Predicción funcional de péptidos antimicrobianos en metagenomas de suelo y mantillo de bosques de la Amazonia Noroccidental
dc.contributor.advisor | Orduz Peralta, Sergio | |
dc.contributor.advisor | Ortiz Morea, Fausto Andrés | |
dc.contributor.author | Toro-Ardila, Diego A. | |
dc.contributor.orcid | Toro-Ardila, Diego A. [0009000759708598] | |
dc.contributor.orcid | Ordúz Peralta, Sergio [0000-000175873816] | |
dc.contributor.orcid | Ortiz-Morea, Fausto Andrés [0000000309781256] | |
dc.contributor.researchgroup | Biología Funcional | |
dc.date.accessioned | 2025-08-25T21:41:48Z | |
dc.date.available | 2025-08-25T21:41:48Z | |
dc.date.issued | 2025-08-20 | |
dc.description | Ilustraciones | |
dc.description.abstract | La resistencia a los antimicrobianos es un fenómeno natural que surge de la competencia entre microorganismos por espacio y nutrientes. Sin embargo, esta dinámica se ha intensificado desde el siglo XX debido al uso excesivo de antibióticos, lo que ha generado una fuerte presión selectiva que ha acelerado la aparición de microorganismos resistentes, convirtiéndose en un grave problema de salud pública. Ante esta situación, los péptidos antimicrobianos (AMPs) surgen como alternativas prometedoras a los antibióticos, debido a su destacada actividad de amplio espectro contra una variedad de patógenos. En este contexto, nuestro estudio emplea un enfoque bioinformático combinado con algoritmos de machine learning para identificar AMPs promisorios en metagenomas de suelo y mantillo de bosque de la Amazonia colombiana, una fuente rica e inexplorada de moléculas con potencial biotecnológico. A través del análisis de metaproteomas, identificamos 1.329.511 péptidos que cumplían con los criterios fisicoquímicos preestablecidos para ser considerados potenciales AMPs. Seleccionamos los 10 mejores péptidos y se modificaron buscando aumentar su potencial antimicrobiano. La evaluación in silico de las propiedades fisicoquímicas, estructurales y biológicas de los péptidos seleccionados y sus versiones modificadas, reveló que la mayoría presentan una baja toxicidad, alta probabilidad de unión a membranas microbianas y un alto potencial de actividad contra bacterias, hongos, virus, además de potenciales propiedades anticancerígenas. Los resultados obtenidos validan la eficacia del enfoque computacional y el diseño racional aplicados en la identificación de AMPs, abriendo nuevas perspectivas para el desarrollo de terapias antimicrobianas innovadoras. (Texto tomado de la fuente) | spa |
dc.description.abstract | Antimicrobial resistance is a natural phenomenon that arises from competition between microorganisms for space and nutrients. However, this dynamic has been intensified since the 20th century due to the excessive use of antibiotics, which has generated a strong selective pressure that has accelerated the emergence of resistant microorganisms, becoming a serious public health problem. In this situation, antimicrobial peptides (AMPs) emerge as promising alternatives to antibiotics, due to their outstanding broad-spectrum activity against various pathogens. In this context, our study employs a bioinformatics approach combined with machine learning algorithms to identify promising AMPs in soil and leaf litter metagenomes from the Colombian Amazon, a rich and unexplored source of molecules with biotechnological potential. Through metaproteome analysis, we identified 1,329,511 peptides that met the pre-established physicochemical criteria to be considered potential AMPs. We selected the 10 best peptides and modified them to enhance their antimicrobial potential. In silico evaluation of the physicochemical, structural, and biological properties of the selected peptides and their modified versions have revealed that most of them present low toxicity, a high probability of binding to microbial membranes, and high potential activity against bacteria, fungi, viruses, as well as potential anticancer properties. The results obtained validate the efficacy of the computational approach and rational design applied in the identification of AMPs, opening new perspectives for the development of innovative antimicrobial therapies. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Biotecnología | |
dc.description.researcharea | Biotecnología Microbiana: Sustancias bioactivas para el control de patógenos | |
dc.format.extent | 171 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88458 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.relation.references | Aboye, T. L., Strömstedt, A. A., Gunasekera, S., Bruhn, J. G., El-Seedi, H., Rosengren, K. J., & Göransson, U. (2015). A cactus-derived toxin-like cystine knot peptide with selective antimicrobial activity. ChemBioChem, 16(7), 1068–1077. https://doi.org/10.1002/CBIC.201402704 | |
dc.relation.references | Aerts, A. M., François, I. E. J. A., Meert, E. M. K., Li, Q. T., Cammue, B. P. A., & Thevissen, K. (2007). The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Journal of Molecular Microbiology and Biotechnology, 13(4), 243–247. https://doi.org/10.1159/000104753 | |
dc.relation.references | Agarwal, G., & Gabrani, R. (2021). Antiviral peptides: Identification and validation. International Journal of Peptide Research and Therapeutics, 27(1), 149. https://doi.org/10.1007/S10989-020-10072-0 | |
dc.relation.references | Ageitos, J. M., Sánchez-Pérez, A., Calo-Mata, P., & Villa, T. G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117–138. https://doi.org/10.1016/J.BCP.2016.09.018 | |
dc.relation.references | Ali, F., Kumar, H., Alghamdi, W., Kateb, F. A., & Alarfaj, F. K. (2023). Recent advances in machine learning-based models for prediction of antiviral peptides. Archives of Computational Methods in Engineering, 30(7), 4033–4044. https://doi.org/10.1007/S11831-023-09933-W/FIGURES/6 | |
dc.relation.references | Amin, A., Zaccardi, J., Mullen, S., Olland, S., Orlowski, M., Feld, B., Labonte, P., & Mak, P. (2003). Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase. Virology, 313(1), 158–169. https://doi.org/10.1016/S0042-6822(03)00313-1 | |
dc.relation.references | Andreev, K., Martynowycz, M. W., Huang, M. L., Kuzmenko, I., Bu, W., Kirshenbaum, K., & Gidalevitz, D. (2018). Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(6), 1414–1423. https://doi.org/10.1016/J.BBAMEM.2018.03.021 | |
dc.relation.references | Aspinall, T. V., Joynson, D. H. M., Guy, E., Hyde, J. E., & Sims, P. F. G. (2002). The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. The Journal of Infectious Diseases, 185(11), 1637–1643. https://doi.org/10.1086/340577 | |
dc.relation.references | Baltz, R. H. (2017). Gifted microbes for genome mining and natural product discovery. Journal of Industrial Microbiology and Biotechnology, 44(4–5), 573–588. https://doi.org/10.1007/S10295-016-1815-X | |
dc.relation.references | Basañez, G., Shinnar, A. E., & Zimmerberg, J. (2002). Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Letters, 532(1–2), 115–120. https://doi.org/10.1016/S0014-5793(02)03651-7 | |
dc.relation.references | Baxter, A. A., Lay, F. T., Poon, I. K. H., Kvansakul, M., & Hulett, M. D. (2017). Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cellular and Molecular Life Sciences 2017 74:20, 74(20), 3809–3825. https://doi.org/10.1007/S00018-017-2604-Z | |
dc.relation.references | Bell, A. (2011). Antimalarial peptides: the long and the short of it. Current Pharmaceutical Design, 17(25), 2719–2731. https://doi.org/10.2174/138161211797416057 | |
dc.relation.references | Benoist, L., Houyvet, B., Henry, J., Corre, E., Zanuttini, B., & Zatylny-Gaudin, C. (2020). In-Depth In Silico Search for Cuttlefish (Sepia officinalis) Antimicrobial peptides following bacterial challenge of haemocytes. Marine Drugs, 18(9), 439. https://doi.org/10.3390/MD18090439 | |
dc.relation.references | Berrocal-Lobo, M., Segura, A., Moreno, M., López, G., García-Olmedo, F., & Molina, A. (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 128(3), 951–961. https://doi.org/10.1104/PP.010685 | |
dc.relation.references | Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A., & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave Microbiome. PLOS ONE, 7(4), 34953. https://doi.org/10.1371/JOURNAL.PONE.0034953 | |
dc.relation.references | Bin Hafeez, A., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: an update on classifications and databases. International Journal of Molecular Sciences, 22(21), 11691 https://doi.org/10.3390/IJMS222111691 | |
dc.relation.references | Bohuszewicz, O., Liu, J., & Low, H. H. (2016). Membrane remodelling in bacteria. Journal of Structural Biology, 196(1), 3–14. https://doi.org/10.1016/J.JSB.2016.05.010 | |
dc.relation.references | Bolosov, I. A., Panteleev, P. V., Sychev, S. V., Khokhlova, V. A., Safronova, V. N., Toropygin, I. Y., Kombarova, T. I., Korobova, O. V., Pereskokova, E. S., Borzilov, A. I., Ovchinnikova, T. V., & Balandin, S. V. (2023). Design of protegrin-1 analogs with improved antibacterial selectivity. Pharmaceutics, 15(8), 2047. https://doi.org/10.3390/PHARMACEUTICS15082047/S1 | |
dc.relation.references | Bottens, R. A., & Yamada, T. (2022). Cell-Penetrating Peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers, 14(22), 5546. https://doi.org/10.3390/CANCERS14225546 | |
dc.relation.references | Brown, C. L., Smith, K., McCaughey, L., & Walker, D. (2012). Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochemical Society Transactions, 40(6), 1549–1552. https://doi.org/10.1042/BST20120241 | |
dc.relation.references | Bucataru, C., & Ciobanasu, C. (2024). Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiological Research, 286, 127822. https://doi.org/10.1016/J.MICRES.2024.127822 | |
dc.relation.references | Bulet, P., Stöcklin, R., & Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198(1), 169–184. https://doi.org/10.1111/J.0105-2896.2004.0124.X | |
dc.relation.references | Capela, R., Moreira, R., & Lopes, F. (2019). An overview of drug resistance in protozoal diseases. International Journal of Molecular Sciences, 20(22), 5748. https://doi.org/10.3390/IJMS20225748 | |
dc.relation.references | Carvalho, C. A. M., Casseb, S. M. M., Gonçalves, R. B., Silva, E. V. P., Gomes, A. M. O., & Vasconcelos, P. F. C. (2017). Bovine lactoferrin activity against chikungunya and zika viruses. Journal of General Virology, 98(7), 1749–1754. https://doi.org/10.1099/JGV.0.000849/CITE/REFWORKS | |
dc.relation.references | Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158. https://doi.org/10.1128/MMBR.00036-06 | |
dc.relation.references | Chadbourne, F. L., Raleigh, C., Ali, H. Z., Denny, P. W., & Cobb, S. L. (2011). Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. Journal of Peptide Science, 17(11), 751–755. https://doi.org/10.1002/PSC.1398 | |
dc.relation.references | Chaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., Varshney, G. C., & Raghava, G. P. S. (2016). A web server and mobile app for computing hemolytic potency of peptides. Scientific Reports 2016, 6(1), 1–13. https://doi.org/10.1038/srep22843 | |
dc.relation.references | Chen, H. C., Brown, J. H., Morell, J. L., & Huang, C. M. (1988). Synthetic magainin analogues with improved antimicrobial activity. FEBS Letters, 236(2), 462–466. https://doi.org/10.1016/0014-5793(88)80077-2 | |
dc.relation.references | Chen, J. M., Fan, Y. C., Lin, J. W., Chen, Y. Y., Hsu, W. L., & Chiou, S. S. (2017). Bovine lactoferrin inhibits Dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. International Journal of Molecular Sciences, 18(9), 1957. https://doi.org/10.3390/IJMS18091957 | |
dc.relation.references | Chen, N., & Jiang, C. (2023). Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry, 255, 115377. https://doi.org/10.1016/J.EJMECH.2023.115377 | |
dc.relation.references | Cheng, Y., Prickett, M. D., Gutowska, W., Kuo, R., Belov, K., & Burt, D. W. (2015). Evolution of the avian β-defensin and cathelicidin genes. BMC Evolutionary Biology, 15(1), 188. https://doi.org/10.1186/S12862-015-0465-3 | |
dc.relation.references | Clark, S., Jowitt, T. A., Harris, L. K., Knight, C. G., & Dobson, C. B. (2021). The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences. Communications Biology 2021 4:1, 4(1), 1–14. https://doi.org/10.1038/s42003-021-02137-7 | |
dc.relation.references | Coculescu, B. I. (2009). Antimicrobial resistance induced by genetic changes. Journal of Medicine and Life, 2(2), 114. /pmc/articles/PMC3018982/ | |
dc.relation.references | Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 8(1), 1–17. https://doi.org/10.1186/1471-2105-8-65/FIGURES/1 | |
dc.relation.references | Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292. https://doi.org/10.1016/J.IJMM.2013.02.009 | |
dc.relation.references | Cruz, G. F., de Araujo, I., Torres, M. D. T., de la Fuente-Nunez, C., Oliveira, V. X., Ambrosio, F. N., Lombello, C. B., Almeida, D. V., Silva, F. D., & Garcia, W. (2020). Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2464–2474. https://doi.org/10.1007/S10904-019-01427-2/METRICS | |
dc.relation.references | Cui, Y., Zhang, C., Wang, Y., Shi, J., Zhang, L., Ding, Z., Qu, X., & Cui, H. (2012). Class IIa bacteriocins: Diversity and new developments. International Journal of Molecular Sciences 2012, 13(12), 16668–16707. https://doi.org/10.3390/IJMS131216668 | |
dc.relation.references | da Silva Sabo, S., Vitolo, M., González, J. M. D., & Oliveira, R. P. de S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527–536. https://doi.org/10.1016/J.FOODRES.2014.07.041 | |
dc.relation.references | D´costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461. https://doi.org/10.1038/nature10388 | |
dc.relation.references | De Angelis, M., Casciaro, B., Genovese, A., Brancaccio, D., Marcocci, M. E., Novellino, E., Carotenuto, A., Palamara, A. T., Mangoni, M. L., & Nencioni, L. (2021). Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. The FASEB Journal, 35(2), 21358. https://doi.org/10.1096/FJ.202001885RR | |
dc.relation.references | De Groot, N. S., & Ventura, S. (2010). Protein aggregation profile of the bacterial cytosol. PLoS ONE, 5(2), 9383. https://doi.org/10.1371/JOURNAL.PONE.0009383 | |
dc.relation.references | De Martinis, E. C. P., Alves, V. F., & Franco, B. D. G. M. (2002). Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products. Food Reviews International, 18(2–3), 191–208. https://doi.org/10.1081/FRI-120014688 | |
dc.relation.references | de Niederhäusern, S., Camellini, S., Sabia, C., Iseppi, R., Bondi, M., & Messi, P. (2020). Antilisterial activity of bacteriocins produced by lactic bacteria isolated from dairy products. Foods, 9(12), 1757. https://doi.org/10.3390/FOODS9121757 | |
dc.relation.references | De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3), 1128. https://doi.org/10.1128/CMR.00181-19 | |
dc.relation.references | De Oliveira, S. S. S., Cherene, M. B., Taveira, G. B., de Oliveira Mello, É., de Oliveira Carvalho, A., & Gomes, V. M. (2024). Plant antimicrobial peptides and their main families and roles: A review of the literature. Current Issues in Molecular Biology, 47(1), 1. https://doi.org/10.3390/CIMB47010001 | |
dc.relation.references | Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2--a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/S00894-014-2278-5 | |
dc.relation.references | Dini, I., De Biasi, M. G., & Mancusi, A. (2022). An overview of the potentialities of antimicrobial peptides derived from natural sources. Antibiotics, 11(11), 1483. https://doi.org/10.3390/ANTIBIOTICS11111483 | |
dc.relation.references | Dong, R., Liu, R., Liu, Z., Liu, Y., Zhao, G., Li, H., Hou, S., Ma, X., Kang, H., Liu, J., Guo, F., Zhao, P., Wang, J., Wang, C., Wu, X., Ye, S., & Zhu, C. (2024). Exploring the repository of de novo designed bifunctional antimicrobial peptides through deep learning. ELife, 13, RP97330. https://doi.org/10.7554/ELIFE.97330.1 | |
dc.relation.references | Dracatos, P. M., Van Der Weerden, N. L., Carroll, K. T., Johnson, E. D., Plummer, K. M., & Anderson, M. A. (2014). Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Molecular Plant Pathology, 15(1), 67–79. https://doi.org/10.1111/MPP.12066 | |
dc.relation.references | Dubos, R. J. (1939). Studies on a bactericidal agent extracted from a soil bacillus: ii. protective effect of the bactericidal agent against experimental pneumococcus infections in mice. The Journal of Experimental Medicine, 70(1), 11. https://doi.org/10.1084/JEM.70.1.11 | |
dc.relation.references | Duclohier, H. (2010). Antimicrobial peptides and peptaibols, substitutes for conventional antibiotics. Current Pharmaceutical Design, 16(28), 3212–3223. https://doi.org/10.2174/138161210793292500 | |
dc.relation.references | Duplantier, A. J., & van Hoek, M. L. (2013). The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Frontiers in Immunology, 4, 143. https://doi.org/10.3389/FIMMU.2013.00143 | |
dc.relation.references | Duque-Salazar, G., Mendez-Otalvaro, E., Ceballos-Arroyo, A. M., & Orduz, S. (2020). Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids, 52(10), 1403–1412. https://doi.org/10.1007/s00726-020-02900-w | |
dc.relation.references | Dutta, P., Sahu, R. K., Dey, T., Lahkar, M. D., Manna, P., & Kalita, J. (2019). Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions, 313, 108824. https://doi.org/10.1016/J.CBI.2019.108824 | |
dc.relation.references | Elmquist, A., Hansen, M., & Langel, Ü. (2006). Structure–activity relationship study of the cell-penetrating peptide pVEC. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(6), 721–729. https://doi.org/10.1016/J.BBAMEM.2006.05.013 | |
dc.relation.references | Enoki, T. A., Moreira-Silva, I., Lorenzon, E. N., Cilli, E. M., Perez, K. R., Riske, K. A., & Lamy, M. T. (2018). Antimicrobial peptide K0-W6-Hya1 induces stable structurally modified lipid domains in anionic membranes. Langmuir, 34(5), 2014–2025. https://doi.org/10.1021/ACS.LANGMUIR.7B03408 | |
dc.relation.references | Feng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L., & Sun, J. (2020). Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Frontiers in Immunology, 11, 573073. https://doi.org/10.3389/FIMMU.2020.02030/XML/NLM | |
dc.relation.references | Feyzyab, H., Fathi, N., & Bolhassani, A. (2023). Antiviral peptides derived from plants: Their designs and functions. Protein & Peptide Letters, 30(12), 975–985. https://doi.org/10.2174/0109298665278148231106052509 | |
dc.relation.references | Fjell, C. D., Hiss, J. A., Hancock, R. E. W., & Schneider, G. (2012). Designing antimicrobial peptides: Form follows function. Nature Reviews Drug Discovery, 11(1), 37–51. https://doi.org/10.1038/NRD3591 | |
dc.relation.references | Fleming, A., & lexander F leming, B. A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 93(653), 306–317. https://doi.org/10.1098/RSPB.1922.0023 | |
dc.relation.references | Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric protozoa in the developed world: A public health perspective. Clinical Microbiology Reviews, 25(3), 420. https://doi.org/10.1128/CMR.05038-11 | |
dc.relation.references | Fu, J., Zong, X., Jin, M., Min, J., Wang, F., & Wang, Y. (2023). Mechanisms and regulation of defensins in host defense. Signal Transduction and Targeted Therapy, 8(1), 1–30. https://doi.org/10.1038/S41392-023-01553-X | |
dc.relation.references | Galzitskaya, O. V., Kurpe, S. R., Panfilov, A. V., Glyakina, A. V., Grishin, S. Y., Kochetov, A. P., Deryusheva, E. I., Machulin, A. V., Kravchenko, S. V., Domnin, P. A., Surin, A. K., Azev, V. N., & Ermolaeva, S. A. (2022). Amyloidogenic peptides: New class of antimicrobial peptides with the novel mechanism of activity. International Journal of Molecular Sciences, 23(10), 5463. https://doi.org/10.3390/IJMS23105463 | |
dc.relation.references | Gause, G. F., & Brazhnikova, M. G. (1944). Gramicidin S and its use in the treatment of infected wounds. Nature, 154(3918), 703. https://doi.org/10.1038/154703A0 | |
dc.relation.references | Gautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101–2102. https://doi.org/10.1093/BIOINFORMATICS/BTN392 | |
dc.relation.references | Gawde, U., Chakraborty, S., Waghu, F. H., Barai, R. S., Khanderkar, A., Indraguru, R., Shirsat, T., & Idicula-Thomas, S. (2023). CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Research, 51(D1), D377. https://doi.org/10.1093/NAR/GKAC933 | |
dc.relation.references | Giangaspero, A., Sandri, L., & Tossi, A. (2001). Amphipathic α helical antimicrobial peptides: A systematic study of the effects of structural and physical properties on biological activity. European Journal of Biochemistry, 268(21), 5589–5600. https://doi.org/10.1046/J.1432-1033.2001.02494.X | |
dc.relation.references | Giles, F. J., Rodriguez, R., Weisdorf, D., Wingard, J. R., Martin, P. J., Fleming, T. R., Goldberg, S. L., Anaissie, E. J., Bolwell, B. J., Chao, N. J., Shea, T. C., Brunvand, M. M., Vaughan, W., Petersen, F., Schubert, M., Lazarus, H. M., Maziarz, R. T., Silverman, M., Beveridge, R. A., … Hurd, D. D. (2004). A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leukemia Research, 28(6), 559–565. https://doi.org/10.1016/J.LEUKRES.2003.10.021 | |
dc.relation.references | Goitsuka, R., Chen, C. L. H., Benyon, L., Asano, Y., Kitamura, D., & Cooper, M. D. (2007). Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 15063. https://doi.org/10.1073/PNAS.0707037104 | |
dc.relation.references | Gong, H., Liao, M., Hu, X., Fa, K., Phanphak, S., Ciumac, D., Hollowell, P., Shen, K., Clifton, L. A., Campana, M., Webster, J. R. P., Fragneto, G., Waigh, T. A., Mcbain, A. J., & Lu, J. R. (2020). Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces, 12(40), 44420–44432. https://doi.org/10.1021/ACSAMI.0C09931 | |
dc.relation.references | Graham, M. A., Silverstein, K. A. T., & VandenBosch, K. A. (2008). Defensin-like genes: genomic perspectives on a diverse superfamily in plants. Crop Science, 48(SUPPL. 1), S-3 - S-11. https://doi.org/10.2135/CROPSCI2007.04.0236TPG | |
dc.relation.references | Guan, J., Yao, L., Xie, P., Chung, C. R., Huang, Y., Chiang, Y. C., & Lee, T. Y. (2024). A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Briefings in Bioinformatics, 25(3), 208. https://doi.org/10.1093/BIB/BBAE208 | |
dc.relation.references | Guryanova, S. V., & Ovchinnikova, T. V. (2022). Immunomodulatory and allergenic properties of antimicrobial peptides. International Journal of Molecular Sciences, 23(5), 2499. https://doi.org/10.3390/IJMS23052499 | |
dc.relation.references | Hale, J. D. F., & Hancock, R. E. W. (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Review of Anti-Infective Therapy, 5(6), 951–959. https://doi.org/10.1586/14787210.5.6.951 | |
dc.relation.references | Hancock, R. E. W., & Patrzykat, A. (2002). Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Current Drug Targets - Infectious Disorders, 2(1), 79–83. https://doi.org/10.2174/1568005024605855 | |
dc.relation.references | Hayes, B. M. E., Bleackley, M. R., Wiltshire, J. L., Anderson, M. A., Traven, A., & Van Der Weerden, N. L. (2013). Identification and mechanism of action of the plant defensin nad1 as a new member of the antifungal drug arsenal against candida albicans. Antimicrobial Agents and Chemotherapy, 57(8), 3667–3675. https://doi.org/10.1128/AAC.00365-13 | |
dc.relation.references | Hilchie, A. L., Hoskin, D. W., & Power Coombs, M. R. (2019). Anticancer activities of natural and synthetic peptides. Advances in Experimental Medicine and Biology, 1117, 131–147. https://doi.org/10.1007/978-981-13-3588-4_9 | |
dc.relation.references | Hincapié, O., Giraldo, P., & Orduz, S. (2018). In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(10), 1871–1882. https://doi.org/10.1007/s10482-018-1080-2 | |
dc.relation.references | Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEX | |
dc.relation.references | Huang, K. Y., Chang, T. H., Jhong, J. H., Chi, Y. H., Li, W. C., Chan, C. L., Robert Lai, K., & Lee, T. Y. (2017). Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Systems Biology, 11(7), 29–44. https://doi.org/10.1186/S12918-017-0503-4 | |
dc.relation.references | Huang, P. H., Chen, J. Y., & Kuo, C. M. (2007). Three different hepcidins from tilapia, Oreochromis mossambicus: Analysis of their expressions and biological functions. Molecular Immunology, 44(8), 1922–1934. https://doi.org/10.1016/J.MOLIMM.2006.09.031 | |
dc.relation.references | Huerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., Von Mering, C., & Bork, P. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Molecular Biology and Evolution, 34(8), 2115–2122. https://doi.org/10.1093/MOLBEV/MSX148 | |
dc.relation.references | Ioannou, P., Baliou, S., & Kofteridis, D. P. (2023). Antimicrobial peptides in infectious diseases and beyond—a narrative review. Life, 13(8), 1651. https://doi.org/10.3390/LIFE13081651 | |
dc.relation.references | Iqbal, A., & Khan, R. S. (2023). Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants. Molecular Biology Reports, 50(10), 8683–8690. https://doi.org/10.1007/S11033-023-08734-5 | |
dc.relation.references | Ireland, D. C., Wang, C. K. L., Wilson, J. A., Gustafson, K. R., & Craik, D. J. (2008). Cyclotides as natural anti-HIV agents. Biopolymers, 90(1), 51. https://doi.org/10.1002/BIP.20886 | |
dc.relation.references | Irvine, A., McKenzie, D., McCoy, C. J., Graham, R. L. J., Graham, C., Huws, S. A., Atkinson, L. E., & Mousley, A. (2023). Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLOS Pathogens, 19(7), e1011508. https://doi.org/10.1371/JOURNAL.PPAT.1011508 | |
dc.relation.references | Jabeen, M., Biswas, P., Islam, M. T., & Paul, R. (2023). Antiviral peptides in antimicrobial surface coatings—from current techniques to potential applications. Viruses 2023, 15(3), 640. https://doi.org/10.3390/V15030640 | |
dc.relation.references | Jiang, Z., Vasil, A. I., Hale, J. D., Hancock, R. E. W., Vasil, M. L., & Hodges, R. S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-Helical cationic antimicrobial peptides. Biopolymers, 90(3), 369. https://doi.org/10.1002/BIP.20911 | |
dc.relation.references | Jin, J. Y., Zhou, L., Wang, Y., Li, Z., Zhao, J. G., Zhang, Q. Y., & Gui, J. F. (2010). Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS ONE, 5(12), 12883. https://doi.org/10.1371/JOURNAL.PONE.0012883 | |
dc.relation.references | Jung, B., Yun, H., Min, H. J., Yang, S., Shin, S. Y., & Lee, C. W. (2023). Discovery of structural and functional transition sites for membrane-penetrating activity of sheep myeloid antimicrobial peptide-18. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-28386-6 | |
dc.relation.references | Jung, Y., Kong, B., Moon, S., Yu, S. H., Chung, J., Ban, C., Chung, W. J., Kim, S. G., & Kweon, D. H. (2019). Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochemical and Biophysical Research Communications, 517(3), 507–512. https://doi.org/10.1016/J.BBRC.2019.07.088 | |
dc.relation.references | Kim, W., Koo, H., Richman, A. M., Seeley, D., Vizioli, J., Klocko, A. D., & O’Brochta, D. A. (2004). Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to plasmodium. Journal of Medical Entomology, 41(3), 447–455. https://doi.org/10.1603/0022-2585-41.3.447 | |
dc.relation.references | Kościuczuk, E. M., Lisowski, P., Jarczak, J., Strzałkowska, N., Jóźwik, A., Horbańczuk, J., Krzyżewski, J., Zwierzchowski, L., & Bagnicka, E. (2012). Cathelicidins: family of antimicrobial peptides. A review. Molecular Biology Reports, 39(12), 10957. https://doi.org/10.1007/S11033-012-1997-X | |
dc.relation.references | Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8(1), 4. https://doi.org/10.3390/BIOM8010004 | |
dc.relation.references | Lacerda, A. F., Pelegrini, P. B., De Oliveira, D. M., Vasconcelos, É. A. R., & Grossi-de-Sá, M. F. (2016). Anti-parasitic peptides from arthropods and their application in drug therapy. Frontiers in Microbiology, 7, 91. https://doi.org/10.3389/FMICB.2016.00091 | |
dc.relation.references | Lai, R., Liu, H., Hui Lee, W., & Zhang, Y. (2002). An anionic antimicrobial peptide from toad Bombina maxima. Biochemical and Biophysical Research Communications, 295(4), 796–799. https://doi.org/10.1016/S0006-291X(02)00762-3 | |
dc.relation.references | Lambermon, M. H. L., Rappaport, R. V., & McLaurin, J. A. (2005). Biophysical characterization of longer forms of amyloid beta peptides: Possible contribution to flocculent plaque formation. Journal of Neurochemistry, 95(6), 1667–1676. https://doi.org/10.1111/J.1471-4159.2005.03497.X | |
dc.relation.references | Landon, C., Meudal, H., Boulanger, N., Bulet, P., & Vovelle, F. (2006). Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an α-helical conformation. Biopolymers, 81(2), 92–103. https://doi.org/10.1002/BIP.20370 | |
dc.relation.references | Le, C. F., Fang, C. M., & Sekaran, S. D. (2017). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 61(4), 1128. https://doi.org/10.1128/AAC.02340-16 | |
dc.relation.references | Lee, H. K., Kumar, P., Fu, Q., Rosen, K. M., & Querfurth, H. W. (2009). The Insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Molecular Biology of the Cell, 20(5), 1533. https://doi.org/10.1091/MBC.E08-07-0777 | |
dc.relation.references | Lee, J. T. Y., Wang, G., Tam, Y. T., & Tam, C. (2016). Membrane-Active epithelial keratin 6A fragments (KAMPs) are unique human antimicrobial peptides with a non-αβ structure. Frontiers in Microbiology, 7, 1799. https://doi.org/10.3389/FMICB.2016.01799 | |
dc.relation.references | Lee, Y. C. J., Shirkey, J. D., Park, J., Bisht, K., & Cowan, A. J. (2022). An overview of antiviral peptides and rational biodesign considerations. BioDesign Research, 2022, 9898241. https://doi.org/10.34133/2022/9898241 | |
dc.relation.references | Lei, J., Sun, L. C., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. Y. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), 3919. /pmc/articles/PMC6684887/ | |
dc.relation.references | Leitgeb, B., Szekeres, A., Manczinger, L., Vágvölgyi, C., & Kredics, L. (2007). The history of alamethicin: a review of the most extensively studied peptaibol. Chemistry & Biodiversity, 4(6), 1027–1051. https://doi.org/10.1002/CBDV.200790095 | |
dc.relation.references | Lewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews Drug Discovery 2013 12:5, 12(5), 371–387. https://doi.org/10.1038/nrd3975 | |
dc.relation.references | Li, C., Zhu, C., Ren, B., Yin, X., Shim, S. H., Gao, Y., Zhu, J., Zhao, P., Liu, C., Yu, R., Xia, X., & Zhang, L. (2019). Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 183, 111686. https://doi.org/10.1016/J.EJMECH.2019.111686 | |
dc.relation.references | Li, Jianguo, Koh, J. J., Liu, S., Lakshminarayanan, R., Verma, C. S., & Beuerman, R. W. (2017). Membrane active antimicrobial peptides: Translating mechanistic insights to design. Frontiers in Neuroscience, 11, 73. https://doi.org/10.3389/FNINS.2017.00073 | |
dc.relation.references | Li, Junpeng, Hu, S., Jian, W., Xie, C., & Yang, X. (2021). Plant antimicrobial peptides: structures, functions, and applications. Botanical Studies 2021 62:1, 62(1), 1–15. https://doi.org/10.1186/S40529-021-00312-X | |
dc.relation.references | Li, L., Sun, J., Xia, S., Tian, X., Cheserek, M. J., & Le, G. (2016). Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Applied Microbiology and Biotechnology, 100(7), 3245–3253. https://doi.org/10.1007/S00253-015-7265-Y/METRICS | |
dc.relation.references | Li, S., Zhou, H., Huang, G., & Liu, N. (2009). Inhibition of HBV infection by bovine lactoferrin and iron-, zinc-saturated lactoferrin. Medical Microbiology and Immunology, 198(1), 19–25. https://doi.org/10.1007/S00430-008-0100-7/METRICS | |
dc.relation.references | Lin, S., Chen, X., Chen, H., Cai, X., Chen, X., & Wang, S. (2022). The bioprospecting of microbial-derived antimicrobial peptides for sustainable agriculture. Engineering, 27(8), 222-233. https://doi.org/10.1016/J.ENG.2022.08.011 | |
dc.relation.references | Lin, T. Y., & Weibel, D. B. (2016). Organization and function of anionic phospholipids in bacteria. Applied Microbiology and Biotechnology 2016 100:10, 100(10), 4255–4267. https://doi.org/10.1007/S00253-016-7468-X | |
dc.relation.references | Lin, W.-Y. ; ;, Wang, Y.-C. ;, Fu, Y. ;, Lakshmi, A. ;, Wang, H.-Y., Cruciani, M., Kalpana, S., Lin, W.-Y., Wang, Y.-C., Fu, Y., Lakshmi, A., & Wang, H.-Y. (2023). Antibiotic resistance diagnosis in ESKAPE Pathogens—A Review on Proteomic Perspective. Diagnostics 2023, 13(6), 1014. https://doi.org/10.3390/DIAGNOSTICS13061014 | |
dc.relation.references | Liu, C.-M., Luo, R., & Lam, T.-W. (2014). GPU-accelerated bwt construction for large collection of short reads. Bioinformatics, 31(10), 1674–1676. http://arxiv.org/abs/1401.7457 | |
dc.relation.references | Lobo, D. S., Pereira, I. B., Fragel-Madeira, L., Medeiros, L. N., Cabral, L. M., Faria, J., Bellio, M., Campos, R. C., Linden, R., & Kurtenbach, E. (2007). Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry, 46(4), 987–996. https://doi.org/10.1021/BI061441J | |
dc.relation.references | Lu, S. Y., Graça, T., Avillan, J. J., Zhao, Z., & Call, D. R. (2019). Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Applied and Environmental Microbiology, 85(11), e00371-19. https://doi.org/10.1128/AEM.00371-19 | |
dc.relation.references | Lyu, Z., Yang, P., Lei, J., & Zhao, J. (2023). Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics 2023, 12(6), 1037. https://doi.org/10.3390/ANTIBIOTICS12061037 | |
dc.relation.references | Ma, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., Tang, N., Tong, X., Wang, M., Ye, X., Feng, J., Chen, Y., & Wang, J. (2022). Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology 2022 40:6, 40(6), 921–931. https://doi.org/10.1038/s41587-022-01226-0 | |
dc.relation.references | Madanchi, H., Khalaj, V., Jang, S., Shabani, A. A., Ebrahimi Kiasari, R., Seyed Mousavi, S. J., Kazemi Sealani, S., & Sardari, S. (2019). AurH1: a new heptapeptide derived from Aurein1.2 antimicrobial peptide with specific and exclusive fungicidal activity. Journal of Peptide Science : An Official Publication of the European Peptide Society, 25(7). https://doi.org/10.1002/PSC.3175 | |
dc.relation.references | Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, 235805. https://doi.org/10.3389/FCIMB.2016.00194 | |
dc.relation.references | Mammari, N., Krier, Y., Albert, Q., Devocelle, M., & Varbanov, M. (2021). Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals, 14(8), 774. https://doi.org/10.3390/PH14080774 | |
dc.relation.references | Manavalan, B., & Patra, M. C. (2022). MLCPP 2.0: An updated cell-penetrating peptides and their uptake efficiency predictor. Journal of Molecular Biology, 434(11), 167604. https://doi.org/10.1016/J.JMB.2022.167604 | |
dc.relation.references | Mardirossian, M., Grzela, R., Giglione, C., Meinnel, T., Gennaro, R., Mergaert, P., & Scocchi, M. (2014). The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chemistry & Biology, 21(12), 1639–1647. https://doi.org/10.1016/J.CHEMBIOL.2014.10.009 | |
dc.relation.references | Mardirossian, M., Pérébaskine, N., Benincasa, M., Gambato, S., Hofmann, S., Huter, P., Müller, C., Hilpert, K., Innis, C. A., Tossi, A., & Wilson, D. N. (2018). The dolphin proline-rich antimicrobial peptide tur1a inhibits protein synthesis by targeting the bacterial ribosome. Cell Chemical Biology, 25(5), 530-539.e7. https://doi.org/10.1016/J.CHEMBIOL.2018.02.004 | |
dc.relation.references | Marković, K. G., Grujović, M., Koraćević, M. G., Nikodijević, D. D., Milutinović, M. G., Semedo-Lemsaddek, T., & Djilas, M. D. (2022). Colicins and microcins produced by enterobacteriaceae: characterization, mode of action, and putative applications. International Journal of Environmental Research and Public Health, 19(18), 11825. https://doi.org/10.3390/IJERPH191811825 | |
dc.relation.references | Marr, A. K., McGwire, B. S., & McMaster, W. R. (2012). Modes of action of Leishmanicidal antimicrobial peptides. Http://Dx.Doi.Org/10.2217/Fmb.12.85, 7(9), 1047–1059. https://doi.org/10.2217/FMB.12.85 | |
dc.relation.references | Martínez-Culebras, P. V., Gandía, M., Garrigues, S., Marcos, J. F., & Manzanares, P. (2021). Antifungal peptides and proteins to control toxigenic fungi and mycotoxin biosynthesis. International Journal of Molecular Sciences, 22(24), 13261. https://doi.org/10.3390/IJMS222413261 | |
dc.relation.references | Mascini, M., Dikici, E., Mañueco, M. R., Perez-Erviti, J. A., Deo, S. K., Compagnone, D., Wang, J., Pingarrón, J. M., & Daunert, S. (2019). Computationally designed peptides for Zika virus detection: An incremental construction approach. Biomolecules, 9(9), 498. https://doi.org/10.3390/BIOM9090498 | |
dc.relation.references | Masso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals, 7(3), 265. https://doi.org/10.3390/PH7030265 | |
dc.relation.references | Mather, A. E., Baker, K. S., McGregor, H., Coupland, P., Mather, P. L., Deheer-Graham, A., Parkhill, J., Bracegirdle, P., Russell, J. E., & Thomson, N. R. (2014). Bacillary dysentery from World War 1 and NCTC1, the first bacterial isolate in the National Collection. The Lancet, 384(9955), 1720. https://doi.org/10.1016/S0140-6736(14)61790-6 | |
dc.relation.references | Mba, I. E., & Nweze, E. I. (2022). Focus: Antimicrobial resistance: Antimicrobial peptides therapy: An emerging alternative for treatingdrug-resistant bacteria. The Yale Journal of Biology and Medicine, 95(4), 445. /pmc/articles/PMC9765339/ | |
dc.relation.references | Megaw, J., Skvortsov, T., Gori, G., Dabai, A. I., Gilmore, B. F., & Allen, C. C. R. (2024). A novel bioinformatic method for the identification of antimicrobial peptides in metagenomes. Journal of Applied Microbiology, 135(3), 45. https://doi.org/10.1093/JAMBIO/LXAE045 | |
dc.relation.references | Mera-Banguero, C., Orduz, S., Cardona, P., Orrego, A., Muñoz-Pérez, J., & Branch-Bedoya, J. W. (2024). AmpClass: An antimicrobial peptide predictor based on supervised machine learning. Anais da Academia Brasileira de Ciencias, 96(4), e20230756. https://doi.org/10.1590/0001-3765202420230756 | |
dc.relation.references | Meyer, C. E., & Reusser, F. (1967). A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia, 23(2), 85–86. https://doi.org/10.1007/BF02135929/METRICS | |
dc.relation.references | Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679. https://doi.org/10.1038/S41592-022-01488-1 | |
dc.relation.references | Mohanram, H., & Bhattacharjya, S. (2014). Cysteine deleted protegrin-1 (CDP-1): Anti-bacterial activity, outer-membrane disruption and selectivity. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(10), 3006–3016. https://doi.org/10.1016/J.BBAGEN.2014.06.018 | |
dc.relation.references | Mohapatra, S. S., Dwibedy, S. K., & Padhy, I. (2021). Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. Journal of Biosciences 2021 46:3, 46(3), 1–18. https://doi.org/10.1007/S12038-021-00209-8 | |
dc.relation.references | Molchanova, N., Hansen, P. R., & Franzyk, H. (2017). Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 22(9), 1430. https://doi.org/10.3390/MOLECULES22091430 | |
dc.relation.references | Monsalve, D., Mesa, A., Mira, L. M., Mera, C., Orduz, S., & Branch-Bedoya, J. W. (2024). Antimicrobial peptides designed by computational analysis of proteomes. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 117(1), 1–14. https://doi.org/10.1007/s10482-024-01946-0 | |
dc.relation.references | Monzote, L., & Siddiq, A. (2011). Drug development to protozoan diseases. The Open Medicinal Chemistry Journal, 5, 1. https://doi.org/10.2174/1874104501105010001 | |
dc.relation.references | Mor, A., Hani, K., & Nicolas, P. (1994). The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. Journal of Biological Chemistry, 269(50), 31635–31641. https://doi.org/10.1016/s0021-9258(18)31742-3 | |
dc.relation.references | Moretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., Sgambato, A., Wolff, M., & Falabella, P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific Reports, 10(1), 16875. https://doi.org/10.1038/S41598-020-74017-9 | |
dc.relation.references | Muhialdin, B. J., Algboory, H. L., Kadum, H., Mohammed, N. K., Saari, N., Hassan, Z., & Meor Hussin, A. S. (2020). Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control, 109, 106898. https://doi.org/10.1016/J.FOODCONT.2019.106898 | |
dc.relation.references | Nacif-Marçal, L., Pereira, G. R., Abranches, M. V., Costa, N. C. S., Cardoso, S. A., Honda, E. R., De Paula, S. O., Feio, R. N., & Oliveira, L. L. (2015). Identification and characterization of an antimicrobial peptide of Hypsiboas semilineatus (Spix, 1824) (Amphibia, Hylidae). Toxicon : Official Journal of the International Society on Toxinology, 99, 16–22. https://doi.org/10.1016/J.TOXICON.2015.03.006 | |
dc.relation.references | Nguyen, L. T., Haney, E. F., & Vogel, H. J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology, 29(9), 464–472. https://doi.org/10.1016/J.TIBTECH.2011.05.001 | |
dc.relation.references | Nguyen, P. H., Ramamoorthy, A., Sahoo, B. R., Zheng, J., Faller, P., Straub, J. E., Dominguez, L., Shea, J. E., Dokholyan, N. V., de Simone, A., Ma, B., Nussinov, R., Najafi, S., Ngo, S. T., Loquet, A., Chiricotto, M., Ganguly, P., McCarty, J., Li, M. S., Derreumaux, P. (2021). Amyloid oligomers: A joint experimental/computational perspective on alzheimer’s disease, parkinson’s disease, type ii diabetes, and amyotrophic lateral sclerosis. Chemical Reviews, 121(4), 2545–2647. https://doi.org/10.1021/ACS.CHEMREV.0C01122 | |
dc.relation.references | Nishie, M., Nagao, J. I., & Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Science, 17(1), 1–16. https://doi.org/10.4265/BIO.17.1 | |
dc.relation.references | Nissen-Meyer, J., Oppegård, C., Rogne, P., Haugen, H. S., & Kristiansen, P. E. (2010). Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics and Antimicrobial Proteins, 2(1), 52–60. https://doi.org/10.1007/S12602-009-9021-Z | |
dc.relation.references | Oscáriz, J. C., & Pisabarro, A. G. (2001). Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. International Microbiology, 4(1), 13–19. https://doi.org/10.1007/S101230100003/METRICS | |
dc.relation.references | Osset-Trénor, P., Pascual-Ahuir, A., & Proft, M. (2023). Fungal drug response and antimicrobial resistance. Journal of Fungi 2023, 9(5), 565. https://doi.org/10.3390/JOF9050565 | |
dc.relation.references | Pan, X., Xu, J., & Jia, X. (2020). Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Management and Research, 12, 397–409. https://doi.org/10.2147/CMAR.S232708 | |
dc.relation.references | Patel, S. G., Sayers, E. J., He, L., Narayan, R., Williams, T. L., Mills, E. M., Allemann, R. K., Luk, L. Y. P., Jones, A. T., & Tsai, Y. H. (2019). Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports 2019 9:1, 9(1), 1–9. https://doi.org/10.1038/s41598-019-42456-8 | |
dc.relation.references | Pennings, P. S. (2013). HIV drug resistance: Problems and perspectives. Infectious Disease Reports, 5(Suppl 1), 21–25. https://doi.org/10.4081/IDR.2013.S1.E5 | |
dc.relation.references | Perez-Rodriguez, A. ;, Eraso, E. ;, Quindós, G. ;, Mateo, E., Dinu-Pîrvu, C. E., Perez-Rodriguez, A., Eraso, E., Quindós, G., & Mateo, E. (2022). Antimicrobial peptides with anti-candida activity. International Journal of Molecular Sciences 2022, 23(16), 9264. https://doi.org/10.3390/IJMS23169264 | |
dc.relation.references | Perry, J., Waglechner, N., & Wright, G. (2016). The Prehistory of antibiotic resistance. Cold Spring Harbor Perspectives in Medicine, 6(6), a025197. https://doi.org/10.1101/CSHPERSPECT.A025197 | |
dc.relation.references | Pg, S., Rg, S., & Hj, W. (1947). Polymyxin: A new chemotherapeutic agent. Bulletin of the Johns Hopkins Hospital 1947, 81(1):43-54. PMID: 20259524 | |
dc.relation.references | Pirtskhalava, M., Amstrong, A. A., Grigolava, M., Chubinidze, M., Alimbarashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D. E., & Tartakovsky, M. (2021). DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research, 49(D1), D288. https://doi.org/10.1093/NAR/GKAA991 | |
dc.relation.references | Pirtskhalava, M., Vishnepolsky, B., Grigolava, M., & Managadze, G. (2021). Physicochemical features and peculiarities of interaction of amp with the membrane. Pharmaceuticals, 14(5), 471. https://doi.org/10.3390/PH14050471 | |
dc.relation.references | Porto, W. F., Pires, A. S., & Franco, O. L. (2017). Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnology Advances, 35(3), 337–349. https://doi.org/10.1016/J.BIOTECHADV.2017.02.001 | |
dc.relation.references | Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309. https://doi.org/10.1179/2047773215Y.0000000030 | |
dc.relation.references | Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Antimicrobial peptides: Versatile biological properties. International Journal of Peptides 2013, 15, 675391. https://doi.org/10.1155/2013/675391 | |
dc.relation.references | Qureshi, A. (2025). A review on current status of antiviral peptides. Discover Viruses, 2(1), 1–13. https://doi.org/10.1007/S44370-024-00006-5 | |
dc.relation.references | Raju, S. V., Sarkar, P., Kumar, P., & Arockiaraj, J. (2020). Piscidin, fish antimicrobial peptide: Structure, classification, properties, mechanism, gene regulation and therapeutical importance. International Journal of Peptide Research and Therapeutics 2020 27(1), 91–107. https://doi.org/10.1007/S10989-020-10068-W | |
dc.relation.references | Rathore, A. S., Choudhury, S., Arora, A., Tijare, P., & Raghava, G. P. S. (2024). ToxinPred 3.0: An improved method for predicting the toxicity of peptides. Computers in Biology and Medicine, 179, 108926. https://doi.org/10.1016/J.COMPBIOMED.2024.108926 | |
dc.relation.references | Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547. https://doi.org/10.1016/J.IJANTIMICAG.2004.09.005 | |
dc.relation.references | Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482. https://doi.org/10.3934/MICROBIOL.2018.3.482 | |
dc.relation.references | Rivera-Sánchez, S. P., Agudelo-Góngora, H. A., Oñate-Garzón, J., Flórez-Elvira, L. J., Correa, A., Londoño, P. A., Londoño-Mosquera, J. D., Aragón-Muriel, A., Polo-Cerón, D., & Ocampo-Ibáñez, I. D. (2020). Antibacterial activity of a cationic antimicrobial peptide against multidrug-resistant gram-negative clinical isolates and their potential molecular targets. Molecules 2020, 25(21), 5035. https://doi.org/10.3390/MOLECULES25215035 | |
dc.relation.references | Rodrigues, G., Souza Santos, L., & Franco, O. L. (2022). Antimicrobial peptides controlling resistant bacteria in animal production. Frontiers in Microbiology, 13, 874153. https://doi.org/10.3389/FMICB.2022.874153 | |
dc.relation.references | Rogers, L. A. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. Journal of Bacteriology, 16(5), 321. https://doi.org/10.1128/JB.16.5.321-325.1928 | |
dc.relation.references | Romanescu, M., Oprean, C., Lombrea, A., Badescu, B., Teodor, A., Constantin, G. D., Andor, M., Folescu, R., Muntean, D., Danciu, C., Dalleur, O., Batrina, S. L., Cretu, O., & Buda, V. O. (2023). Current state of knowledge regarding WHO high priority pathogens—resistance mechanisms and proposed solutions through candidates such as essential oils: A systematic review. International Journal of Molecular Sciences, 24(11), 9727. https://doi.org/10.3390/IJMS24119727 | |
dc.relation.references | Rozek, A., Friedrich, C. L., & Hancock, R. E. W. (2000). Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 39(51), 15765–15774. https://doi.org/10.1021/BI000714M/ | |
dc.relation.references | Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/HEALTHCARE11131946 | |
dc.relation.references | Santiago-Rodriguez, T. M., Fornaciari, G., Luciani, S., Dowd, S. E., Toranzos, G. A., Marota, I., Cano, R. J., & Wilson, B. A. (2015). Gut microbiome of an 11th century A.D. pre-columbian andean mummy. PLoS ONE, 10(9), e0138135. https://doi.org/10.1371/JOURNAL.PONE.0138135 | |
dc.relation.references | Santos-Júnior, C. D., Torres, M. D. T., Duan, Y., Rodríguez del Río, Á., Schmidt, T. S. B., Chong, H., Fullam, A., Kuhn, M., Zhu, C., Houseman, A., Somborski, J., Vines, A., Zhao, X. M., Bork, P., Huerta-Cepas, J., de la Fuente-Nunez, C., & Coelho, L. P. (2024). Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell, 187(14), 3761-3778.e16. https://doi.org/10.1016/J.CELL.2024.05.013 | |
dc.relation.references | Sapay, N., Guermeur, Y., & Deléage, G. (2006). Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics, 7, 255. https://doi.org/10.1186/1471-2105-7-255 | |
dc.relation.references | Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V., & Shoombuatong, W. (2019). ACPred: A computational tool for the prediction and analysis of anticancer peptides. Molecules, 24(10), 1973. https://doi.org/10.3390/MOLECULES24101973 | |
dc.relation.references | Schmidt, N. W., & Wong, G. C. L. (2013). Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State & Materials Science, 17(4), 151. https://doi.org/10.1016/J.COSSMS.2013.09.004 | |
dc.relation.references | Schneider, T., Kruse, T., Wimmer, R., Wiedemann, I., Sass, V., Pag, U., Jansen, A., Nielsen, A. K., Mygind, P. H., Raventós, D. S., Neve, S., Ravn, B., Bonvin, A. M. J. J., De Maria, L., Andersen, A. S., Gammelgaard, L. K., Sahl, H. G., & Kristensen, H. H. (2010). Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science, 328(5982), 1168–1172. https://doi.org/10.1126/SCIENCE.1185723/ | |
dc.relation.references | Scholl, D. (2017). Phage tail–like bacteriocins. Annual Review of Virology, 4, 453–467. https://doi.org/10.1146/ANNUREV-VIROLOGY-101416-041632 | |
dc.relation.references | Seefeldt, A. C., Nguyen, F., Antunes, S., Pérébaskine, N., Graf, M., Arenz, S., Inampudi, K. K., Douat, C., Guichard, G., Wilson, D. N., & Innis, C. A. (2015). The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nature Structural & Molecular Biology, 22(6), 470–475. https://doi.org/10.1038/nsmb.3034 | |
dc.relation.references | Segura, A., Moreno, M., Madueño, F., Molina, A., & García-Olmedo, F. (2007). Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12(1), 16–23. https://doi.org/10.1094/MPMI.1999.12.1.16 | |
dc.relation.references | Shwaiki, L. N., Arendt, E. K., & Lynch, K. M. (2020). Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control, 113, 107178. https://doi.org/10.1016/J.FOODCONT.2020.107178 | |
dc.relation.references | Simons, A., Alhanout, K., & Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), 639. https://doi.org/10.3390/MICROORGANISMS8050639 | |
dc.relation.references | Slavokhotova, A. A., & Rogozhin, E. A. (2020). Defense peptides from the α-Hairpinin family are components of plant innate immunity. Frontiers in Plant Science, 11, 517851. https://doi.org/10.3389/FPLS.2020.00465/BIBTEX | |
dc.relation.references | Stec, B. (2006). Plant thionins - The structural perspective. Cellular and Molecular Life Sciences, 63(12), 1370–1385. https://doi.org/10.1007/S00018-005-5574-5/METRICS | |
dc.relation.references | Stegemann, C., Kolobov, A., Leonova, Y. F., Knappe, D., Shamova, O., Ovchinnikova, T. V., Kokryakov, V. N., & Hoffmann, R. (2009). Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics, 9(5), 1364–1373. https://doi.org/10.1002/PMIC.200800569 | |
dc.relation.references | Subbalakshmi, C., & Sitaram, N. (1998). Mechanism of antimicrobial action of indolicidin. FEMS Microbiology Letters, 160(1), 91–96. https://doi.org/10.1111/J.1574-6968.1998.TB12896.X | |
dc.relation.references | Sugiarto, H., & Yu, P. L. (2007). Effects of cations on antimicrobial activity of ostricacins-1 and 2 on E. coli O157:H7 and S. aureus 1056MRSA. Current Microbiology, 55(1), 36–41. https://doi.org/10.1007/S00284-006-0554-Z | |
dc.relation.references | Sukmarini, L. (2022). Antiviral peptides (AVPs) of marine origin as propitious therapeutic drug candidates for the treatment of human viruses. Molecules, 27(9), 2619. https://doi.org/10.3390/MOLECULES27092619 | |
dc.relation.references | Tajbakhsh, M., Karimi, A., Fallah, F., & Akhavan, M. M. (2017). Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cellular and Molecular Biology, 63(10), 20–32. https://doi.org/10.14715/CMB/2017.63.10.4 | |
dc.relation.references | Tam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8(4), 711–757. https://doi.org/10.3390/PH8040711 | |
dc.relation.references | Tamayo S, Castañeda CA, O. S. (2018). Type-Peptide 1.0. Dirección nacional de derechos de autor. Registro 13-70-274, Colombia. https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/patentes-y-software.html | |
dc.relation.references | Thi Phan, L., Woo Park, H., Pitti, T., Madhavan, T., Jeon, Y. J., & Manavalan, B. (2022). MLACP 2.0: An updated machine learning tool for anticancer peptide prediction. Computational and Structural Biotechnology Journal, 20, 4473. https://doi.org/10.1016/J.CSBJ.2022.07.043 | |
dc.relation.references | Timmons, P. B., & Hewage, C. M. (2020). HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-67701-3 | |
dc.relation.references | Toledo-Rueda, W., Rosas-Murrieta, N. H., Muñoz-Medina, J. E., González-Bonilla, C. R., Reyes-Leyva, J., & Santos-López, G. (2018). Antiviral resistance markers in influenza virus sequences in Mexico, 2000–2017. Infection and Drug Resistance, 11, 1751–1756. https://doi.org/10.2147/IDR.S153154 | |
dc.relation.references | Torres, M. D. T., Sothiselvam, S., Lu, T. K., & de la Fuente-Nunez, C. (2019). Peptide design principles for antimicrobial applications. Journal of Molecular Biology, 431(18), 3547–3567. https://doi.org/10.1016/J.JMB.2018.12.015 | |
dc.relation.references | Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/IJMS23042329/S1 | |
dc.relation.references | Uggerhøj, L. E., Poulsen, T. J., Munk, J. K., Fredborg, M., Sondergaard, T. E., Frimodt-Moller, N., Hansen, P. R., & Wimmer, R. (2015). Rational design of alpha-helical antimicrobial peptides: Do’s and don’ts. ChemBioChem, 16(2), 242–253. https://doi.org/10.1002/CBIC.201402581 | |
dc.relation.references | Uzzell, T., Stolzenberg, E. D., Shinnar, A. E., & Zasloff, M. (2003). Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 24(11), 1655–1667. https://doi.org/10.1016/j.peptides.2003.08.024 | |
dc.relation.references | Van Der Weerden, N. L., Lay, F. T., & Anderson, M. A. (2008). The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. Journal of Biological Chemistry, 283(21), 14445–14452. https://doi.org/10.1074/jbc.M709867200 | |
dc.relation.references | Van Hilten, N., Verwei, N., Methorst, J., Nase, C., Bernatavicius, A., & Risselada, H. J. (2024). PMIpred: A physics-informed web server for quantitative protein–membrane interaction prediction. Bioinformatics, 40(2), btae069. https://doi.org/10.1093/BIOINFORMATICS/BTAE069 | |
dc.relation.references | van Hoek, M. L. (2014). Antimicrobial peptides in reptiles. Pharmaceuticals, 7(6), 723–756. https://doi.org/10.3390/PH7060723 | |
dc.relation.references | Van Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183(2), 258–264. https://doi.org/10.1007/BF00197797/METRICS | |
dc.relation.references | Velkov, T., Thompson, P. E., Azad, M. A. K., Roberts, K. D., & Bergen, P. J. (2019). History, chemistry and antibacterial spectrum. Advances in Experimental Medicine and Biology, 1145, 15–36. https://doi.org/10.1007/978-3-030-16373-0_3/ | |
dc.relation.references | Veltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics, 34(16), 2740–2747. https://doi.org/10.1093/BIOINFORMATICS/BTY179 | |
dc.relation.references | Vilcinskas, A. (2013). Evolutionary plasticity of insect immunity. Journal of Insect Physiology, 59(2), 123–129. https://doi.org/10.1016/J.JINSPHYS.2012.08.018 | |
dc.relation.references | Vishnepolsky, B., Grigolava, M., Managadze, G., Gabrielian, A., Rosenthal, A., Hurt, D. E., Tartakovsky, M., & Pirtskhalava, M. (2022). Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Briefings in Bioinformatics, 23(4), 1–11. https://doi.org/10.1093/BIB/BBAC233 | |
dc.relation.references | Vriens, K., Cammue, B. P. A., & Thevissen, K. (2014). Antifungal plant defensins: Mechanisms of action and production. Molecules, 19(8), 12280–12303. https://doi.org/10.3390/MOLECULES190812280 | |
dc.relation.references | Waglechner, N., Culp, E. J., & Wright, G. D. (2021). Ancient antibiotics, ancient resistance. EcoSal Plus, 9(2), eESP-0027-2020. https://doi.org/10.1128/ecosalplus.esp-0027-2020 | |
dc.relation.references | Wang, F., Qiao, L., Lv, X., Trivett, A., Yang, R., Oppenheim, J. J., Yang, D., & Zhang, N. (2016). Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine, 83, 53–60. https://doi.org/10.1016/J.CYTO.2016.03.015 | |
dc.relation.references | Wang, G. (2015). Improved methods for classification, prediction and design of antimicrobial peptides. Methods in Molecular Biology, 1268, 43–66. https://doi.org/10.1007/978-1-4939-2285-7_3 | |
dc.relation.references | Wang, G. (2020). Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics, 9(8), 491. https://doi.org/10.3390/ANTIBIOTICS9080491 | |
dc.relation.references | Wang, G., Li, X., & Wang, Z. (2016). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44, D1087–D1093. https://doi.org/10.1093/NAR/GKV1278 | |
dc.relation.references | Wang, G., Vaisman, I. I., & van Hoek, M. L. (2022). Machine Learning prediction of antimicrobial peptides. Methods in Molecular Biology, 2405, 1. https://doi.org/10.1007/978-1-0716-1855-4_1 | |
dc.relation.references | Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R. Y., Fiddyment, S., Speller, C., Hendy, J., Charlton, S., Luder, H. U., Salazar-García, D. C., Eppler, E., Seiler, R., Hansen, L. H., Castruita, J. A. S., Cappellini, E. (2014). Pathogens and host immunity in the ancient human oral cavity. Nature Genetics, 46(4), 336–344. https://doi.org/10.1038/ng.2906 | |
dc.relation.references | Wei, J., Hameed, M., Wang, X., Zhang, J., Guo, S., Anwar, M. N., Pang, L., Liu, K., Li, B., Shao, D., Qiu, Y., Zhong, D., Zhou, B., & Ma, Z. (2020). Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Research, 174, 104673. https://doi.org/10.1016/J.ANTIVIRAL.2019.104673 | |
dc.relation.references | Wei, Y., Wu, J., Chen, Y., Fan, K., Yu, X., Li, X., Zhao, Y., Li, Y., Lv, G., Song, G., Rong, X., Lin, C., Wang, H., Chen, X., Zhang, P., Han, C., Zu, H., Liu, W., Zhang, Y., Chen, M. (2023). Efficacy and safety of PL-5 (Peceleganan) spray for wound infections: A phase IIb randomized clinical trial. Annals of Surgery, 277(1), 43–49. https://doi.org/10.1097/SLA.0000000000005508 | |
dc.relation.references | Wimley, W. C. (2019). Application of synthetic molecular evolution to the discovery of antimicrobial peptides. Advances in Experimental Medicine and Biology, 1117, 241–255. https://doi.org/10.1007/978-981-13-3588-4_13 | |
dc.relation.references | Wright, G. D. (2014). Something old, something new: Revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 60(3), 147–154. https://doi.org/10.1139/CJM-2014-0063/ | |
dc.relation.references | Wu, J., Gao, B., & Zhu, S. (2014). The fungal defensin family enlarged. Pharmaceuticals, 7(8), 866–880. https://doi.org/10.3390/PH7080866 | |
dc.relation.references | Wurth, C., Guimard, N. K., & Hecht, M. H. (2002). Mutations that Reduce Aggregation of the Alzheimer’s Aβ42 Peptide: an Unbiased Search for the Sequence Determinants of Aβ Amyloidogenesis. Journal of Molecular Biology, 319(5), 1279–1290. https://doi.org/10.1016/S0022-2836(02)00399-6 | |
dc.relation.references | Xie, M., Liu, D., & Yang, Y. (2020). Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biology, 10(7), 200004. https://doi.org/10.1098/RSOB.200004 | |
dc.relation.references | Xu, J., Xu, X., Jiang, Y., Fu, Y., & Shen, C. (2024). Waste to resource: Mining antimicrobial peptides in sludge from metagenomes using machine learning. Environment International, 186, 108574. https://doi.org/10.1016/J.ENVINT.2024.108574 | |
dc.relation.references | Xu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760–1846. https://doi.org/10.1021/CR4006704/ASSET/CR4006704.FP.PNG_V03 | |
dc.relation.references | Yi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5882. https://doi.org/10.1007/S00253-014-5792-6 | |
dc.relation.references | Yin, L. M., Edwards, M. A., Li, J., Yip, C. M., & Deber, C. M. (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. The Journal of Biological Chemistry, 287(10), 7738. https://doi.org/10.1074/JBC.M111.303602 | |
dc.relation.references | Zahedifard, F., Lee, H., No, J. H., Salimi, M., Seyed, N., Asoodeh, A., & Rafati, S. (2020). Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Experimental Parasitology, 209, 107823. https://doi.org/10.1016/J.EXPPARA.2019.107823 | |
dc.relation.references | Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America, 84(15), 5449–5453. https://doi.org/10.1073/PNAS.84.15.5449 | |
dc.relation.references | Zhang, Q. Y., Yan, Z. Bin, Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 8(1), 48. https://doi.org/10.1186/S40779-021- 00343-2 | |
dc.relation.references | Zhao, H., Gan, T. X., Liu, X. D., Jin, Y., Lee, W. H., Shen, J. H., & Zhang, Y. (2008). Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides, 29(10), 1685–1691. https://doi.org/10.1016/J.PEPTIDES.2008.06.008 | |
dc.relation.references | Zhao, Y., Zhang, M., Qiu, S., Wang, J., Peng, J., Zhao, P., Zhu, R., Wang, H., Li, Y., Wang, K., Yan, W., & Wang, R. (2016). Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express, 6(1), 122. https://doi.org/10.1186/S13568-016-0295-8 | |
dc.relation.references | Zohra, T., Numan, M., Ikram, A., Salman, M., Khan, T., Din, M., Farooq, A., Amir, A., Ali, M., & Costa-De-Oliveira, S. (2021). Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 2021, 9(5), 954. https://doi.org/10.3390/MICROORGANISMS9050954 | |
dc.relation.references | Zou, J., Mercier, C., Koussounadis, A., & Secombes, C. (2007). Discovery of multiple betadefensin like homologues in teleost fish. Molecular Immunology, 44(4), 638–647. https://doi.org/10.1016/J.MOLIMM.2006.01.012 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.jel | Antibioticos | |
dc.subject.lemb | Peptidos | |
dc.subject.lemb | Aprendizaje automático (inteligencia artificial) | |
dc.subject.proposal | Péptidos antimicrobianos | spa |
dc.subject.proposal | Antimicrobial peptides | eng |
dc.subject.proposal | Metagenomas | spa |
dc.subject.proposal | Metagenomes | eng |
dc.subject.proposal | Bioinformática | spa |
dc.subject.proposal | Bioinformatics | eng |
dc.subject.proposal | Machine learning | |
dc.subject.proposal | Resistencia | spa |
dc.subject.proposal | Resistance | eng |
dc.subject.proposal | Sistema inmune innato | spa |
dc.subject.proposal | Innate immune system | eng |
dc.subject.proposal | Antibióticos | spa |
dc.subject.proposal | Antibiotics | eng |
dc.title | Predicción funcional de péptidos antimicrobianos en metagenomas de suelo y mantillo de bosques de la Amazonia Noroccidental | spa |
dc.title.translated | Functional prediction of antimicrobial peptides in soil and leaf litter metagenomes from the Northwestern Amazon | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Público general | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencias - Biotecnología
- Tamaño:
- 3.78 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: