Predicción funcional de péptidos antimicrobianos en metagenomas de suelo y mantillo de bosques de la Amazonia Noroccidental

dc.contributor.advisorOrduz Peralta, Sergio
dc.contributor.advisorOrtiz Morea, Fausto Andrés
dc.contributor.authorToro-Ardila, Diego A.
dc.contributor.orcidToro-Ardila, Diego A. [0009000759708598]
dc.contributor.orcidOrdúz Peralta, Sergio [0000-000175873816]
dc.contributor.orcidOrtiz-Morea, Fausto Andrés [0000000309781256]
dc.contributor.researchgroupBiología Funcional
dc.date.accessioned2025-08-25T21:41:48Z
dc.date.available2025-08-25T21:41:48Z
dc.date.issued2025-08-20
dc.descriptionIlustraciones
dc.description.abstractLa resistencia a los antimicrobianos es un fenómeno natural que surge de la competencia entre microorganismos por espacio y nutrientes. Sin embargo, esta dinámica se ha intensificado desde el siglo XX debido al uso excesivo de antibióticos, lo que ha generado una fuerte presión selectiva que ha acelerado la aparición de microorganismos resistentes, convirtiéndose en un grave problema de salud pública. Ante esta situación, los péptidos antimicrobianos (AMPs) surgen como alternativas prometedoras a los antibióticos, debido a su destacada actividad de amplio espectro contra una variedad de patógenos. En este contexto, nuestro estudio emplea un enfoque bioinformático combinado con algoritmos de machine learning para identificar AMPs promisorios en metagenomas de suelo y mantillo de bosque de la Amazonia colombiana, una fuente rica e inexplorada de moléculas con potencial biotecnológico. A través del análisis de metaproteomas, identificamos 1.329.511 péptidos que cumplían con los criterios fisicoquímicos preestablecidos para ser considerados potenciales AMPs. Seleccionamos los 10 mejores péptidos y se modificaron buscando aumentar su potencial antimicrobiano. La evaluación in silico de las propiedades fisicoquímicas, estructurales y biológicas de los péptidos seleccionados y sus versiones modificadas, reveló que la mayoría presentan una baja toxicidad, alta probabilidad de unión a membranas microbianas y un alto potencial de actividad contra bacterias, hongos, virus, además de potenciales propiedades anticancerígenas. Los resultados obtenidos validan la eficacia del enfoque computacional y el diseño racional aplicados en la identificación de AMPs, abriendo nuevas perspectivas para el desarrollo de terapias antimicrobianas innovadoras. (Texto tomado de la fuente)spa
dc.description.abstractAntimicrobial resistance is a natural phenomenon that arises from competition between microorganisms for space and nutrients. However, this dynamic has been intensified since the 20th century due to the excessive use of antibiotics, which has generated a strong selective pressure that has accelerated the emergence of resistant microorganisms, becoming a serious public health problem. In this situation, antimicrobial peptides (AMPs) emerge as promising alternatives to antibiotics, due to their outstanding broad-spectrum activity against various pathogens. In this context, our study employs a bioinformatics approach combined with machine learning algorithms to identify promising AMPs in soil and leaf litter metagenomes from the Colombian Amazon, a rich and unexplored source of molecules with biotechnological potential. Through metaproteome analysis, we identified 1,329,511 peptides that met the pre-established physicochemical criteria to be considered potential AMPs. We selected the 10 best peptides and modified them to enhance their antimicrobial potential. In silico evaluation of the physicochemical, structural, and biological properties of the selected peptides and their modified versions have revealed that most of them present low toxicity, a high probability of binding to microbial membranes, and high potential activity against bacteria, fungi, viruses, as well as potential anticancer properties. The results obtained validate the efficacy of the computational approach and rational design applied in the identification of AMPs, opening new perspectives for the development of innovative antimicrobial therapies.eng
dc.description.curricularareaBiotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaBiotecnología Microbiana: Sustancias bioactivas para el control de patógenos
dc.format.extent171 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88458
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.relation.referencesAboye, T. L., Strömstedt, A. A., Gunasekera, S., Bruhn, J. G., El-Seedi, H., Rosengren, K. J., & Göransson, U. (2015). A cactus-derived toxin-like cystine knot peptide with selective antimicrobial activity. ChemBioChem, 16(7), 1068–1077. https://doi.org/10.1002/CBIC.201402704
dc.relation.referencesAerts, A. M., François, I. E. J. A., Meert, E. M. K., Li, Q. T., Cammue, B. P. A., & Thevissen, K. (2007). The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Journal of Molecular Microbiology and Biotechnology, 13(4), 243–247. https://doi.org/10.1159/000104753
dc.relation.referencesAgarwal, G., & Gabrani, R. (2021). Antiviral peptides: Identification and validation. International Journal of Peptide Research and Therapeutics, 27(1), 149. https://doi.org/10.1007/S10989-020-10072-0
dc.relation.referencesAgeitos, J. M., Sánchez-Pérez, A., Calo-Mata, P., & Villa, T. G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138. https://doi.org/10.1016/J.BCP.2016.09.018
dc.relation.referencesAli, F., Kumar, H., Alghamdi, W., Kateb, F. A., & Alarfaj, F. K. (2023). Recent advances in machine learning-based models for prediction of antiviral peptides. Archives of Computational Methods in Engineering, 30(7), 4033–4044. https://doi.org/10.1007/S11831-023-09933-W/FIGURES/6
dc.relation.referencesAmin, A., Zaccardi, J., Mullen, S., Olland, S., Orlowski, M., Feld, B., Labonte, P., & Mak, P. (2003). Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase. Virology, 313(1), 158–169. https://doi.org/10.1016/S0042-6822(03)00313-1
dc.relation.referencesAndreev, K., Martynowycz, M. W., Huang, M. L., Kuzmenko, I., Bu, W., Kirshenbaum, K., & Gidalevitz, D. (2018). Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(6), 1414–1423. https://doi.org/10.1016/J.BBAMEM.2018.03.021
dc.relation.referencesAspinall, T. V., Joynson, D. H. M., Guy, E., Hyde, J. E., & Sims, P. F. G. (2002). The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. The Journal of Infectious Diseases, 185(11), 1637–1643. https://doi.org/10.1086/340577
dc.relation.referencesBaltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology and Biotechnology, 44(4–5), 573–588. https://doi.org/10.1007/S10295-016-1815-X
dc.relation.referencesBasañez, G., Shinnar, A. E., & Zimmerberg, J. (2002). Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Letters, 532(1–2), 115–120. https://doi.org/10.1016/S0014-5793(02)03651-7
dc.relation.referencesBaxter, A. A., Lay, F. T., Poon, I. K. H., Kvansakul, M., & Hulett, M. D. (2017). Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cellular and Molecular Life Sciences 2017 74:20, 74(20), 3809–3825. https://doi.org/10.1007/S00018-017-2604-Z
dc.relation.referencesBell, A. (2011). Antimalarial peptides: the long and the short of it. Current Pharmaceutical Design, 17(25), 2719–2731. https://doi.org/10.2174/138161211797416057
dc.relation.referencesBenoist, L., Houyvet, B., Henry, J., Corre, E., Zanuttini, B., & Zatylny-Gaudin, C. (2020). In-Depth In Silico Search for Cuttlefish (Sepia officinalis) Antimicrobial peptides following bacterial challenge of haemocytes. Marine Drugs, 18(9), 439. https://doi.org/10.3390/MD18090439
dc.relation.referencesBerrocal-Lobo, M., Segura, A., Moreno, M., López, G., García-Olmedo, F., & Molina, A. (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 128(3), 951–961. https://doi.org/10.1104/PP.010685
dc.relation.referencesBhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A., & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave Microbiome. PLOS ONE, 7(4), 34953. https://doi.org/10.1371/JOURNAL.PONE.0034953
dc.relation.referencesBin Hafeez, A., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: an update on classifications and databases. International Journal of Molecular Sciences, 22(21), 11691 https://doi.org/10.3390/IJMS222111691
dc.relation.referencesBohuszewicz, O., Liu, J., & Low, H. H. (2016). Membrane remodelling in bacteria. Journal of Structural Biology, 196(1), 3–14. https://doi.org/10.1016/J.JSB.2016.05.010
dc.relation.referencesBolosov, I. A., Panteleev, P. V., Sychev, S. V., Khokhlova, V. A., Safronova, V. N., Toropygin, I. Y., Kombarova, T. I., Korobova, O. V., Pereskokova, E. S., Borzilov, A. I., Ovchinnikova, T. V., & Balandin, S. V. (2023). Design of protegrin-1 analogs with improved antibacterial selectivity. Pharmaceutics, 15(8), 2047. https://doi.org/10.3390/PHARMACEUTICS15082047/S1
dc.relation.referencesBottens, R. A., & Yamada, T. (2022). Cell-Penetrating Peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers, 14(22), 5546. https://doi.org/10.3390/CANCERS14225546
dc.relation.referencesBrown, C. L., Smith, K., McCaughey, L., & Walker, D. (2012). Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochemical Society Transactions, 40(6), 1549–1552. https://doi.org/10.1042/BST20120241
dc.relation.referencesBucataru, C., & Ciobanasu, C. (2024). Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiological Research, 286, 127822. https://doi.org/10.1016/J.MICRES.2024.127822
dc.relation.referencesBulet, P., Stöcklin, R., & Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198(1), 169–184. https://doi.org/10.1111/J.0105-2896.2004.0124.X
dc.relation.referencesCapela, R., Moreira, R., & Lopes, F. (2019). An overview of drug resistance in protozoal diseases. International Journal of Molecular Sciences, 20(22), 5748. https://doi.org/10.3390/IJMS20225748
dc.relation.referencesCarvalho, C. A. M., Casseb, S. M. M., Gonçalves, R. B., Silva, E. V. P., Gomes, A. M. O., & Vasconcelos, P. F. C. (2017). Bovine lactoferrin activity against chikungunya and zika viruses. Journal of General Virology, 98(7), 1749–1754. https://doi.org/10.1099/JGV.0.000849/CITE/REFWORKS
dc.relation.referencesCascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158. https://doi.org/10.1128/MMBR.00036-06
dc.relation.referencesChadbourne, F. L., Raleigh, C., Ali, H. Z., Denny, P. W., & Cobb, S. L. (2011). Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. Journal of Peptide Science, 17(11), 751–755. https://doi.org/10.1002/PSC.1398
dc.relation.referencesChaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., Varshney, G. C., & Raghava, G. P. S. (2016). A web server and mobile app for computing hemolytic potency of peptides. Scientific Reports 2016, 6(1), 1–13. https://doi.org/10.1038/srep22843
dc.relation.referencesChen, H. C., Brown, J. H., Morell, J. L., & Huang, C. M. (1988). Synthetic magainin analogues with improved antimicrobial activity. FEBS Letters, 236(2), 462–466. https://doi.org/10.1016/0014-5793(88)80077-2
dc.relation.referencesChen, J. M., Fan, Y. C., Lin, J. W., Chen, Y. Y., Hsu, W. L., & Chiou, S. S. (2017). Bovine lactoferrin inhibits Dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. International Journal of Molecular Sciences, 18(9), 1957. https://doi.org/10.3390/IJMS18091957
dc.relation.referencesChen, N., & Jiang, C. (2023). Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry, 255, 115377. https://doi.org/10.1016/J.EJMECH.2023.115377
dc.relation.referencesCheng, Y., Prickett, M. D., Gutowska, W., Kuo, R., Belov, K., & Burt, D. W. (2015). Evolution of the avian β-defensin and cathelicidin genes. BMC Evolutionary Biology, 15(1), 188. https://doi.org/10.1186/S12862-015-0465-3
dc.relation.referencesClark, S., Jowitt, T. A., Harris, L. K., Knight, C. G., & Dobson, C. B. (2021). The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences. Communications Biology 2021 4:1, 4(1), 1–14. https://doi.org/10.1038/s42003-021-02137-7
dc.relation.referencesCoculescu, B. I. (2009). Antimicrobial resistance induced by genetic changes. Journal of Medicine and Life, 2(2), 114. /pmc/articles/PMC3018982/
dc.relation.referencesConchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 8(1), 1–17. https://doi.org/10.1186/1471-2105-8-65/FIGURES/1
dc.relation.referencesCox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292. https://doi.org/10.1016/J.IJMM.2013.02.009
dc.relation.referencesCruz, G. F., de Araujo, I., Torres, M. D. T., de la Fuente-Nunez, C., Oliveira, V. X., Ambrosio, F. N., Lombello, C. B., Almeida, D. V., Silva, F. D., & Garcia, W. (2020). Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2464–2474. https://doi.org/10.1007/S10904-019-01427-2/METRICS
dc.relation.referencesCui, Y., Zhang, C., Wang, Y., Shi, J., Zhang, L., Ding, Z., Qu, X., & Cui, H. (2012). Class IIa bacteriocins: Diversity and new developments. International Journal of Molecular Sciences 2012, 13(12), 16668–16707. https://doi.org/10.3390/IJMS131216668
dc.relation.referencesda Silva Sabo, S., Vitolo, M., González, J. M. D., & Oliveira, R. P. de S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527–536. https://doi.org/10.1016/J.FOODRES.2014.07.041
dc.relation.referencesD´costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461. https://doi.org/10.1038/nature10388
dc.relation.referencesDe Angelis, M., Casciaro, B., Genovese, A., Brancaccio, D., Marcocci, M. E., Novellino, E., Carotenuto, A., Palamara, A. T., Mangoni, M. L., & Nencioni, L. (2021). Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. The FASEB Journal, 35(2), 21358. https://doi.org/10.1096/FJ.202001885RR
dc.relation.referencesDe Groot, N. S., & Ventura, S. (2010). Protein aggregation profile of the bacterial cytosol. PLoS ONE, 5(2), 9383. https://doi.org/10.1371/JOURNAL.PONE.0009383
dc.relation.referencesDe Martinis, E. C. P., Alves, V. F., & Franco, B. D. G. M. (2002). Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products. Food Reviews International, 18(2–3), 191–208. https://doi.org/10.1081/FRI-120014688
dc.relation.referencesde Niederhäusern, S., Camellini, S., Sabia, C., Iseppi, R., Bondi, M., & Messi, P. (2020). Antilisterial activity of bacteriocins produced by lactic bacteria isolated from dairy products. Foods, 9(12), 1757. https://doi.org/10.3390/FOODS9121757
dc.relation.referencesDe Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3), 1128. https://doi.org/10.1128/CMR.00181-19
dc.relation.referencesDe Oliveira, S. S. S., Cherene, M. B., Taveira, G. B., de Oliveira Mello, É., de Oliveira Carvalho, A., & Gomes, V. M. (2024). Plant antimicrobial peptides and their main families and roles: A review of the literature. Current Issues in Molecular Biology, 47(1), 1. https://doi.org/10.3390/CIMB47010001
dc.relation.referencesDimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2--a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/S00894-014-2278-5
dc.relation.referencesDini, I., De Biasi, M. G., & Mancusi, A. (2022). An overview of the potentialities of antimicrobial peptides derived from natural sources. Antibiotics, 11(11), 1483. https://doi.org/10.3390/ANTIBIOTICS11111483
dc.relation.referencesDong, R., Liu, R., Liu, Z., Liu, Y., Zhao, G., Li, H., Hou, S., Ma, X., Kang, H., Liu, J., Guo, F., Zhao, P., Wang, J., Wang, C., Wu, X., Ye, S., & Zhu, C. (2024). Exploring the repository of de novo designed bifunctional antimicrobial peptides through deep learning. ELife, 13, RP97330. https://doi.org/10.7554/ELIFE.97330.1
dc.relation.referencesDracatos, P. M., Van Der Weerden, N. L., Carroll, K. T., Johnson, E. D., Plummer, K. M., & Anderson, M. A. (2014). Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Molecular Plant Pathology, 15(1), 67–79. https://doi.org/10.1111/MPP.12066
dc.relation.referencesDubos, R. J. (1939). Studies on a bactericidal agent extracted from a soil bacillus: ii. protective effect of the bactericidal agent against experimental pneumococcus infections in mice. The Journal of Experimental Medicine, 70(1), 11. https://doi.org/10.1084/JEM.70.1.11
dc.relation.referencesDuclohier, H. (2010). Antimicrobial peptides and peptaibols, substitutes for conventional antibiotics. Current Pharmaceutical Design, 16(28), 3212–3223. https://doi.org/10.2174/138161210793292500
dc.relation.referencesDuplantier, A. J., & van Hoek, M. L. (2013). The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Frontiers in Immunology, 4, 143. https://doi.org/10.3389/FIMMU.2013.00143
dc.relation.referencesDuque-Salazar, G., Mendez-Otalvaro, E., Ceballos-Arroyo, A. M., & Orduz, S. (2020). Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids, 52(10), 1403–1412. https://doi.org/10.1007/s00726-020-02900-w
dc.relation.referencesDutta, P., Sahu, R. K., Dey, T., Lahkar, M. D., Manna, P., & Kalita, J. (2019). Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions, 313, 108824. https://doi.org/10.1016/J.CBI.2019.108824
dc.relation.referencesElmquist, A., Hansen, M., & Langel, Ü. (2006). Structure–activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(6), 721–729. https://doi.org/10.1016/J.BBAMEM.2006.05.013
dc.relation.referencesEnoki, T. A., Moreira-Silva, I., Lorenzon, E. N., Cilli, E. M., Perez, K. R., Riske, K. A., & Lamy, M. T. (2018). Antimicrobial peptide K0-W6-Hya1 induces stable structurally modified lipid domains in anionic membranes. Langmuir, 34(5), 2014–2025. https://doi.org/10.1021/ACS.LANGMUIR.7B03408
dc.relation.referencesFeng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L., & Sun, J. (2020). Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Frontiers in Immunology, 11, 573073. https://doi.org/10.3389/FIMMU.2020.02030/XML/NLM
dc.relation.referencesFeyzyab, H., Fathi, N., & Bolhassani, A. (2023). Antiviral peptides derived from plants: Their designs and functions. Protein & Peptide Letters, 30(12), 975–985. https://doi.org/10.2174/0109298665278148231106052509
dc.relation.referencesFjell, C. D., Hiss, J. A., Hancock, R. E. W., & Schneider, G. (2012). Designing antimicrobial peptides: Form follows function. Nature Reviews Drug Discovery, 11(1), 37–51. https://doi.org/10.1038/NRD3591
dc.relation.referencesFleming, A., & lexander F leming, B. A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 93(653), 306–317. https://doi.org/10.1098/RSPB.1922.0023
dc.relation.referencesFletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric protozoa in the developed world: A public health perspective. Clinical Microbiology Reviews, 25(3), 420. https://doi.org/10.1128/CMR.05038-11
dc.relation.referencesFu, J., Zong, X., Jin, M., Min, J., Wang, F., & Wang, Y. (2023). Mechanisms and regulation of defensins in host defense. Signal Transduction and Targeted Therapy, 8(1), 1–30. https://doi.org/10.1038/S41392-023-01553-X
dc.relation.referencesGalzitskaya, O. V., Kurpe, S. R., Panfilov, A. V., Glyakina, A. V., Grishin, S. Y., Kochetov, A. P., Deryusheva, E. I., Machulin, A. V., Kravchenko, S. V., Domnin, P. A., Surin, A. K., Azev, V. N., & Ermolaeva, S. A. (2022). Amyloidogenic peptides: New class of antimicrobial peptides with the novel mechanism of activity. International Journal of Molecular Sciences, 23(10), 5463. https://doi.org/10.3390/IJMS23105463
dc.relation.referencesGause, G. F., & Brazhnikova, M. G. (1944). Gramicidin S and its use in the treatment of infected wounds. Nature, 154(3918), 703. https://doi.org/10.1038/154703A0
dc.relation.referencesGautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101–2102. https://doi.org/10.1093/BIOINFORMATICS/BTN392
dc.relation.referencesGawde, U., Chakraborty, S., Waghu, F. H., Barai, R. S., Khanderkar, A., Indraguru, R., Shirsat, T., & Idicula-Thomas, S. (2023). CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Research, 51(D1), D377. https://doi.org/10.1093/NAR/GKAC933
dc.relation.referencesGiangaspero, A., Sandri, L., & Tossi, A. (2001). Amphipathic α helical antimicrobial peptides: A systematic study of the effects of structural and physical properties on biological activity. European Journal of Biochemistry, 268(21), 5589–5600. https://doi.org/10.1046/J.1432-1033.2001.02494.X
dc.relation.referencesGiles, F. J., Rodriguez, R., Weisdorf, D., Wingard, J. R., Martin, P. J., Fleming, T. R., Goldberg, S. L., Anaissie, E. J., Bolwell, B. J., Chao, N. J., Shea, T. C., Brunvand, M. M., Vaughan, W., Petersen, F., Schubert, M., Lazarus, H. M., Maziarz, R. T., Silverman, M., Beveridge, R. A., … Hurd, D. D. (2004). A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leukemia Research, 28(6), 559–565. https://doi.org/10.1016/J.LEUKRES.2003.10.021
dc.relation.referencesGoitsuka, R., Chen, C. L. H., Benyon, L., Asano, Y., Kitamura, D., & Cooper, M. D. (2007). Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 15063. https://doi.org/10.1073/PNAS.0707037104
dc.relation.referencesGong, H., Liao, M., Hu, X., Fa, K., Phanphak, S., Ciumac, D., Hollowell, P., Shen, K., Clifton, L. A., Campana, M., Webster, J. R. P., Fragneto, G., Waigh, T. A., Mcbain, A. J., & Lu, J. R. (2020). Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces, 12(40), 44420–44432. https://doi.org/10.1021/ACSAMI.0C09931
dc.relation.referencesGraham, M. A., Silverstein, K. A. T., & VandenBosch, K. A. (2008). Defensin-like genes: genomic perspectives on a diverse superfamily in plants. Crop Science, 48(SUPPL. 1), S-3 - S-11. https://doi.org/10.2135/CROPSCI2007.04.0236TPG
dc.relation.referencesGuan, J., Yao, L., Xie, P., Chung, C. R., Huang, Y., Chiang, Y. C., & Lee, T. Y. (2024). A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Briefings in Bioinformatics, 25(3), 208. https://doi.org/10.1093/BIB/BBAE208
dc.relation.referencesGuryanova, S. V., & Ovchinnikova, T. V. (2022). Immunomodulatory and allergenic properties of antimicrobial peptides. International Journal of Molecular Sciences, 23(5), 2499. https://doi.org/10.3390/IJMS23052499
dc.relation.referencesHale, J. D. F., & Hancock, R. E. W. (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Review of Anti-Infective Therapy, 5(6), 951–959. https://doi.org/10.1586/14787210.5.6.951
dc.relation.referencesHancock, R. E. W., & Patrzykat, A. (2002). Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Current Drug Targets - Infectious Disorders, 2(1), 79–83. https://doi.org/10.2174/1568005024605855
dc.relation.referencesHayes, B. M. E., Bleackley, M. R., Wiltshire, J. L., Anderson, M. A., Traven, A., & Van Der Weerden, N. L. (2013). Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against candida albicans. Antimicrobial Agents and Chemotherapy, 57(8), 3667–3675. https://doi.org/10.1128/AAC.00365-13
dc.relation.referencesHilchie, A. L., Hoskin, D. W., & Power Coombs, M. R. (2019). Anticancer activities of natural and synthetic peptides. Advances in Experimental Medicine and Biology, 1117, 131–147. https://doi.org/10.1007/978-981-13-3588-4_9
dc.relation.referencesHincapié, O., Giraldo, P., & Orduz, S. (2018). In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(10), 1871–1882. https://doi.org/10.1007/s10482-018-1080-2
dc.relation.referencesHuan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEX
dc.relation.referencesHuang, K. Y., Chang, T. H., Jhong, J. H., Chi, Y. H., Li, W. C., Chan, C. L., Robert Lai, K., & Lee, T. Y. (2017). Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Systems Biology, 11(7), 29–44. https://doi.org/10.1186/S12918-017-0503-4
dc.relation.referencesHuang, P. H., Chen, J. Y., & Kuo, C. M. (2007). Three different hepcidins from tilapia, Oreochromis mossambicus: Analysis of their expressions and biological functions. Molecular Immunology, 44(8), 1922–1934. https://doi.org/10.1016/J.MOLIMM.2006.09.031
dc.relation.referencesHuerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., Von Mering, C., & Bork, P. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Molecular Biology and Evolution, 34(8), 2115–2122. https://doi.org/10.1093/MOLBEV/MSX148
dc.relation.referencesIoannou, P., Baliou, S., & Kofteridis, D. P. (2023). Antimicrobial peptides in infectious diseases and beyond—a narrative review. Life, 13(8), 1651. https://doi.org/10.3390/LIFE13081651
dc.relation.referencesIqbal, A., & Khan, R. S. (2023). Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants. Molecular Biology Reports, 50(10), 8683–8690. https://doi.org/10.1007/S11033-023-08734-5
dc.relation.referencesIreland, D. C., Wang, C. K. L., Wilson, J. A., Gustafson, K. R., & Craik, D. J. (2008). Cyclotides as natural anti-HIV agents. Biopolymers, 90(1), 51. https://doi.org/10.1002/BIP.20886
dc.relation.referencesIrvine, A., McKenzie, D., McCoy, C. J., Graham, R. L. J., Graham, C., Huws, S. A., Atkinson, L. E., & Mousley, A. (2023). Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLOS Pathogens, 19(7), e1011508. https://doi.org/10.1371/JOURNAL.PPAT.1011508
dc.relation.referencesJabeen, M., Biswas, P., Islam, M. T., & Paul, R. (2023). Antiviral peptides in antimicrobial surface coatings—from current techniques to potential applications. Viruses 2023, 15(3), 640. https://doi.org/10.3390/V15030640
dc.relation.referencesJiang, Z., Vasil, A. I., Hale, J. D., Hancock, R. E. W., Vasil, M. L., & Hodges, R. S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-Helical cationic antimicrobial peptides. Biopolymers, 90(3), 369. https://doi.org/10.1002/BIP.20911
dc.relation.referencesJin, J. Y., Zhou, L., Wang, Y., Li, Z., Zhao, J. G., Zhang, Q. Y., & Gui, J. F. (2010). Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS ONE, 5(12), 12883. https://doi.org/10.1371/JOURNAL.PONE.0012883
dc.relation.referencesJung, B., Yun, H., Min, H. J., Yang, S., Shin, S. Y., & Lee, C. W. (2023). Discovery of structural and functional transition sites for membrane-penetrating activity of sheep myeloid antimicrobial peptide-18. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-28386-6
dc.relation.referencesJung, Y., Kong, B., Moon, S., Yu, S. H., Chung, J., Ban, C., Chung, W. J., Kim, S. G., & Kweon, D. H. (2019). Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochemical and Biophysical Research Communications, 517(3), 507–512. https://doi.org/10.1016/J.BBRC.2019.07.088
dc.relation.referencesKim, W., Koo, H., Richman, A. M., Seeley, D., Vizioli, J., Klocko, A. D., & O’Brochta, D. A. (2004). Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to plasmodium. Journal of Medical Entomology, 41(3), 447–455. https://doi.org/10.1603/0022-2585-41.3.447
dc.relation.referencesKościuczuk, E. M., Lisowski, P., Jarczak, J., Strzałkowska, N., Jóźwik, A., Horbańczuk, J., Krzyżewski, J., Zwierzchowski, L., & Bagnicka, E. (2012). Cathelicidins: family of antimicrobial peptides. A review. Molecular Biology Reports, 39(12), 10957. https://doi.org/10.1007/S11033-012-1997-X
dc.relation.referencesKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8(1), 4. https://doi.org/10.3390/BIOM8010004
dc.relation.referencesLacerda, A. F., Pelegrini, P. B., De Oliveira, D. M., Vasconcelos, É. A. R., & Grossi-de-Sá, M. F. (2016). Anti-parasitic peptides from arthropods and their application in drug therapy. Frontiers in Microbiology, 7, 91. https://doi.org/10.3389/FMICB.2016.00091
dc.relation.referencesLai, R., Liu, H., Hui Lee, W., & Zhang, Y. (2002). An anionic antimicrobial peptide from toad Bombina maxima. Biochemical and Biophysical Research Communications, 295(4), 796–799. https://doi.org/10.1016/S0006-291X(02)00762-3
dc.relation.referencesLambermon, M. H. L., Rappaport, R. V., & McLaurin, J. A. (2005). Biophysical characterization of longer forms of amyloid beta peptides: Possible contribution to flocculent plaque formation. Journal of Neurochemistry, 95(6), 1667–1676. https://doi.org/10.1111/J.1471-4159.2005.03497.X
dc.relation.referencesLandon, C., Meudal, H., Boulanger, N., Bulet, P., & Vovelle, F. (2006). Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an α-helical conformation. Biopolymers, 81(2), 92–103. https://doi.org/10.1002/BIP.20370
dc.relation.referencesLe, C. F., Fang, C. M., & Sekaran, S. D. (2017). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 61(4), 1128. https://doi.org/10.1128/AAC.02340-16
dc.relation.referencesLee, H. K., Kumar, P., Fu, Q., Rosen, K. M., & Querfurth, H. W. (2009). The Insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Molecular Biology of the Cell, 20(5), 1533. https://doi.org/10.1091/MBC.E08-07-0777
dc.relation.referencesLee, J. T. Y., Wang, G., Tam, Y. T., & Tam, C. (2016). Membrane-Active epithelial keratin 6A fragments (KAMPs) are unique human antimicrobial peptides with a non-αβ structure. Frontiers in Microbiology, 7, 1799. https://doi.org/10.3389/FMICB.2016.01799
dc.relation.referencesLee, Y. C. J., Shirkey, J. D., Park, J., Bisht, K., & Cowan, A. J. (2022). An overview of antiviral peptides and rational biodesign considerations. BioDesign Research, 2022, 9898241. https://doi.org/10.34133/2022/9898241
dc.relation.referencesLei, J., Sun, L. C., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. Y. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919. /pmc/articles/PMC6684887/
dc.relation.referencesLeitgeb, B., Szekeres, A., Manczinger, L., Vágvölgyi, C., & Kredics, L. (2007). The history of alamethicin: a review of the most extensively studied peptaibol. Chemistry & Biodiversity, 4(6), 1027–1051. https://doi.org/10.1002/CBDV.200790095
dc.relation.referencesLewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews Drug Discovery 2013 12:5, 12(5), 371–387. https://doi.org/10.1038/nrd3975
dc.relation.referencesLi, C., Zhu, C., Ren, B., Yin, X., Shim, S. H., Gao, Y., Zhu, J., Zhao, P., Liu, C., Yu, R., Xia, X., & Zhang, L. (2019). Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 183, 111686. https://doi.org/10.1016/J.EJMECH.2019.111686
dc.relation.referencesLi, Jianguo, Koh, J. J., Liu, S., Lakshminarayanan, R., Verma, C. S., & Beuerman, R. W. (2017). Membrane active antimicrobial peptides: Translating mechanistic insights to design. Frontiers in Neuroscience, 11, 73. https://doi.org/10.3389/FNINS.2017.00073
dc.relation.referencesLi, Junpeng, Hu, S., Jian, W., Xie, C., & Yang, X. (2021). Plant antimicrobial peptides: structures, functions, and applications. Botanical Studies 2021 62:1, 62(1), 1–15. https://doi.org/10.1186/S40529-021-00312-X
dc.relation.referencesLi, L., Sun, J., Xia, S., Tian, X., Cheserek, M. J., & Le, G. (2016). Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Applied Microbiology and Biotechnology, 100(7), 3245–3253. https://doi.org/10.1007/S00253-015-7265-Y/METRICS
dc.relation.referencesLi, S., Zhou, H., Huang, G., & Liu, N. (2009). Inhibition of HBV infection by bovine lactoferrin and iron-, zinc-saturated lactoferrin. Medical Microbiology and Immunology, 198(1), 19–25. https://doi.org/10.1007/S00430-008-0100-7/METRICS
dc.relation.referencesLin, S., Chen, X., Chen, H., Cai, X., Chen, X., & Wang, S. (2022). The bioprospecting of microbial-derived antimicrobial peptides for sustainable agriculture. Engineering, 27(8), 222-233. https://doi.org/10.1016/J.ENG.2022.08.011
dc.relation.referencesLin, T. Y., & Weibel, D. B. (2016). Organization and function of anionic phospholipids in bacteria. Applied Microbiology and Biotechnology 2016 100:10, 100(10), 4255–4267. https://doi.org/10.1007/S00253-016-7468-X
dc.relation.referencesLin, W.-Y. ; ;, Wang, Y.-C. ;, Fu, Y. ;, Lakshmi, A. ;, Wang, H.-Y., Cruciani, M., Kalpana, S., Lin, W.-Y., Wang, Y.-C., Fu, Y., Lakshmi, A., & Wang, H.-Y. (2023). Antibiotic resistance diagnosis in ESKAPE Pathogens—A Review on Proteomic Perspective. Diagnostics 2023, 13(6), 1014. https://doi.org/10.3390/DIAGNOSTICS13061014
dc.relation.referencesLiu, C.-M., Luo, R., & Lam, T.-W. (2014). GPU-accelerated bwt construction for large collection of short reads. Bioinformatics, 31(10), 1674–1676. http://arxiv.org/abs/1401.7457
dc.relation.referencesLobo, D. S., Pereira, I. B., Fragel-Madeira, L., Medeiros, L. N., Cabral, L. M., Faria, J., Bellio, M., Campos, R. C., Linden, R., & Kurtenbach, E. (2007). Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry, 46(4), 987–996. https://doi.org/10.1021/BI061441J
dc.relation.referencesLu, S. Y., Graça, T., Avillan, J. J., Zhao, Z., & Call, D. R. (2019). Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Applied and Environmental Microbiology, 85(11), e00371-19. https://doi.org/10.1128/AEM.00371-19
dc.relation.referencesLyu, Z., Yang, P., Lei, J., & Zhao, J. (2023). Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics 2023, 12(6), 1037. https://doi.org/10.3390/ANTIBIOTICS12061037
dc.relation.referencesMa, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., Tang, N., Tong, X., Wang, M., Ye, X., Feng, J., Chen, Y., & Wang, J. (2022). Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology 2022 40:6, 40(6), 921–931. https://doi.org/10.1038/s41587-022-01226-0
dc.relation.referencesMadanchi, H., Khalaj, V., Jang, S., Shabani, A. A., Ebrahimi Kiasari, R., Seyed Mousavi, S. J., Kazemi Sealani, S., & Sardari, S. (2019). AurH1: a new heptapeptide derived from Aurein1.2 antimicrobial peptide with specific and exclusive fungicidal activity. Journal of Peptide Science : An Official Publication of the European Peptide Society, 25(7). https://doi.org/10.1002/PSC.3175
dc.relation.referencesMahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, 235805. https://doi.org/10.3389/FCIMB.2016.00194
dc.relation.referencesMammari, N., Krier, Y., Albert, Q., Devocelle, M., & Varbanov, M. (2021). Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals, 14(8), 774. https://doi.org/10.3390/PH14080774
dc.relation.referencesManavalan, B., & Patra, M. C. (2022). MLCPP 2.0: An updated cell-penetrating peptides and their uptake efficiency predictor. Journal of Molecular Biology, 434(11), 167604. https://doi.org/10.1016/J.JMB.2022.167604
dc.relation.referencesMardirossian, M., Grzela, R., Giglione, C., Meinnel, T., Gennaro, R., Mergaert, P., & Scocchi, M. (2014). The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chemistry & Biology, 21(12), 1639–1647. https://doi.org/10.1016/J.CHEMBIOL.2014.10.009
dc.relation.referencesMardirossian, M., Pérébaskine, N., Benincasa, M., Gambato, S., Hofmann, S., Huter, P., Müller, C., Hilpert, K., Innis, C. A., Tossi, A., & Wilson, D. N. (2018). The dolphin proline-rich antimicrobial peptide tur1a inhibits protein synthesis by targeting the bacterial ribosome. Cell Chemical Biology, 25(5), 530-539.e7. https://doi.org/10.1016/J.CHEMBIOL.2018.02.004
dc.relation.referencesMarković, K. G., Grujović, M., Koraćević, M. G., Nikodijević, D. D., Milutinović, M. G., Semedo-Lemsaddek, T., & Djilas, M. D. (2022). Colicins and microcins produced by enterobacteriaceae: characterization, mode of action, and putative applications. International Journal of Environmental Research and Public Health, 19(18), 11825. https://doi.org/10.3390/IJERPH191811825
dc.relation.referencesMarr, A. K., McGwire, B. S., & McMaster, W. R. (2012). Modes of action of Leishmanicidal antimicrobial peptides. Http://Dx.Doi.Org/10.2217/Fmb.12.85, 7(9), 1047–1059. https://doi.org/10.2217/FMB.12.85
dc.relation.referencesMartínez-Culebras, P. V., Gandía, M., Garrigues, S., Marcos, J. F., & Manzanares, P. (2021). Antifungal peptides and proteins to control toxigenic fungi and mycotoxin biosynthesis. International Journal of Molecular Sciences, 22(24), 13261. https://doi.org/10.3390/IJMS222413261
dc.relation.referencesMascini, M., Dikici, E., Mañueco, M. R., Perez-Erviti, J. A., Deo, S. K., Compagnone, D., Wang, J., Pingarrón, J. M., & Daunert, S. (2019). Computationally designed peptides for Zika virus detection: An incremental construction approach. Biomolecules, 9(9), 498. https://doi.org/10.3390/BIOM9090498
dc.relation.referencesMasso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals, 7(3), 265. https://doi.org/10.3390/PH7030265
dc.relation.referencesMather, A. E., Baker, K. S., McGregor, H., Coupland, P., Mather, P. L., Deheer-Graham, A., Parkhill, J., Bracegirdle, P., Russell, J. E., & Thomson, N. R. (2014). Bacillary dysentery from World War 1 and NCTC1, the first bacterial isolate in the National Collection. The Lancet, 384(9955), 1720. https://doi.org/10.1016/S0140-6736(14)61790-6
dc.relation.referencesMba, I. E., & Nweze, E. I. (2022). Focus: Antimicrobial resistance: Antimicrobial peptides therapy: An emerging alternative for treatingdrug-resistant bacteria. The Yale Journal of Biology and Medicine, 95(4), 445. /pmc/articles/PMC9765339/
dc.relation.referencesMegaw, J., Skvortsov, T., Gori, G., Dabai, A. I., Gilmore, B. F., & Allen, C. C. R. (2024). A novel bioinformatic method for the identification of antimicrobial peptides in metagenomes. Journal of Applied Microbiology, 135(3), 45. https://doi.org/10.1093/JAMBIO/LXAE045
dc.relation.referencesMera-Banguero, C., Orduz, S., Cardona, P., Orrego, A., Muñoz-Pérez, J., & Branch-Bedoya, J. W. (2024). AmpClass: An antimicrobial peptide predictor based on supervised machine learning. Anais da Academia Brasileira de Ciencias, 96(4), e20230756. https://doi.org/10.1590/0001-3765202420230756
dc.relation.referencesMeyer, C. E., & Reusser, F. (1967). A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia, 23(2), 85–86. https://doi.org/10.1007/BF02135929/METRICS
dc.relation.referencesMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679. https://doi.org/10.1038/S41592-022-01488-1
dc.relation.referencesMohanram, H., & Bhattacharjya, S. (2014). Cysteine deleted protegrin-1 (CDP-1): Anti-bacterial activity, outer-membrane disruption and selectivity. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(10), 3006–3016. https://doi.org/10.1016/J.BBAGEN.2014.06.018
dc.relation.referencesMohapatra, S. S., Dwibedy, S. K., & Padhy, I. (2021). Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. Journal of Biosciences 2021 46:3, 46(3), 1–18. https://doi.org/10.1007/S12038-021-00209-8
dc.relation.referencesMolchanova, N., Hansen, P. R., & Franzyk, H. (2017). Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 22(9), 1430. https://doi.org/10.3390/MOLECULES22091430
dc.relation.referencesMonsalve, D., Mesa, A., Mira, L. M., Mera, C., Orduz, S., & Branch-Bedoya, J. W. (2024). Antimicrobial peptides designed by computational analysis of proteomes. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 117(1), 1–14. https://doi.org/10.1007/s10482-024-01946-0
dc.relation.referencesMonzote, L., & Siddiq, A. (2011). Drug development to protozoan diseases. The Open Medicinal Chemistry Journal, 5, 1. https://doi.org/10.2174/1874104501105010001
dc.relation.referencesMor, A., Hani, K., & Nicolas, P. (1994). The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. Journal of Biological Chemistry, 269(50), 31635–31641. https://doi.org/10.1016/s0021-9258(18)31742-3
dc.relation.referencesMoretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., Sgambato, A., Wolff, M., & Falabella, P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific Reports, 10(1), 16875. https://doi.org/10.1038/S41598-020-74017-9
dc.relation.referencesMuhialdin, B. J., Algboory, H. L., Kadum, H., Mohammed, N. K., Saari, N., Hassan, Z., & Meor Hussin, A. S. (2020). Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control, 109, 106898. https://doi.org/10.1016/J.FOODCONT.2019.106898
dc.relation.referencesNacif-Marçal, L., Pereira, G. R., Abranches, M. V., Costa, N. C. S., Cardoso, S. A., Honda, E. R., De Paula, S. O., Feio, R. N., & Oliveira, L. L. (2015). Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae). Toxicon : Official Journal of the International Society on Toxinology, 99, 16–22. https://doi.org/10.1016/J.TOXICON.2015.03.006
dc.relation.referencesNguyen, L. T., Haney, E. F., & Vogel, H. J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology, 29(9), 464–472. https://doi.org/10.1016/J.TIBTECH.2011.05.001
dc.relation.referencesNguyen, P. H., Ramamoorthy, A., Sahoo, B. R., Zheng, J., Faller, P., Straub, J. E., Dominguez, L., Shea, J. E., Dokholyan, N. V., de Simone, A., Ma, B., Nussinov, R., Najafi, S., Ngo, S. T., Loquet, A., Chiricotto, M., Ganguly, P., McCarty, J., Li, M. S., Derreumaux, P. (2021). Amyloid oligomers: A joint experimental/computational perspective on alzheimer’s disease, parkinson’s disease, type ii diabetes, and amyotrophic lateral sclerosis. Chemical Reviews, 121(4), 2545–2647. https://doi.org/10.1021/ACS.CHEMREV.0C01122
dc.relation.referencesNishie, M., Nagao, J. I., & Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Science, 17(1), 1–16. https://doi.org/10.4265/BIO.17.1
dc.relation.referencesNissen-Meyer, J., Oppegård, C., Rogne, P., Haugen, H. S., & Kristiansen, P. E. (2010). Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics and Antimicrobial Proteins, 2(1), 52–60. https://doi.org/10.1007/S12602-009-9021-Z
dc.relation.referencesOscáriz, J. C., & Pisabarro, A. G. (2001). Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. International Microbiology, 4(1), 13–19. https://doi.org/10.1007/S101230100003/METRICS
dc.relation.referencesOsset-Trénor, P., Pascual-Ahuir, A., & Proft, M. (2023). Fungal drug response and antimicrobial resistance. Journal of Fungi 2023, 9(5), 565. https://doi.org/10.3390/JOF9050565
dc.relation.referencesPan, X., Xu, J., & Jia, X. (2020). Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Management and Research, 12, 397–409. https://doi.org/10.2147/CMAR.S232708
dc.relation.referencesPatel, S. G., Sayers, E. J., He, L., Narayan, R., Williams, T. L., Mills, E. M., Allemann, R. K., Luk, L. Y. P., Jones, A. T., & Tsai, Y. H. (2019). Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports 2019 9:1, 9(1), 1–9. https://doi.org/10.1038/s41598-019-42456-8
dc.relation.referencesPennings, P. S. (2013). HIV drug resistance: Problems and perspectives. Infectious Disease Reports, 5(Suppl 1), 21–25. https://doi.org/10.4081/IDR.2013.S1.E5
dc.relation.referencesPerez-Rodriguez, A. ;, Eraso, E. ;, Quindós, G. ;, Mateo, E., Dinu-Pîrvu, C. E., Perez-Rodriguez, A., Eraso, E., Quindós, G., & Mateo, E. (2022). Antimicrobial peptides with anti-candida activity. International Journal of Molecular Sciences 2022, 23(16), 9264. https://doi.org/10.3390/IJMS23169264
dc.relation.referencesPerry, J., Waglechner, N., & Wright, G. (2016). The Prehistory of antibiotic resistance. Cold Spring Harbor Perspectives in Medicine, 6(6), a025197. https://doi.org/10.1101/CSHPERSPECT.A025197
dc.relation.referencesPg, S., Rg, S., & Hj, W. (1947). Polymyxin: A new chemotherapeutic agent. Bulletin of the Johns Hopkins Hospital 1947, 81(1):43-54. PMID: 20259524
dc.relation.referencesPirtskhalava, M., Amstrong, A. A., Grigolava, M., Chubinidze, M., Alimbarashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D. E., & Tartakovsky, M. (2021). DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research, 49(D1), D288. https://doi.org/10.1093/NAR/GKAA991
dc.relation.referencesPirtskhalava, M., Vishnepolsky, B., Grigolava, M., & Managadze, G. (2021). Physicochemical features and peculiarities of interaction of amp with the membrane. Pharmaceuticals, 14(5), 471. https://doi.org/10.3390/PH14050471
dc.relation.referencesPorto, W. F., Pires, A. S., & Franco, O. L. (2017). Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnology Advances, 35(3), 337–349. https://doi.org/10.1016/J.BIOTECHADV.2017.02.001
dc.relation.referencesPrestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309. https://doi.org/10.1179/2047773215Y.0000000030
dc.relation.referencesPushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Antimicrobial peptides: Versatile biological properties. International Journal of Peptides 2013, 15, 675391. https://doi.org/10.1155/2013/675391
dc.relation.referencesQureshi, A. (2025). A review on current status of antiviral peptides. Discover Viruses, 2(1), 1–13. https://doi.org/10.1007/S44370-024-00006-5
dc.relation.referencesRaju, S. V., Sarkar, P., Kumar, P., & Arockiaraj, J. (2020). Piscidin, fish antimicrobial peptide: Structure, classification, properties, mechanism, gene regulation and therapeutical importance. International Journal of Peptide Research and Therapeutics 2020 27(1), 91–107. https://doi.org/10.1007/S10989-020-10068-W
dc.relation.referencesRathore, A. S., Choudhury, S., Arora, A., Tijare, P., & Raghava, G. P. S. (2024). ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Computers in Biology and Medicine, 179, 108926. https://doi.org/10.1016/J.COMPBIOMED.2024.108926
dc.relation.referencesReddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547. https://doi.org/10.1016/J.IJANTIMICAG.2004.09.005
dc.relation.referencesReygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482. https://doi.org/10.3934/MICROBIOL.2018.3.482
dc.relation.referencesRivera-Sánchez, S. P., Agudelo-Góngora, H. A., Oñate-Garzón, J., Flórez-Elvira, L. J., Correa, A., Londoño, P. A., Londoño-Mosquera, J. D., Aragón-Muriel, A., Polo-Cerón, D., & Ocampo-Ibáñez, I. D. (2020). Antibacterial activity of a cationic antimicrobial peptide against multidrug-resistant gram-negative clinical isolates and their potential molecular targets. Molecules 2020, 25(21), 5035. https://doi.org/10.3390/MOLECULES25215035
dc.relation.referencesRodrigues, G., Souza Santos, L., & Franco, O. L. (2022). Antimicrobial peptides controlling resistant bacteria in animal production. Frontiers in Microbiology, 13, 874153. https://doi.org/10.3389/FMICB.2022.874153
dc.relation.referencesRogers, L. A. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. Journal of Bacteriology, 16(5), 321. https://doi.org/10.1128/JB.16.5.321-325.1928
dc.relation.referencesRomanescu, M., Oprean, C., Lombrea, A., Badescu, B., Teodor, A., Constantin, G. D., Andor, M., Folescu, R., Muntean, D., Danciu, C., Dalleur, O., Batrina, S. L., Cretu, O., & Buda, V. O. (2023). Current state of knowledge regarding WHO high priority pathogens—resistance mechanisms and proposed solutions through candidates such as essential oils: A systematic review. International Journal of Molecular Sciences, 24(11), 9727. https://doi.org/10.3390/IJMS24119727
dc.relation.referencesRozek, A., Friedrich, C. L., & Hancock, R. E. W. (2000). Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 39(51), 15765–15774. https://doi.org/10.1021/BI000714M/
dc.relation.referencesSalam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/HEALTHCARE11131946
dc.relation.referencesSantiago-Rodriguez, T. M., Fornaciari, G., Luciani, S., Dowd, S. E., Toranzos, G. A., Marota, I., Cano, R. J., & Wilson, B. A. (2015). Gut microbiome of an 11th century A.D. pre-columbian andean mummy. PLoS ONE, 10(9), e0138135. https://doi.org/10.1371/JOURNAL.PONE.0138135
dc.relation.referencesSantos-Júnior, C. D., Torres, M. D. T., Duan, Y., Rodríguez del Río, Á., Schmidt, T. S. B., Chong, H., Fullam, A., Kuhn, M., Zhu, C., Houseman, A., Somborski, J., Vines, A., Zhao, X. M., Bork, P., Huerta-Cepas, J., de la Fuente-Nunez, C., & Coelho, L. P. (2024). Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell, 187(14), 3761-3778.e16. https://doi.org/10.1016/J.CELL.2024.05.013
dc.relation.referencesSapay, N., Guermeur, Y., & Deléage, G. (2006). Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics, 7, 255. https://doi.org/10.1186/1471-2105-7-255
dc.relation.referencesSchaduangrat, N., Nantasenamat, C., Prachayasittikul, V., & Shoombuatong, W. (2019). ACPred: A computational tool for the prediction and analysis of anticancer peptides. Molecules, 24(10), 1973. https://doi.org/10.3390/MOLECULES24101973
dc.relation.referencesSchmidt, N. W., & Wong, G. C. L. (2013). Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State & Materials Science, 17(4), 151. https://doi.org/10.1016/J.COSSMS.2013.09.004
dc.relation.referencesSchneider, T., Kruse, T., Wimmer, R., Wiedemann, I., Sass, V., Pag, U., Jansen, A., Nielsen, A. K., Mygind, P. H., Raventós, D. S., Neve, S., Ravn, B., Bonvin, A. M. J. J., De Maria, L., Andersen, A. S., Gammelgaard, L. K., Sahl, H. G., & Kristensen, H. H. (2010). Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science, 328(5982), 1168–1172. https://doi.org/10.1126/SCIENCE.1185723/
dc.relation.referencesScholl, D. (2017). Phage tail–like bacteriocins. Annual Review of Virology, 4, 453–467. https://doi.org/10.1146/ANNUREV-VIROLOGY-101416-041632
dc.relation.referencesSeefeldt, A. C., Nguyen, F., Antunes, S., Pérébaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., & Innis, C. A. (2015). The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nature Structural & Molecular Biology, 22(6), 470–475. https://doi.org/10.1038/nsmb.3034
dc.relation.referencesSegura, A., Moreno, M., Madueño, F., Molina, A., & García-Olmedo, F. (2007). Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12(1), 16–23. https://doi.org/10.1094/MPMI.1999.12.1.16
dc.relation.referencesShwaiki, L. N., Arendt, E. K., & Lynch, K. M. (2020). Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control, 113, 107178. https://doi.org/10.1016/J.FOODCONT.2020.107178
dc.relation.referencesSimons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), 639. https://doi.org/10.3390/MICROORGANISMS8050639
dc.relation.referencesSlavokhotova, A. A., & Rogozhin, E. A. (2020). Defense peptides from the α-Hairpinin family are components of plant innate immunity. Frontiers in Plant Science, 11, 517851. https://doi.org/10.3389/FPLS.2020.00465/BIBTEX
dc.relation.referencesStec, B. (2006). Plant thionins - The structural perspective. Cellular and Molecular Life Sciences, 63(12), 1370–1385. https://doi.org/10.1007/S00018-005-5574-5/METRICS
dc.relation.referencesStegemann, C., Kolobov, A., Leonova, Y. F., Knappe, D., Shamova, O., Ovchinnikova, T. V., Kokryakov, V. N., & Hoffmann, R. (2009). Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics, 9(5), 1364–1373. https://doi.org/10.1002/PMIC.200800569
dc.relation.referencesSubbalakshmi, C., & Sitaram, N. (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 160(1), 91–96. https://doi.org/10.1111/J.1574-6968.1998.TB12896.X
dc.relation.referencesSugiarto, H., & Yu, P. L. (2007). Effects of cations on antimicrobial activity of ostricacins-1 and 2 on E. coli O157:H7 and S. aureus 1056MRSA. Current Microbiology, 55(1), 36–41. https://doi.org/10.1007/S00284-006-0554-Z
dc.relation.referencesSukmarini, L. (2022). Antiviral peptides (AVPs) of marine origin as propitious therapeutic drug candidates for the treatment of human viruses. Molecules, 27(9), 2619. https://doi.org/10.3390/MOLECULES27092619
dc.relation.referencesTajbakhsh, M., Karimi, A., Fallah, F., & Akhavan, M. M. (2017). Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cellular and Molecular Biology, 63(10), 20–32. https://doi.org/10.14715/CMB/2017.63.10.4
dc.relation.referencesTam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8(4), 711–757. https://doi.org/10.3390/PH8040711
dc.relation.referencesTamayo S, Castañeda CA, O. S. (2018). Type-Peptide 1.0. Dirección nacional de derechos de autor. Registro 13-70-274, Colombia. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/patentes-y-software.html
dc.relation.referencesThi Phan, L., Woo Park, H., Pitti, T., Madhavan, T., Jeon, Y. J., & Manavalan, B. (2022). MLACP 2.0: An updated machine learning tool for anticancer peptide prediction. Computational and Structural Biotechnology Journal, 20, 4473. https://doi.org/10.1016/J.CSBJ.2022.07.043
dc.relation.referencesTimmons, P. B., & Hewage, C. M. (2020). HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-67701-3
dc.relation.referencesToledo-Rueda, W., Rosas-Murrieta, N. H., Muñoz-Medina, J. E., González-Bonilla, C. R., Reyes-Leyva, J., & Santos-López, G. (2018). Antiviral resistance markers in influenza virus sequences in Mexico, 2000–2017. Infection and Drug Resistance, 11, 1751–1756. https://doi.org/10.2147/IDR.S153154
dc.relation.referencesTorres, M. D. T., Sothiselvam, S., Lu, T. K., & de la Fuente-Nunez, C. (2019). Peptide design principles for antimicrobial applications. Journal of Molecular Biology, 431(18), 3547–3567. https://doi.org/10.1016/J.JMB.2018.12.015
dc.relation.referencesTyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/IJMS23042329/S1
dc.relation.referencesUggerhøj, L. E., Poulsen, T. J., Munk, J. K., Fredborg, M., Sondergaard, T. E., Frimodt-Moller, N., Hansen, P. R., & Wimmer, R. (2015). Rational design of alpha-helical antimicrobial peptides: Do’s and don’ts. ChemBioChem, 16(2), 242–253. https://doi.org/10.1002/CBIC.201402581
dc.relation.referencesUzzell, T., Stolzenberg, E. D., Shinnar, A. E., & Zasloff, M. (2003). Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 24(11), 1655–1667. https://doi.org/10.1016/j.peptides.2003.08.024
dc.relation.referencesVan Der Weerden, N. L., Lay, F. T., & Anderson, M. A. (2008). The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. Journal of Biological Chemistry, 283(21), 14445–14452. https://doi.org/10.1074/jbc.M709867200
dc.relation.referencesVan Hilten, N., Verwei, N., Methorst, J., Nase, C., Bernatavicius, A., & Risselada, H. J. (2024). PMIpred: A physics-informed web server for quantitative protein–membrane interaction prediction. Bioinformatics, 40(2), btae069. https://doi.org/10.1093/BIOINFORMATICS/BTAE069
dc.relation.referencesvan Hoek, M. L. (2014). Antimicrobial peptides in reptiles. Pharmaceuticals, 7(6), 723–756. https://doi.org/10.3390/PH7060723
dc.relation.referencesVan Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183(2), 258–264. https://doi.org/10.1007/BF00197797/METRICS
dc.relation.referencesVelkov, T., Thompson, P. E., Azad, M. A. K., Roberts, K. D., & Bergen, P. J. (2019). History, chemistry and antibacterial spectrum. Advances in Experimental Medicine and Biology, 1145, 15–36. https://doi.org/10.1007/978-3-030-16373-0_3/
dc.relation.referencesVeltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics, 34(16), 2740–2747. https://doi.org/10.1093/BIOINFORMATICS/BTY179
dc.relation.referencesVilcinskas, A. (2013). Evolutionary plasticity of insect immunity. Journal of Insect Physiology, 59(2), 123–129. https://doi.org/10.1016/J.JINSPHYS.2012.08.018
dc.relation.referencesVishnepolsky, B., Grigolava, M., Managadze, G., Gabrielian, A., Rosenthal, A., Hurt, D. E., Tartakovsky, M., & Pirtskhalava, M. (2022). Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Briefings in Bioinformatics, 23(4), 1–11. https://doi.org/10.1093/BIB/BBAC233
dc.relation.referencesVriens, K., Cammue, B. P. A., & Thevissen, K. (2014). Antifungal plant defensins: Mechanisms of action and production. Molecules, 19(8), 12280–12303. https://doi.org/10.3390/MOLECULES190812280
dc.relation.referencesWaglechner, N., Culp, E. J., & Wright, G. D. (2021). Ancient antibiotics, ancient resistance. EcoSal Plus, 9(2), eESP-0027-2020. https://doi.org/10.1128/ecosalplus.esp-0027-2020
dc.relation.referencesWang, F., Qiao, L., Lv, X., Trivett, A., Yang, R., Oppenheim, J. J., Yang, D., & Zhang, N. (2016). Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine, 83, 53–60. https://doi.org/10.1016/J.CYTO.2016.03.015
dc.relation.referencesWang, G. (2015). Improved methods for classification, prediction and design of antimicrobial peptides. Methods in Molecular Biology, 1268, 43–66. https://doi.org/10.1007/978-1-4939-2285-7_3
dc.relation.referencesWang, G. (2020). Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics, 9(8), 491. https://doi.org/10.3390/ANTIBIOTICS9080491
dc.relation.referencesWang, G., Li, X., & Wang, Z. (2016). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44, D1087–D1093. https://doi.org/10.1093/NAR/GKV1278
dc.relation.referencesWang, G., Vaisman, I. I., & van Hoek, M. L. (2022). Machine Learning prediction of antimicrobial peptides. Methods in Molecular Biology, 2405, 1. https://doi.org/10.1007/978-1-0716-1855-4_1
dc.relation.referencesWarinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R. Y., Fiddyment, S., Speller, C., Hendy, J., Charlton, S., Luder, H. U., Salazar-García, D. C., Eppler, E., Seiler, R., Hansen, L. H., Castruita, J. A. S., Cappellini, E. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46(4), 336–344. https://doi.org/10.1038/ng.2906
dc.relation.referencesWei, J., Hameed, M., Wang, X., Zhang, J., Guo, S., Anwar, M. N., Pang, L., Liu, K., Li, B., Shao, D., Qiu, Y., Zhong, D., Zhou, B., & Ma, Z. (2020). Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Research, 174, 104673. https://doi.org/10.1016/J.ANTIVIRAL.2019.104673
dc.relation.referencesWei, Y., Wu, J., Chen, Y., Fan, K., Yu, X., Li, X., Zhao, Y., Li, Y., Lv, G., Song, G., Rong, X., Lin, C., Wang, H., Chen, X., Zhang, P., Han, C., Zu, H., Liu, W., Zhang, Y., Chen, M. (2023). Efficacy and safety of PL-5 (Peceleganan) spray for wound infections: A phase IIb randomized clinical trial. Annals of Surgery, 277(1), 43–49. https://doi.org/10.1097/SLA.0000000000005508
dc.relation.referencesWimley, W. C. (2019). Application of synthetic molecular evolution to the discovery of antimicrobial peptides. Advances in Experimental Medicine and Biology, 1117, 241–255. https://doi.org/10.1007/978-981-13-3588-4_13
dc.relation.referencesWright, G. D. (2014). Something old, something new: Revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 60(3), 147–154. https://doi.org/10.1139/CJM-2014-0063/
dc.relation.referencesWu, J., Gao, B., & Zhu, S. (2014). The fungal defensin family enlarged. Pharmaceuticals, 7(8), 866–880. https://doi.org/10.3390/PH7080866
dc.relation.referencesWurth, C., Guimard, N. K., & Hecht, M. H. (2002). Mutations that Reduce Aggregation of the Alzheimer’s Aβ42 Peptide: an Unbiased Search for the Sequence Determinants of Aβ Amyloidogenesis. Journal of Molecular Biology, 319(5), 1279–1290. https://doi.org/10.1016/S0022-2836(02)00399-6
dc.relation.referencesXie, M., Liu, D., & Yang, Y. (2020). Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biology, 10(7), 200004. https://doi.org/10.1098/RSOB.200004
dc.relation.referencesXu, J., Xu, X., Jiang, Y., Fu, Y., & Shen, C. (2024). Waste to resource: Mining antimicrobial peptides in sludge from metagenomes using machine learning. Environment International, 186, 108574. https://doi.org/10.1016/J.ENVINT.2024.108574
dc.relation.referencesXu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760–1846. https://doi.org/10.1021/CR4006704/ASSET/CR4006704.FP.PNG_V03
dc.relation.referencesYi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5882. https://doi.org/10.1007/S00253-014-5792-6
dc.relation.referencesYin, L. M., Edwards, M. A., Li, J., Yip, C. M., & Deber, C. M. (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. The Journal of Biological Chemistry, 287(10), 7738. https://doi.org/10.1074/JBC.M111.303602
dc.relation.referencesZahedifard, F., Lee, H., No, J. H., Salimi, M., Seyed, N., Asoodeh, A., & Rafati, S. (2020). Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Experimental Parasitology, 209, 107823. https://doi.org/10.1016/J.EXPPARA.2019.107823
dc.relation.referencesZasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America, 84(15), 5449–5453. https://doi.org/10.1073/PNAS.84.15.5449
dc.relation.referencesZhang, Q. Y., Yan, Z. Bin, Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 48. https://doi.org/10.1186/S40779-021- 00343-2
dc.relation.referencesZhao, H., Gan, T. X., Liu, X. D., Jin, Y., Lee, W. H., Shen, J. H., & Zhang, Y. (2008). Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides, 29(10), 1685–1691. https://doi.org/10.1016/J.PEPTIDES.2008.06.008
dc.relation.referencesZhao, Y., Zhang, M., Qiu, S., Wang, J., Peng, J., Zhao, P., Zhu, R., Wang, H., Li, Y., Wang, K., Yan, W., & Wang, R. (2016). Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express, 6(1), 122. https://doi.org/10.1186/S13568-016-0295-8
dc.relation.referencesZohra, T., Numan, M., Ikram, A., Salman, M., Khan, T., Din, M., Farooq, A., Amir, A., Ali, M., & Costa-De-Oliveira, S. (2021). Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 2021, 9(5), 954. https://doi.org/10.3390/MICROORGANISMS9050954
dc.relation.referencesZou, J., Mercier, C., Koussounadis, A., & Secombes, C. (2007). Discovery of multiple betadefensin like homologues in teleost fish. Molecular Immunology, 44(4), 638–647. https://doi.org/10.1016/J.MOLIMM.2006.01.012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.jelAntibioticos
dc.subject.lembPeptidos
dc.subject.lembAprendizaje automático (inteligencia artificial)
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalAntimicrobial peptideseng
dc.subject.proposalMetagenomasspa
dc.subject.proposalMetagenomeseng
dc.subject.proposalBioinformáticaspa
dc.subject.proposalBioinformaticseng
dc.subject.proposalMachine learning
dc.subject.proposalResistenciaspa
dc.subject.proposalResistanceeng
dc.subject.proposalSistema inmune innatospa
dc.subject.proposalInnate immune systemeng
dc.subject.proposalAntibióticosspa
dc.subject.proposalAntibioticseng
dc.titlePredicción funcional de péptidos antimicrobianos en metagenomas de suelo y mantillo de bosques de la Amazonia Noroccidentalspa
dc.title.translatedFunctional prediction of antimicrobial peptides in soil and leaf litter metagenomes from the Northwestern Amazoneng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Biotecnología
Tamaño:
3.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: