agropecuaria El cultivo de la papa en Honduras Por Milton Toledo La Esperanza , Intibucá , Honduras. 1–82.spa
dc.relation.referencesTorres, E. S., Torres, J., Moreno, C., & Arango, R. (2012). Development of transgenic lines from a male-sterile potato variety, with potential resistance to Tecia solanivora Povolny. Agronomía Colombiana, 30(2), 163–171.spa
dc.relation.referencesTran, C., Cock, I. E., Chen, X., & Feng, Y. (2022). Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics, 11(1). https://doi.org/10.3390/ANTIBIOTICS11010088/S1spa
dc.relation.referencesUrrutia Morante, G. J. (2023a). Aplicación de tres fungicidas en semillas de arroz inoculada con Rhizoctonia solani y Gaeumannomyces graminis. Urrutia Morante, G. J. (2023b). Aplicación de tres fungicidas en semillas de arroz inoculada con Rhizoctonia solani y Gaeumannomyces graminis.spa
dc.relation.referencesValencia Riascos, L. M. (2019). Evaluación de las cepas Bacillus subtilis EA-CB0015 y Bacillus amyloliquefaciens EA-CB0959 sobre cuatro hongos patógenos de arroz.spa
dc.relation.referencesValenzuela Ruiz, V., Gálvez Gamboa, G. T., Villa Rodríguez, E. D., Parra Cota, F. I., Santoyo, G., & De los Santos Villalobos, S. (2020). Lipopéptidos producidos por agentes de control biológico del género Bacillus: revisión de herramientas analíticas utilizadas para su estudio. Revista Mexicana de Ciencias Agrícolas, 11(2), 419–432. https://doi.org/10.29312/remexca.v11i2.2191spa
dc.relation.referencesVenegas G., E., Ciampi P., L., Collado G., L., Costa L., M., Fuentes P., R., Nissen M., J., Schobitz T., R., & Schoebitz C., M. (2005). Aislamiento e identificación de bacterias nativas del género Bacillus Cohn antagonistas de cepas patógenas de Fusarium Link. en cala. Undefined, 33(2), 1–12. https://doi.org/10.4206/AGROSUR.2005.V33N2-01spa
dc.relation.referencesVenieraki, A., Tsalgatidou, P. C., Georgakopoulos, D. G., Dimou, M., & Katinakis, P. (2016). Swarming motility in plant-associated bacteria. Hellenic Plant Protection Journal, 9(1), 16–27. https://doi.org/10.1515/hppj-2016-0002spa
dc.relation.referencesVillarreal, N. F., Arbeláez, M. A., Córdoba Mosquera, J. D., Fernández, F., Rojas, M. P., Prada Ladino, C., Pérez Rojas, J. F., Bustos Gil, E., Samir Mesa, J., & Monroy, M. P. (2022). ANÁLISIS DE PRODUCTO-ARROZ. Bolsa Mercantil de Colombia.spa
dc.relation.referencesVillarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., De los Santos-Villalobos, S., Santos-Villalobos, S. de los, Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., Santos-Villalobos, S. de los, & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95–130. https://doi.org/10.18781/r.mex.fit.1706-5spa
dc.relation.referencesVinchira-Villarraga, D. M., Macias-Camacho, J., Mendez-Olivera, J. D., Méndez-Tibambre, M. E., Rodríguez-García, V., Saavedra-Orduz, Z., Torres-López, M. A., & Moreno-Sarmiento, N. (2020). Presence of phytopathogenic fungi and oomycetes on rice and avocado crops in Tolima (Colombia). African Journal of Microbiology Research, 14(6), 259–272. https://doi.org/10.5897/ajmr2020.9331spa
dc.relation.referencesWeisskopf, L. (2013). The potential of bacterial volatiles for crop protection against phytophathogenic fungi. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 1352–1363.spa
dc.relation.referencesWoodgate, R. (2001). Evolution of the two-step model for UV-mutagenesis. Mutation Research - DNA Repair, 485(1), 83–92. https://doi.org/10.1016/S0921-8777(00)00076-8spa
dc.relation.referencesWu, Z., Huang, Y., Li, Y., Dong, J., Liu, X., & Li, C. (2019). Biocontrol of Rhizoctonia solani via Induction of the Defense Mechanism and Antimicrobial Compounds Produced by Bacillus subtilis SL-44 on Pepper (Capsicum annuum L.). Frontiers in Microbiology, 10, 493556. https://doi.org/10.3389/FMICB.2019.02676/BIBTEXspa
dc.relation.referencesYuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports 2015 5:1, 5(1), 1–8. https://doi.org/10.1038/srep13438spa
dc.relation.referencesYugander, A., Ladhalakshmi, D., Prakasham, V., Mangrauthia, S. K., Prasad, M. S., Krishnaveni, D., Madhav, M. S., Sundaram, R. M., & Laha, G. S. (2015). Pathogenic and Genetic Variation among the Isolates of Rhizoctonia solani (AG 1-IA), the Rice Sheath Blight Pathogen. Journal of Phytopathology, 163(6), 465–474. https://doi.org/10.1111/jph.12343spa
dc.relation.referencesZhang, C. Q., Liu, Y. H., Ma, X. Y., Feng, Z., & Ma, Z. H. (2009). Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid. Crop Protection, 28(5), 381–386. https://doi.org/10.1016/j.cropro.2008.12.004spa
dc.relation.referencesZhang, D. D., Guo, X. J., Wang, Y. J., Gao, T. G., & Zhu, B. C. (2017). Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take‐all disease caused by Gaeumannomyces graminis var. tritici. Letters in Applied Microbiology, 65(6), 512–519. https://doi.org/10.1111/LAM.12809spa
dc.relation.referencesZhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q., Rajoka, M. S. R., Yang, H., & Jin, M. (2017). Biological activity of lipopeptides from Bacillus. Applied Microbiology and Biotechnology, 101(15), 5951–5960. https://doi.org/10.1007/S00253-017-8396-0/METRICSspa
dc.relation.referencesZhu, X., Kong, J., Yang, H., Huang, R., Huang, Y., Yang, D., Shen, B., & Duan, Y. (2018). Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6′-deoxy-bleomycin Z production. Applied Microbiology and Biotechnology, 102(4), 1651–1661. https://doi.org/10.1007/s00253-017-8705-7spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocHongo patógenospa
dc.subject.agrovocpathogenic fungieng
dc.subject.agrovocBacteria gram positivaspa
dc.subject.agrovocGram-positive bacteriaeng
dc.subject.agrovocEnfermedad foliarspa
dc.subject.agrovocfoliar diseaseseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalMutagénesis aleatoriaspa
dc.subject.proposalLuz UVspa
dc.subject.proposalBacillus velezensisspa
dc.subject.proposalHongos fitopatógenosspa
dc.subject.proposalAntagonismospa
dc.subject.proposalRandom mutagenesiseng
dc.subject.proposalUV lighteng
dc.subject.proposalBacillus velezensiseng
dc.subject.proposalPhytopathogenic fungieng
dc.subject.proposalAntagonismeng
dc.titleEvaluación de la actividad antagonista de mutantes aleatorios de la cepa Bacillus velezensis IBUN 2755 contra hongos fitopatógenos de arrozspa
dc.title.translatedEvaluation of the antagonistic activity of random mutants of Bacillus velezensis IBUN 2755 against phytopathogenic fungi of ricespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluacion de la actividad antagonista Final-EGL.pdf
Tamaño:
3.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: