Caracterización morfológica y molecular de bacterias asociadas a Capsicum spp. en el Valle del Cauca-Colombia

dc.contributor.advisorGarcía Dávila, Mario Augusto
dc.contributor.advisorGómez López, Eyder Daniel
dc.contributor.authorRivera Calderón, Angela Liliana
dc.contributor.cvlacRivera Calderón, Angela Lilianaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000331465spa
dc.contributor.googlescholarAngela Liliana Rivera Calderónspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=-dDzVswAAAAJ&hl=es&oi=aospa
dc.contributor.orcidhttps://orcid.org/0000-0003-1831-481Xspa
dc.contributor.orcidAngela Liliana Rivera-Calderónspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Angela-Rivera-2spa
dc.contributor.researchgateAngela Riveraspa
dc.contributor.researchgroupProtección Vegetal Para El Mejoramiento de la Productividadspa
dc.coverage.regionValle del Cauca, Colombia
dc.date.accessioned2023-08-09T21:21:51Z
dc.date.available2023-08-09T21:21:51Z
dc.date.issued2023-07-25
dc.descriptionIlustraciones, fotografías, tablas, gráficasspa
dc.description.abstractEl cultivo de Capsicum en el Valle del Cauca en Colombia tiene un alto potencial agrícola e industrial afectado por diferentes factores bióticos y abióticos; las bacterias pueden ocasionar pérdidas entre 10 y 20 % y, en condiciones ambientales favorables para su desarrollo, hasta del 100 %. Para abordar esta problemática el objetivo de este estudio fue caracterizar bacterias fitopatógenas y aquellas con potencial biocontrolador de las anteriores. Se recolectó material vegetal afectado en 17 zonas del departamento, de las cuales se obtuvieron 69 aislamientos: 8 aislamientos fueron fitopatógenos Gram negativos y 4 con potencial biocontrolador Gram positivos. Se realizaron las siguientes caracterizaciones: cultural, morfológica, bioquímica (pruebas API 20NE), patogénica y molecular (región del 16S rADN, GyrB y GyrA), y se evaluó el potencial biocontrolador in vitro. Los aislamientos fitopatógenos identificados fueron: tres especies del género Pseudomonas (Pseudomonas asiatica, P. straminea, P. synxantha); uno asociado al subgrupo de Pseudomonas straminea; dos asociados a las enterobacterias: Kosakonia cowanii y Pantoea agglomerans; y dos de Ralstonia solanacearum. Los primeros seis se consideran el primer reporte para Colombia y de los últimos dos no hay reporte en la literatura colombiana asociados a Capsicum spp. La caracterización patogénica se evaluó en los cultivares Habanero, Tabasco y Cayenne, encontrándose que los aislamientos asociados a enterobacterias y Ralstonia solanacearum fueron los más virulentos. Los aislamientos con potencial biocontrolador se caracterizaron como Bacillus amyloliquefaciens; de estos, el aislamiento 43 presentó los mayores halos de inhibición sobre las fitopatógenas. Durante las pruebas in vitro se evaluó la importancia de que estos aislamientos se sembraran 48 horas antes de las fitopatógenas. Como resultado, se determinaron seis nuevas especies de fitopatógenas no relacionadas anteriormente al cultivo de Capsicum en Colombia. Esto constituye un aporte significativo al conocimiento. Se encontró que los aislamientos obtenidos de Bacillus amyloliquefaciens tienen potencial biocontrolador. (Texto tomado de la fuente)spa
dc.description.abstractThe Capsicum crop in the department of Valle del Cauca in Colombia has a high agricultural and industrial potential that is affected by different biotic and abiotic factors. Bacteria can cause losses between 10 and 20 % and under favorable environmental conditions for their development up to 100 %. The objective of this study was established to characterize pathogenic and those with bio-control potential bacteria. Affected plant material was collected in 17 sites of the department, from which 69 isolates were obtained: 8 isolates were Gram negative phytopathogenic and 4 Gram positive isolates with biocontrol potential were selected. The following characterizations were carried out: Cultural, morphological, biochemical (API 20NE test), pathogenic and molecular (16S rDNA region, GyrB and GyrA); and the in vitro biocontrol potential was evaluated The phytopathogenic isolates identified were three species of Pseudomonas genus: (Pseudomonas asiatica, P. straminea, P. syxantha), one associated with the subgroup of Pseudomonas straminea; two associated with enterobacteria: Kosakonia cowanii and Pantoea agglomerans; and two from Ralstonia solanacearum. The first six isolates are considered the first report for Colombia and of the last two; there are no reports in the Colombian literature associated with Capsicum spp. The pathogenic characterization was evaluated in the cultivars Habanero, Tabasco and Cayenne, finding that the isolates associated with enterobacteriaceae and Ralstonia solanacearum were the most virulent. Isolates with biocontroller potential were characterized as Bacillus amyloliquefaciens; Of these, isolation 43 presented the largest halos of inhibition on phytopathogens During the in vitro tests, the importance of these isolates being seeded 48 hours before the phytopathogens was evaluated. As a result, six new species of plant pathogens not previously related to the cultivation of Capsicum in Colombia were determined. This constitutes a significant contribution to knowledge. It was found that the isolates obtained from Bacillus amyloliquefaciens have biocontrol potential.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.methodsLa metodología desarrollada durante esta investigación fue elaborada con base en los objetivos planteados. Se realizaron colectas de tejido sano y enfermo en Cultivos de Capsicum spp en el Valle del Cauca. Las muestras fueron procesadas en los laboratorios de Microbiología Agrícola y Diagnóstico Vegetal. A partir de estas muestras se realizó aislamientos de las bacterias hasta obtenerlas en cultivo puro. Los aislamientos se caracterizaron cultural, morfológica, patogénica, bioquímica y molecularmente. Además se estableció el efecto biorregulador de bacterias no patogénicas en el desarrollo de las bacterias fitopatógenas in vitrospa
dc.description.researchareaProtección de Cultivosspa
dc.description.sponsorshipConvocatoria 727 de 2015 Doctorados Nacionales Colcienciasspa
dc.format.extentxxii, 111 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84514
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentDoctorado en Ciencias Agrariasspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesACIAR. (2013). Bacterial Diseases. In Tomato, capsicum, chilli and eggplant: a field guide for Australia and Cambodia (pp. 131–143). https://doi.org/10.1177/003591572902200643spa
dc.relation.referencesAdhikari, M., Yadav, D. R., Kim, S. W., Um, Y. H., Kim, H. S., Lee, S. C., Song, J. Y., Kim, H. G., & Lee, Y. S. (2017). Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with Rhizosphere associated bacteria. Plant Pathology Journal, 33(2), 170–183. https://doi.org/10.5423/PPJ.OA.09.2016.0187spa
dc.relation.referencesAgaras, B. C., & Valverde, C. (2018). A novel oligonucleotide pair for genotyping members of the pseudomonas genus by single-round PCR amplification of the gyrb gene. Methods and Protocols, 1(3), 1–13. https://doi.org/10.3390/mps1030024spa
dc.relation.referencesAguilar-Marcelino, L., Mendoza-de-Gives, P., Al-Ani, L. K. T., López-Arellano, M. E., Gómez-Rodríguez, O., Villar-Luna, E., & Reyes-Guerrero, D. E. (2020). Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest. Molecular Aspects of Plant Beneficial Microbes in Agriculture, 333–349. https://doi.org/10.1016/b978-0-12-818469-1.00027-4spa
dc.relation.referencesAlvarez, P. L., Grabowsky, C., Carpio, C., Toro, V., Ferreira, A. F., & Mizubuti, E. S. (2021). First report of Ralstonia solanacearum causing bacterial wilt of Eucalyptus in Ecuador. Plant Diseases, 105, 211.spa
dc.relation.referencesAnaya-Esparza, L. M., de la Mora, Z. V., Vázquez-Paulino, O., Ascencio, F., & Villarruel-López, A. (2021). Bell peppers (Capsicum annum l.) losses and wastes: Source for food and pharmaceutical applications. Molecules, 26(17), 1–23. https://doi.org/10.3390/molecules26175341spa
dc.relation.referencesBarona, O., Chaverra, Y., Morante, D., & Mosquera, O. (2011). La gestión tecnológica: una herramienta para el desarroll o de la Cadena Productiva del Ají en el Vall e del Cauca. Entramado, 7(1), 1–20. http://www.redalyc.org/pdf/2654/265420116002.pdfspa
dc.relation.referencesBashir, Z., Ahmad, A., Shafique, S., Anjum, T., Shafique, S., & Akram, W. (2013). HYPERSENSITIVE RESPONSE – A BIOPHYSICAL PHENOMENON. 3, 105–110. https://doi.org/10.1556/EuJMI.3.2013.2.3spa
dc.relation.referencesBass, D., Stentiford, G. D., Wang, H. C., Koskella, B., & Tyler, C. R. (2019). The Pathobiome in Animal and Plant Diseases. Trends in Ecology and Evolution, 34(11), 996–1008. https://doi.org/10.1016/j.tree.2019.07.012spa
dc.relation.referencesBeattie, G. A. (2007). Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In S. . . Gnanamanickam (Ed.), Plant Asociated-Bacteria (pp. 1–56). Springer. https://doi.org/https://doi.org/10.1007/978-1-4020-4538-7_1spa
dc.relation.referencesBerg, G. (2009). Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18. https://doi.org/10.1007/s00253-009-2092-7spa
dc.relation.referencesBerg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5(JUN), 1–7. https://doi.org/10.3389/fmicb.2014.00148spa
dc.relation.referencesBernal, A. (2017). Certificado de Reporte. https://ipt.biodiversidad.co/cr-sib/pdf.do?r=rge266_pseudomonassyringae_20200312&n=170D0F3CA3Bspa
dc.relation.referencesBhat, K. A., Masood, S. D., Bhat, N. A., Bhat, M. A., Razvi, S. M., Mir, M. R., Akhtar, S., Wani, N., & Habib, M. (2010). Current status of post harvest soft rot in vegetables: A review. Asian Journal of Plant Sciences, 9(4), 200–208. https://doi.org/10.3923/ajps.2010.200.208spa
dc.relation.referencesBioMérieux. (2003). API 20 NE. Identification system for non-fastidious, non enteric Gram-negative rods. https://www.mediray.co.nz/media/15781/om_biomerieux_test-kits_ot-20050_package_insert-20050.pdfspa
dc.relation.referencesBlakeman, J. P., & Brodien, I. D. . (1976). Inhibition of pathogens by epiphytic bacteria on aerial plant surfaces. In T. . Dickinson, C.H.; Preece (Ed.), Microbiology in aerial plant surfaces (pp. 529–557). ACADEMIC PRESS.spa
dc.relation.referencesBoottanun, P., Potisap, C., Hurdle, J. G., & Sermswan, R. W. (2017). Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express, 7(1). https://doi.org/10.1186/s13568-016-0302-0spa
dc.relation.referencesBorkar, S. G. (2018). Laboratory techniques in plant bacteriology. CRC Press.spa
dc.relation.referencesBrady, C., Cleenwerck, I., Venter, S., Coutinho, T., & De Vos, P. (2013). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., . Systematic and Applied Microbiology, 36(5), 309–319. https://doi.org/10.1016/j.syapm.2013.03.005spa
dc.relation.referencesBraun-Kiewnick, A., & Sands, D. . (2001). Pseudomonas. In Norman W Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (Third edit, pp. 84–120). American Phytopathological Society - APS.spa
dc.relation.referencesBraun-Kiewnick, A., & Sands, D. . (2015). Pseudomonas. In Norman W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–138). APS Press.spa
dc.relation.referencesBrenner, D. ., & Farmer, J. . (2015). Enterobacteriaceae. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 24). https://doi.org/10.1002/9781118960608.fbm00222.spa
dc.relation.referencesBritania. (2011). Mac Conkey Agar. https://www.britanialab.com/back/public/upload/productos/upl_60707267ecda2.pdfspa
dc.relation.referencesBulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106spa
dc.relation.referencesButtimer, C., McAuliffe, O., Ross, R. P., Hill, C., O’Mahony, J., & Coffey, A. (2017). Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8(JAN), 1–15. https://doi.org/10.3389/fmicb.2017.00034spa
dc.relation.referencesCai, R., Lewis, J., Yan, S., Liu, H., Clarke, C. R., Campanile, F., Almeida, N. F., Studholme, D. J., Lindeberg, M., Schneider, D., Zaccardelli, M., Setubal, J. C., Morales-Lizcano, N. P., Bernal, A., Coaker, G., Baker, C., Bender, C. L., Leman, S., & Vinatzer, B. A. (2011). The plant pathogen pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens, 7(8). https://doi.org/10.1371/journal.ppat.1002130spa
dc.relation.referencesCardozo, C., Silva, B., Salazar Yepes, M., & Morales, J. G. (2015). Diversidad genética de aislados de Ralstonia solanacearum procedentes de tres regiones de Colombia. Revista de Proteccion Vegetal, 30(3), 213–224.spa
dc.relation.referencesCarreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329.spa
dc.relation.referencesCastellanos, G., Jara, C., & Mosquera, G. (2011). Guía práctica 2. Manejo de la bacteria en el laboratorio, Xanthomonas axonopodis pv. phaseoli.spa
dc.relation.referencesCaviedes, D. (2009). Aislamiento y selección de rizobacterias promotoras de crecimiento vegetal en cultivos de uchuva(Physalis peruviana L.) con capacidad antagónica frente a Fusarium sp. 1–61.spa
dc.relation.referencesCaycedo- Lozano L;, Corrales-Ramírez, L., T, & Trujillo, D. (2021). Las bacterias, su nutrición y crecimiento: una mirada desde la química. In Nova.spa
dc.relation.referencesChavez, P. (2007). Utilización de bacterias y hongos endofíticos para el control biológico del nematodo barrenador Radopholus similis ( Cobb ). Catie, 85. http://orton.catie.ac.cr/repdoc/A1654E/A1654E.PDFspa
dc.relation.referencesCheewawiriyakul, S., Conn, K., Gabor, B., Kao, J., & Salati, R. (2006). Pepper & Eggplant, Disease Guide: A practical guide for seedsmen, growers and agricultural advisors. Seminis Vegetable Seeds, 1–72. http://seminisus.s3.amazonaws.com/wp-content/uploads/2014/09/SEM-12095_PepperDiseases_8p5x11_072313.pdfspa
dc.relation.referencesChoudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493–513. https://doi.org/10.1016/j.micres.2008.08.007spa
dc.relation.referencesChun, W., & Vidaver, A. K. (2001). Bacillus. In N.W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (3rd ed., pp. 250–260). APS Press.spa
dc.relation.referencesCorporación Colombiana de Investigación Agropecuaria (Corpoica);, & Gobernación de Antioquia. (2014). Modelo productivo del cultivo de Pimentón bajo condiciones protegidas en el oriente Antioqueño. Fotomontajes S.A.S.spa
dc.relation.referencesDavey, M. E., & O’toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews : MMBR, 64(4), 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000spa
dc.relation.referencesDe Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J., & De Vos, P. (2004). Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Applied and Environmental Microbiology, 70(6), 3664–3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004spa
dc.relation.referencesDenny, T. P., & Hayward, A. C. (2001). Ralstonia. In Norman W; Schaad, J. B. Jones, & W. Chum (Eds.), Laboratory guide for identification of plant pathogenic bacteria (third edit, pp. 151–174). APS Press.spa
dc.relation.referencesDimartino, M., Panebianco, S., Vitale, A., Castello, I., Leonardi, C., Cirvilleri, G., & Polizzi, G. (2011). Occurrence and pathogenicity of Pseudomonas fluorescens and P. Putida on tomato plants in Italy. Journal of Plant Pathology, 93(1), 78–87.spa
dc.relation.referencesDurairaj, K., Velmurugan, P., Park, J. H., Chang, W. S., Park, Y. J., Senthilkumar, P., Choi, K. M., Lee, J. H., & Oh, B. T. (2018). Characterization and assessment of two biocontrol bacteria against Pseudomonas syringae wilt in Solanum lycopersicum and its genetic responses. Microbiological Research, 206(July 2017), 43–49. https://doi.org/10.1016/j.micres.2017.09.003spa
dc.relation.referencesEllis, S. D. B. M. J. C. D. (2008). Bacterial Diseases of Plants. In Ohio State University Extension. http://www.learnnc.org/lp/media/uploads/2010/11/bacterial-diseases-fact-sheet.pdfspa
dc.relation.referencesEuropean and Mediterranean Plant Protection Organization. (2018). PM 7/21 (2) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bulletin, 48(1), 32–63. https://doi.org/10.1111/epp.12454spa
dc.relation.referencesExtension University of Illinois. (1988). Bacterial spot of pepper and tomato. Report on Plant Disease, 910, 1–4.spa
dc.relation.referencesFan, B., Blom, J., Klenk, H. P., & Borriss, R. (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 8(JAN), 1–15. https://doi.org/10.3389/fmicb.2017.00022spa
dc.relation.referencesFegan, M., & Prior, P. (2006). Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana Diverse members of the Ralstonia solanacearum species complex cause. Australasian Plant Pathology, 35, 93–101. https://doi.org/10.1071/AP05105spa
dc.relation.referencesFelsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.spa
dc.relation.referencesFlorez-Martínez, D. . (2013). ANÁLISIS DE TENDENCIAS PARA LA CADENA HORTALIZAS – PRODUCTO AJÍ. CONSUMO, DEMANDA, MERCADO INTERNACIONAL E INVESTIGACIÓN EN COLOMBIA (p. 23). Ministerio de Agricultura de Colombia.spa
dc.relation.referencesFritze, D. (2004). Taxonomy of the genus bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology, 94(11), 1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245spa
dc.relation.referencesGappa-Adachi, R., Morita, Y., Shimomoto, Y., & Takeuchi, S. (2014). Bacterial leaf blight of sweet pepper (Capsicum annuum) caused by Pseudomonas cichorii in Japan. Journal of General Plant Pathology, 80(1), 103–107. https://doi.org/10.1007/s10327-013-0491-1spa
dc.relation.referencesGarcía-González, T., Sáenz-Hidalgo, H. K., Silva-Rojas, H. V., Morales-Nieto, C., Vancheva, T., Koebnik, R., & Ávila-Quezada, G. D. (2018). Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathology Journal, 34(1), 1–10. https://doi.org/10.5423/PPJ.OA.06.2017.0128spa
dc.relation.referencesGarrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183spa
dc.relation.referencesGolkhandan, E. (2014). Characterization of Pectobacterium carotovorum and P. wasabiae and their potential control using antagonistic bacteria. Universiti Putra Malaysia.spa
dc.relation.referencesGómez, R., & Adex, C. (2015). Capsicum Peruanos : Análisis y Retos Peruvian Capsicum : Analysis & Challenges.spa
dc.relation.referencesGomila, M., Peña, A., Mulet, M., & Lalucat, J. (2015). Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology, 6(March), 1–13. https://doi.org/10.3389/fmicb.2015.00214spa
dc.relation.referencesGoszczynska, T., Serfontein, J. J., & Serfontein, S. (2000). Introduction to Practical Phytobacteriology. In Safrinet (Issue October).spa
dc.relation.referencesGoto, M. (1992a). Diagnosis and Control of Bacterial Plant Diseases. Fundamentals of Bacterial Plant Pathology, 242–265. https://doi.org/10.1016/b978-0-12-293465-0.50016-9spa
dc.relation.referencesGoto, M. (1992b). Fundamentals of Bacterial Plant Pathology. Academic press.spa
dc.relation.referencesGrimont, P. A. D., & Grimont, F. (2015). Pantoea . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–14. https://doi.org/10.1002/9781118960608.gbm01157spa
dc.relation.referencesHarrison, J., Hussain, R. M. F., Aspin, A., Grant, M. R., Vicente, J. G., & Studholme, D. J. (2023). Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy, 3(1), 29–45. https://doi.org/10.3390/taxonomy3010003spa
dc.relation.referencesHauben, L., Moore, E. R. B., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., & Swings, J. (1998). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic and Applied Microbiology, 21(3), 384–397. https://doi.org/10.1016/S0723-2020(98)80048-9spa
dc.relation.referencesHesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T., & Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142–2159. https://doi.org/10.1111/1462-2920.14130spa
dc.relation.referencesHu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359–365. https://doi.org/10.1016/j.biocontrol.2010.06.015spa
dc.relation.referencesHugouvieux‐Cotte‐Pattat, N., Condemine, G., Gueguen, E., & Shevchik, V. E. (2020). Dickeya Plant Pathogens. ELS. John Wiley & Sons, Ltd: Chichester, March, 1–10. https://doi.org/10.1002/9780470015902.a0028932spa
dc.relation.referencesIbarra, J. E., Castro, M. C. D. R., Galindo, E., Patiño, M., Serrano, L., García, R., Carrillo, J. A., Pereyra-Alférez, B., Alcázar-Pizaña, A., Luna-Olvera, H., Galán-Wong, L., Pardo, L., Muñoz-Garay, C., Gómez, I., Soberón, M., & Bravo, A. (2006). Los microorganismos en el control biológico de insectos y fitopatógenos. Revista Latinoamericana de Microbiologia, 48(2), 113–120.spa
dc.relation.referencesIntegrated Taxonomic Information System (ITIS). (2022). Integrated Taxonomic Information System web site. https://doi.org/https://doi.org/10.5066/F7KH0KBKspa
dc.relation.referencesJan-Roblero, J., Cruz-Maya, J. A., & Guerrero Barajas, C. C. (2020). Kosakonia. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (pp. 213–231). https://doi.org/10.1016/B978-0-12-823414-3.00012-5spa
dc.relation.referencesJanda, J. M., & Abbott, S. L. (2021). The Changing Face of the Family Enterobacteriaceae ( Order : Syndromes. Clin Microbiol Rev, 28(February), 1–45.spa
dc.relation.referencesJanse, J. D. (2005). Phytobacteriology: Principles and practice. In Phytobacteriology: Principles and Practice (CABI Publi).spa
dc.relation.referencesJaramillo, J., & Tamayo M, P. J. (2013). Enfermedades del tomate, berenjena en Colombia. Guía para su diagnóstico y manejo. Corporación Colombiana de Investigación Agropecuaria-CORPOICA.spa
dc.relation.referencesKado, C. . (2010). Plant bacteriology. APS Press.spa
dc.relation.referencesKannan, V. R., Bastas, K. K., & Antony, R. (2015). Plant Pathogenic Bacteria. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC Press. https://doi.org/10.1201/b18892spa
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.spa
dc.relation.referencesKing, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demostration of pyocyanin and fluorescein. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307.spa
dc.relation.referencesKloepper, J. W. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. http://getit.libraries.psu.edu:9003/sfx_local?sid=google&auinit=JW&aulast=Kloepper&atitle=Induced systemic resistance and promotion of plant growth by Bacillus spp.&title=Phytopathology&volume=94&issue=11&date=2004&spage=1259&issn=0031-949Xspa
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845spa
dc.relation.referencesKrawczyk, K., & Borodynko-Filas, N. (2020). Kosakonia cowanii as the New Bacterial Pathogen Affecting Soybean (Glycine max Willd.). European Journal of Plant Pathology, 157(1), 173–183. https://doi.org/10.1007/s10658-020-01998-8spa
dc.relation.referencesKreissl, J., Mall, V., Steinhaus, P., & Steinhaus, M. (2022). Leibniz-LSB@TUM Odorant Database. Version 1.2. Leibniz Institute for Food Systems Biology at the Technical University of Munich: Freising, Germany. https://www.leibniz-lsb.de/en/databases/leibniz-lsbtum-odorant-databasespa
dc.relation.referencesKrimm, U., Abanda-Nkpwatt, D., Schwab, W., & Schreiber, L. (2005). Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): Identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiology Ecology, 53(3), 483–492. https://doi.org/10.1016/j.femsec.2005.02.004spa
dc.relation.referencesKyoung-Soo, P., Ji-Hye, Lee; Young-Tak, K., Hye-Seong, K., June-woo, L., Hyun-Su, L., Hyok-In, L., & Jae-Soon, C. (2021). Occurrence of Leaf Spot Disease on Watermelon Caused by Pseudomonas syringae pv. syringae. Research in Plant Disease, 27(4), 180–186.spa
dc.relation.referencesLalucat, J., Mulet, M., Gomila, M., & Garc, E. (2020). Genomics in Bacterial Taxonomy : Impact on the Genus Pseudomonas.spa
dc.relation.referencesLayton, C., Maldonado, E., Monroy, L., Corrales, L. C., & Sánchez, L. C. (2011). Bacillus spp .; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. NOVA - Publicación Científica En Ciencias Biomédicas, 9(15), 113–214.spa
dc.relation.referencesLee, Y., Luo, H., Kim, W., & Yu, J. (2022). First report of tomato pith necrosis caused by Pseudomonas mediterranea in South Korea. . Plant Dise, April. https://doi.org/doi: 10.1094/PDIS-07-21-1434-PDN.spa
dc.relation.referencesLindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere MINIREVIEW Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883. https://doi.org/10.1128/AEM.69.4.1875spa
dc.relation.referencesLipps, S. M., & Samac, D. A. (2022). Pseudomonas viridiflava: An internal outsider of the Pseudomonas syringae species complex. Molecular Plant Pathology, 23(1), 3–15. https://doi.org/10.1111/mpp.13133spa
dc.relation.referencesLiu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology:, 139(1), 107–116.spa
dc.relation.referencesLiu, Y., Štefanič, P., Miao, Y., Xue, Y., Xun, W., Zhang, N., Shen, Q., Zhang, R., Xu, Z., & Mandic-Mulec, I. (2022). Housekeeping gene gyrA, a potential molecular marker for Bacillus ecology study. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01477-9spa
dc.relation.referencesLiu, Z., Han, J., Liu, Z., Zhang, X., Chen, J., Dong, A., & Liu, X. (2019). First report of Pseudomonas aeruginosa causing tumor disease of Populus koreana in China. Journal of Plant Diseases and Protection, 126(5), 485–488.spa
dc.relation.referencesLogan, N. A. ., & De Vos, P. (2009). Bacillus. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 164). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118960608.gbm00530.spa
dc.relation.referencesLyu, D., Msimbira, L. A., Nazari, M., Antar, M., Pagé, A., Shah, A., Monjezi, N., Zajonc, J., Tanney, C. A. S., Backer, R., & Smith, D. L. (2021). The coevolution of plants and microbes underpins sustainable agriculture. Microorganisms, 9(5), 1–13. https://doi.org/10.3390/microorganisms9051036spa
dc.relation.referencesMa, B., Hibbing, M. E., Kim, H. S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A., & Charkowski, A. O. (2007). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97(9), 1150–1163. https://doi.org/10.1094/PHYTO-97-9-1150spa
dc.relation.referencesMadigan, M. T., Martinko, J. M., Bender, K., Buckley, D., & Stahl, D. (2015). Brock. Biología de los microorganismos (14th ed.). Pearson.spa
dc.relation.referencesMaughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution, 11(5), 789–797. https://doi.org/10.1016/j.meegid.2011.02.001spa
dc.relation.referencesMay, R., Völksch, B., & Kampmann, G. (1997). Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glycinea in vitro and in planta. Microbial Ecology, 34(2), 118–124. https://doi.org/10.1007/s002489900041spa
dc.relation.referencesMigula, N. (1894). Arbeiten aus dem Bakteriologischen. Institut Der Technischen Hochschule Zu Karlsruhe, 1, 235–238.spa
dc.relation.referencesMiljakovic, D., Marinkovic, J., & Balesevick-Tubic, S. (2020). The significance of Bacillus spp in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(1037), 19.spa
dc.relation.referencesMiller, Sally A;, Jones, J. B., & Kurowski, C. (2017). Detection of Xanthomonas spp. in tomato and pepper seeds. In M. Fatmi, R. R. Walcott, & N. W. Schaad (Eds.), Detection of plant- pathogenic bacteria in seed and other planting material (Second edi, pp. 125–132). APS Press.spa
dc.relation.referencesMiller, Sally A. (2003). Bacterial spot. In K. Pernezny, P. Roberts, J. F. Murphy, & N. Goldberg (Eds.), Compendium of Pepper Diseases (p. 6). APS Press.spa
dc.relation.referencesMondino, P. (2006). Bases conceptuales para el Manejo Ecológico de Plagas y Enfermedades. Control Biológico de Pnfermedades de Plantas, 198–206.spa
dc.relation.referencesMougou, I., & Boughalleb-M’hamdi, N. (2018). Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egyptian Journal of Biological Pest Control, 28(1). https://doi.org/10.1186/s41938-018-0061-0spa
dc.relation.referencesNarayanasami, P. (2011). Pathogens-Dectection and disease detection: Bacterial and phitoplasmal pathogens. Vol 2. (Springer). https://doi.org/10.1007/978-90-481-9769-9spa
dc.relation.referencesNational Center for Biotechnology Information (NCBI). (2023). Genome. National Library of Medicine (US), National Center for Biotechnology Information. https://www.ncbi.nlm.nih.govspa
dc.relation.referencesNational Library of Medicine (US), N. C. for B. I. (2023). National Center for Biotechnology Information (NCBI)[Internet].spa
dc.relation.referencesNei, M., & S., K. (2000). Molecular Evolution and Phylogenetics. Oxford University Press.spa
dc.relation.referencesObregón, M., Rodríguez, P. A., Morales, J. G., & Salazar, M. (2019). Hospedantes de ralstonia solanacearum en plantaciones de banano y plátano en colombia. Revista Facultad Nacional de Agronomía. https://repositorio.unal.edu.co/bitstream/handle/unal/36983/24783-86971-1-PB.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesOepp, B., & Bulletin, E. (2018). PM 7 / 21 ( 2 ) Ralstonia solanacearum , R . pseudosolanacearum and R . syzygii ( Ralstonia solanacearum species complex ). https://doi.org/10.1111/epp.12454spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura -FAO. (2022). FAOSTAT. https://www.fao.org/faostat/es/#data/QCL/visualizespa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO);, & Organización Mundial de la Salud (OMS). (2008). Propuestas de nuevos trabajos para Normas del Codex sobre el Chile Fresco y el Ajo. Comisión Del Codex Alimentarius, 1–29. www.codexalimeintarius.netspa
dc.relation.referencesOsdaghi, E., Taghavi, S. M., Koebnik, R., & Lamichhane, J. R. (2018). Multilocus sequence analysis reveals a novel phylogroup of Xanthomonas euvesicatoria pv. perforans causing bacterial spot of tomato in Iran. Plant Pathology, 67(7), 1601–1611. https://doi.org/10.1111/ppa.12864spa
dc.relation.referencesOsdaghi, Ebrahim, Taghavi, S. M., Hamzehzarghani, H., & Lamichhane, J. R. (2016). Occurrence and Characterization of the Bacterial Spot Pathogen Xanthomonas euvesicatoria on Pepper in Iran. Journal of Phytopathology, 164, 722–734. https://doi.org/10.1111/jph.12493spa
dc.relation.referencesPadilha;, H. K. M., & Barbieri., R. L. (2016). Plant breeding of chili peppers (Capsicum, Solanaceae) – A review. Australian Journal of Basic and Applied Sciences, 10(October), 148–154.spa
dc.relation.referencesPal, K. K., & Mc Spadden Gardener, B. (2006). Biological Control of Plant Pathogens. The Plant Health Instructor, 1–25. https://doi.org/10.1094/PHI-A-2006-1117-02.Biologicalspa
dc.relation.referencesPal, K. K., Mc Spadden Gardener, B., Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., Schulze-Lefert, P., Müller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2013). Biological Control of Plant Pathogens. Annual Review of Genetics, 64(1), 1–25. https://doi.org/10.1146/annurev-genet-120215-034952spa
dc.relation.referencesPalleroni, N. (2015). Pseudomonas. In M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, & W. B. Whitman (Eds.), Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 58–69). https://doi.org/10.1002/9781118960608.gbm01210.spa
dc.relation.referencesPardo, J. M. ., López-Álvarez, D. ., Leiva, A. M., Ceballos, G. ., Álvarez, E. ., Domínguez, V.; Barrantes, I. ., & Cuellar, W. (2022). Genoma completo, diagnóstico y detección de resistencia a plátanos híbridos Ralstonia solanacearum. XXVIII Congreso de La Sociedad Chilena de Fitopatología. Libro de Resúmenes, 64.spa
dc.relation.referencesParisi, M., Alioto, D., & Tripodi, P. (2020). Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072587spa
dc.relation.referencesPaudel, S., Dobhal, S., Alvarez, A. M., & Arif, M. (2020). solanacearum Species Complex : A Complex Pathogen with Extraordinary Economic Consequences.spa
dc.relation.referencesPeix, A., Berge, O., Rivas, R., Abril, A., & Velázquez, E. (2005). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Córdoba, Argentina. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1107–1112. https://doi.org/10.1099/ijs.0.63445-0spa
dc.relation.referencesPerea-Molina, P. A., Pedraza-Herrera, L. A., Uribe-Vélez, D., & Beauregard, P. B. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176. https://doi.org/https://doi.org/10.1016/j.biocontrol.2022.105067spa
dc.relation.referencesPrograma de Transformación Productiva. (2013). Plan de Negocios de Ají. Plan de Negocios de Ají, 173. https://www.ptp.com.co/documentos/PLAN DE NEGOCIO AJ� diciembre.pdfspa
dc.relation.referencesQiu, Z., Lu, X., Li, N., Zang, M., & Qiao, X. (2017). gyrA Characterization of garlic endophytes isolated from the black garlic processing. Microbiology Open, 1–11.spa
dc.relation.referencesRamírez, M., Moncada, R. N., Villegas-Escobar, V., Jackson, R. W., & Ramírez, C. A. (2020). Phylogenetic and pathogenic variability of strains of Ralstonia solanacearum causing moko disease in Colombia. In Plant Pathology. https://doi.org/10.1111/ppa.13121spa
dc.relation.referencesRamzan, M., Sana, S., Javaid, N., Shah, A. A., Ejaz, S., Malik, W. N., Yasin, N. A., Alamri, S., Siddiqui, M. H., Datta, R., Fahad, S., Tahir, N., Mubeen, S., Ahmed, N., Ali, M. A., El Sabagh, A., & Danish, S. (2021). Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-88797-1spa
dc.relation.referencesRating, S., Reaper, C., & Scorpion, T. G. (2014). The us market for fresh hot peppers. December, 1–6.spa
dc.relation.referencesRuiz-Sánchez, E., Mejía-Bautista, M. Á., Serrato-Díaz, A., Reyes-Ramírez, A., Estrada-Girón, Y., & Valencia-Botín, A. J. (2016). ANTIFUNGAL ACTIVITY AND MOLECULAR IDENTIFICATION OF NATIVE STRAINS OF Bacillus subtilis ACTIVIDAD ANTIFUNGICA E IDENTIFICACION MOLECULAR DE CEPAS NATIVAS DE Bacillus subtilis. Agrociencia, 50(2), 133–148.spa
dc.relation.referencesSaati-Santamaría, Z., Peral-Aranega, E., Velázquez, E., Rivas, R., & García-Fraile, P. (2021). Phylogenomic analyses of the genus pseudomonas lead to the rearrangement of several species and the definition of new genera. Biology, 10(8). https://doi.org/10.3390/biology10080782spa
dc.relation.referencesSaddler, G. S., & Bradbury, J. F. (2015). Xanthomonas. In M. E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F. A. Rainey, & W. B. Whitman (Eds.), Bergey’s Manual of Systematics of Archaea and Bacteria. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1002/9781118960608.gbm01239spa
dc.relation.referencesSafni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. s. In International Journal of Systematic and Evolutionary Microbiology. https://doi.org/10.1099/ijs.0.066712-0spa
dc.relation.referencesSánchez-Soto, V. (2017). Aislamiento e identificación de bacterias con potencial de biocontrol a Alternaria sp., asociadas a Solanum lycopersicum [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia. http://bdigital.unal.edu.co/65140/spa
dc.relation.referencesSanchez de Prager, M. (2018). Aportes de la biología del suelo a la agroecología. Universidad Nacional de Colombia sede Palmira.spa
dc.relation.referencesSawada, H., Horita, H., Nishimura, F., & Mori, M. (2020). Pseudomonas salomonii, another causal agent of garlic spring rot in Japan. Journal of General Plant Pathology, 86(3), 180–192.spa
dc.relation.referencesSawada, Hiroyuki, Horita, H., Misawa, T., & Takikawa, Y. (2019). Pseudomonas grimontii , causal agent of turnip bacterial rot disease in Japan. Journal of General Plant Pathology. https://doi.org/10.1007/s10327-019-00869-3spa
dc.relation.referencesSchaad, N. W. (2001). Initial Identification of Common Genera. In N.W; Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (Third edit, pp. 1–16). APS Press.spa
dc.relation.referencesSchleifer, K. H. (2009). Classification of Bacteria and Archaea: Past, present and future. Systematic and Applied Microbiology, 32(8), 533–542. https://doi.org/10.1016/j.syapm.2009.09.002spa
dc.relation.referencesSeal, S., Jackson, L., & Daniels, M. (1992). Use of tRNA Consensus Primers To Indicate Subgroups of Pseudomonas solanacearum by Polymerase Chain Reaction Amplification. Applied and Enviromental Microbiology, 58(11), 3759–3761. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183170/spa
dc.relation.referencesShanmugam, V., Thakur, H., Paul, S., Bhadwal, P., Mahajan, S., & Kumar, K. (2016). First report of collar rot caused by Pseudomonas aeruginosa on calla lily (Zantedeschia elliottiana). ,. Phytopathologia Mediterranea, 55(3), 427–431.spa
dc.relation.referencesShe, X., Yu, L., Lan, G., Tang, Y., & He, Z. (2017). Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China. Frontiers in Plant Science, 8(October). https://doi.org/10.3389/fpls.2017.01794spa
dc.relation.referencesSigee, D. C. (2005). Bacterial Plant Pathology. Cell and Molecular Aspects. Cambridge University Press.spa
dc.relation.referencesSigma-Aldrich. (2011). Product Information - GenElute(TM) PCR clean-up kit. Sigma -Aldrich. https://www.sigmaaldrich.cn/deepweb/assets/sigmaaldrich/product/documents/786/801/na1020bul.pdfspa
dc.relation.referencesSigma-Aldrich. (2017). GenElute Bacterial Genomic DNA Kit (p. 14). Sigma-Aldrich. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/203/124/na2110bul.pdfspa
dc.relation.referencesSingh, N., & Siddiqui, Z. a. (2012). Inoculation of Tomato with Ralstonia solanacearum, Xanthomonas campestris , and Meloidogyne javanica. International Journal of Vegetable Science, 18(1), 78–86. https://doi.org/10.1080/19315260.2011.579232spa
dc.relation.referencesSomeya, N. ., Ikeda, S. ., & Tsuchiya, K. (2012). Pseudomonas Inoculants as Agents for Plant Disease Management. In Bacteria in Agrobiology: Disease Management (pp. 219–241). https://doi.org/10.1007/978-3-642-33639-3_4spa
dc.relation.referencesSousa, A. M., Machado, I., Nicolau, A., & Pereira, M. O. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of Microbiological Methods, 95(3), 327–335. https://doi.org/10.1016/j.mimet.2013.09.020spa
dc.relation.referencesSouthern African Development Goverment (SADC). (2007). Trade information brief Capsicum (pp. 1–51). http://www.bdigital.unal.edu.co/702/1/9004001.2008.pdfspa
dc.relation.referencesStommel, J. R., Goth, R. W., Haynes, K. G. ., & Hwan, K. (1996). Pepper (Capsicum annuum) Soft Rot Caused by Erwinia carotovora subsp. atroseptica. Plant Disease, 80, 1109–1112.spa
dc.relation.referencesSulley, S., Babadoost, M., & Hind, S. R. (2021). Biocontrol agents from cucurbit plants infected with Xanthomonas cucurbitae for managing bacterial spot of pumpkin. Biological Control, 163(March), 104757. https://doi.org/10.1016/j.biocontrol.2021.104757spa
dc.relation.referencesTamura, K;, & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.spa
dc.relation.referencesTamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9, 678–687.spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. https://doi.org/https://doi.org/10.1093/molbev/msab120.spa
dc.relation.referencesTaxonomic Integrated Information System (ITIS). (2022). No Title. https://doi.org/https://doi.org/10.5066/F7KH0KBKspa
dc.relation.referencesTaxonomic Integrated Information System (ITIS). (2023). Integrated Taxonomic Information System (ITIS) online database. https://doi.org/Https://doi.org/10.5066/F7KH0KBKspa
dc.relation.referencesThakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2021). An insight into the problem of bacterial wilt in Capsicum spp. With special reference to India. Crop Protection, 140, 105420. https://doi.org/10.1016/j.cropro.2020.105420spa
dc.relation.referencesThind, B. S. (2015). Diagnosis and Management of Bacterial Plant Diseases. In L. P. Awasthi (Ed.), Recent Advances in the Diagnosis and Management of Plant Diseases (pp. 101–117). Springer. https://doi.org/10.1007/978-81-322-2571-3spa
dc.relation.referencesThind, B. S. (2020). Phytopathogenic Bacteria and Plant Diseases. CRC Press.spa
dc.relation.referencesTrankner, A. (1992). Biological Control of Plant Diseases,. March, 35–42.spa
dc.relation.referencesUchino, M., Kosako, Y., Uchimura, T., & Komagata, K. (2000). Emendation of Pseudomonas straminea lizuka and Komagata 1963. International Journal of Systematic and Evolutionary Microbiology, 50(4), 1513–1519. https://doi.org/10.1099/00207713-50-4-1513spa
dc.relation.referencesUniversidad Autónoma del Estado de México. (2013). Programa de prácticas de bacteriología y micología (p. 43).spa
dc.relation.referencesVallejo, F.A.; Estrada, E. I. . (2004). Producción de hortalizas de clima calido. Universidad Nacional de Colombia - Sede Palmira.spa
dc.relation.referencesvan Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8(JUL), 1–18. https://doi.org/10.3389/fmicb.2017.01264spa
dc.relation.referencesVancheva, T., Bogatzevska, N., Moncheva, P., Mitrev, S., Vernière, C., & Koebnik, R. (2021). Molecular epidemiology of xanthomonas euvesicatoria strains from the balkan peninsula revealed by a new multiple‐locus variable‐number tandem‐repeat analysis scheme. Microorganisms, 9(3), 1–19. https://doi.org/10.3390/microorganisms9030536spa
dc.relation.referencesVidaver, A. K. (1967). Synthetic and complex media for rapid detection of fluorescence of phytopathogenic pseudomonads: Effect of the carbon source. Applied Microbiology, 15, 1523–1524.spa
dc.relation.referencesWalker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root Exudation and Rhizosphere Biology. 132(May), 44–51. https://doi.org/10.1104/pp.102.019661.Althoughspa
dc.relation.referencesWalterson, A. M., & Stavrinides, J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS, 39(6), 968–984. https://doi.org/10.1093/femsre/fuv027spa
dc.relation.referencesWang, J., Chen, T., Xue, L., Wei, X., White, J. F., Qin, Z., & Li, C. (2022). A new bacterial leaf blight disease of oat (Avena sativa) caused by Pantoea agglomerans in China. Plant Pathology, 71(2), 470–478. https://doi.org/10.1111/ppa.13479spa
dc.relation.referencesWinstead, N. N., & Kelman, A. (1952). Inoculation Techniques for Evaluating Resistance to Pseudomonas solanacearum. Phytopathology, 42, 628–634.spa
dc.relation.referencesYabuuchi, K., Oyaizu, Y., Hotta, H., Ezaki, Y., Kosako, O., Yano, H. ;, Hashimoto, E., & Arakawa. (1998). lBURKHOLDERIA SOLANACEARUM Burkholderia solanacearum ( Smith ). Systematic and Applied Microbiology, 2(2), 1–6. https://doi.org/10.1007/s10658-014-0403-zspa
dc.relation.referencesYabuuchi, Kosako, Yano, Hotta, & Nishiuchi. (2015). Ralstonia. In Bergey’s Manual of Systematics of Archaea and Bacteria (p. 21). https://doi.org/10.1002/9781118960608.gbm00941spa
dc.relation.referencesYazdani, R., Safaie, N., & Shams-Bakhsh, M. (2018). Association of Pantoea ananatis and Pantoea agglomerans with leaf spot disease on ornamental plants of Araceae Family. European Journal of Plant Pathology: European Journal of Plant Pathology, 150(1), 167–178.spa
dc.relation.referencesYoung, J. M. (2010). Isolation and identification of plant pathogenic bacteria. In Pseudomonas Pathogens of Stone Fruits and Nuts : Classical and Molecular Phytobacteriology Pseudomonas Pathogens of Stone Fruits and Nuts : Classical and Molecular Phytobacteriology (Issue April, pp. 22–26).spa
dc.relation.referencesZhang, C., Lin, T., Li, J., Ma, G., Wang, Y., Zhu, P., & Xu, L. (2016). First report of the melon stem rot disease in protected cultivation caused by Pseudomonas fluorescens. Journal of Plant Diseases and Protection, 123(5), 247–255.spa
dc.relation.referencesZhao, M., Koirala, S., Chen, H. C., Gitaitis, R., Kvitko, B., & Dutta, B. (2021). Pseudomonas capsici sp. Nov., a plant-pathogenic bacterium isolated from pepper leaf in Georgia, USA. International Journal of Systematic and Evolutionary Microbiology, 71(8). https://doi.org/10.1099/ijsem.0.004971spa
dc.relation.referencesZheng, X. . ., Zhu, Y., Liu, B., Zhou, Y., Che, J., & Li, N. (2014). Relationship between ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato fields in China. Journal of Phytopathology, 162, 606–616. https://doi.org/http://doi.org/10.1080/19315260.2011.579232spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocColombia
dc.subject.agrovocValle del Cauca
dc.subject.agrovocCaracterización molecular
dc.subject.agrovocMolecular characterization
dc.subject.agrovocBacterias patógenas
dc.subject.agrovocPathogenic bacteria
dc.subject.agrovocInfectious Agent
dc.subject.agrovocAgente infeccioso
dc.subject.agrovocEnfermedades de las plantas
dc.subject.agrovocPlant diseases
dc.subject.agrovocEnfermedades bacterianas
dc.subject.agrovocBacterial diseases
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalFitobacteriaspa
dc.subject.proposalFitobacteriologíaspa
dc.subject.proposalFitopatologíaspa
dc.subject.proposalBiorreguladorspa
dc.subject.proposalCapsicum spp.other
dc.subject.proposalPlant bacteriologyeng
dc.subject.proposalPhytopathogeneng
dc.subject.proposalPhytopathology
dc.subject.proposalBiocontroleng
dc.subject.proposalPlant bacteriaeng
dc.titleCaracterización morfológica y molecular de bacterias asociadas a Capsicum spp. en el Valle del Cauca-Colombiaspa
dc.title.translatedMorphological and molecular characterization of plant bacteria associated to Capsicum spp. in Valle del Cauca - Colombiaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto 39584. Caracterización de fitobacterias asociadas a Capsicum spp en el Valle del Caucaspa
oaire.awardtitleProyecto 39897. Caracterización morfológica y molecular de bacterias asociadas a ají y pimentón Capsicum spp. en el Valle del Caucaspa
oaire.fundernameColcienciasspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
66785614.2023.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: