Bioprospección de tejidos in vivo y cultivos de células in vitro de Alibertia patinoi
dc.contributor.advisor | Durango Restrepo, Diego Luis | |
dc.contributor.advisor | Orozco Sánchez, Fernando | |
dc.contributor.author | Chiquiza Montaño, Laura Natalia | |
dc.contributor.cvlac | Laura Natalia Chiquiza Montaño | spa |
dc.contributor.orcid | Chiquiza Montaño, Laura Natalia [0000-0002-9563-9610] | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2024-11-14T19:04:02Z | |
dc.date.available | 2024-11-14T19:04:02Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | La bioprospección en Colombia representa una oportunidad de desarrollo creciente. Plantas como el borojó han sido usadas por sus propiedades medicinales, atribuidas por conocimiento popular. Sin embargo, sus características de crecimiento requieren alternativas de obtención de metabolitos de interés. Este trabajo retoma los usos medicinales para evaluar algunos de ellos y estudiar la composición química de la planta que pueda explicar su potencial farmacéutico. Además, evalúa ese mismo potencial en sus cultivos de células en suspensión y bajo el efecto de elicitores estudiando compuestos presentes. Este estudio parte de una revisión de reportes previos de la especie Alibertia patinoi y otras especies del mismo género. Conocido por su aroma característico, se realizó un estudio de la composición de compuestos volátiles en el fruto teniendo en cuenta diferentes estados de maduración usando microextracción de fase sólida en el espacio de cabeza. Posteriormente, se evaluaron varias bioactividades referentes a algunas de las propiedades que se le han atribuido, en diferentes tejidos de la planta; teniendo en cuenta el extracto con actividad, se identificaron tentativamente algunos de sus compuestos usando cromatografía líquida y cromatografía de gasas ambas acopladas a espectrometría de masas. Adicionalmente, se aislaron algunos compuestos de diferentes partes de la planta y se identificaron usando resonancia magnética nuclear. Teniendo en cuenta las características de crecimiento y obtención de metabolitos de la planta, se consideró el cultivo de células en suspensión para evaluar algunas de estas bioactividades relacionadas a la planta y el uso de elicitores en este tipo de cultivos para estudiar los metabolitos presentes usando cromatografía de gases y cromatografía líquida. (Tomado de la fuente) | spa |
dc.description.abstract | Bioprospecting in Colombia represents a growing development opportunity. Plants such as borojó have been used for their supposed medicinal properties. However, its growth characteristics require alternatives to obtain metabolites of interest. This work takes the medicinal uses to evaluate some of them and study the chemical composition of the plant that can explain its pharmaceutical potential. Furthermore, it evaluates the same potential in its cell cultures and under elicitors effect by evaluating its compounds. This study is based on a review of previous reports of Alibertia patinoi and other species of the same genus with the same common name that generate confusion. Subsequently, several bioactivities were evaluated, related to properties attributed to the fruit, in different plant tissues and the extract with activity, some of its compounds were characterized using gas chromatography and liquid chromatography coupled to mass spectrometry. Additionally, a study of the composition of volatile compounds in the fruit was carried out taking into account the characteristic aroma in different stages of ripening using headspace solid phase microextraction. Several compounds were isolated from different parts of the plant and identified using nuclear magnetic resonance. Taking into account the characteristics of growth and obtaining metabolites of the plant, the culture of cells in suspension was considered to evaluate some of these bioactivities related to the plant and the use of elicitors in this type of cultures to study the metabolites present using gas chromatography and mass spectrometry- liquid chromatography. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.description.researcharea | Biotecnología Vegetal | spa |
dc.format.extent | 267 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87178 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Minambiente, “Política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos,” https://archivo.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/politica-nacional-de-biodiversidad, 2023 | spa |
dc.relation.references | D. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi: 10.3390/molecules200713422 | spa |
dc.relation.references | C. Cháves López, G. Mazzarrino, A. Rodríguez, J. Fernández-López, J. A. Pérez-Álvarez y M. Viuda-Martos, “Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America,” Ind Crops Prod, vol. 63, pp. 79–86, Jan. 2015, doi: 10.1016/j.indcrop.2014.10.047. | spa |
dc.relation.references | J. B. Calixto, “The role of natural products in modern drug discovery.,” An Academia Brasilera Ciencias, vol. 91, no. suppl 3, 2019, doi: 10.1590/0001-3765201920190105. | spa |
dc.relation.references | N. González-Jaramillo, N. Bailon-Moscoso, R. Duarte-Casar, y J. C. Romero-Benavides, “Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential,” SN Appl Sci, vol. 5, no. 1, p. 27, Jan. 2023, doi: 10.1007/s42452-022-05251-1. | spa |
dc.relation.references | L. Svetaz, “Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries,” J Ethnopharmacol, vol. 127, no. 1, pp. 137–158, Jan. 2010, doi: 10.1016/j.jep.2009.09.034. | spa |
dc.relation.references | V. Muñoz, “A search for natural bioactive compounds in Bolivia through a multidisciplinary approach,” J Ethnopharmacol, vol. 69, no. 2, pp. 127–137, Feb. 2000, doi: 10.1016/S0378-8741(99)00148-8. | spa |
dc.relation.references | D. Figueiredo de Santana Aquino, “Investigation of the antioxidant and hypoglycemiant properties of Alibertia edulis (L.C. Rich.) A.C. Rich. leaves,” J Ethnopharmacology, vol. 253, p. 112648, May 2020, doi: 10.1016/j.jep.2020.112648 | spa |
dc.relation.references | V. Cândida da Silva, “New Antifungal Terpenoid Glycosides from Alibertia edulis (Rubiaceae),” Helv Chim Acta, vol. 91, no. 7, pp. 1355–1362, Jul. 2008, doi: 10.1002/hlca.200890147 | spa |
dc.relation.references | R. S. Gallegos Olea, N. F. Roque, y V. da S. Bolzani, “Acylated flavonol glycosides and terpenoids from the leaves of Alibertia sessilis,” J. Braz. Chem. Soc, vol. 8, pp. 257–259, 1997. | spa |
dc.relation.references | F. Xu, “Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter,” Carbohydrates Polymers, vol. 151, pp. 364–372, Oct. 2016, doi: 10.1016/j.carbpol.2016.05.091 | spa |
dc.relation.references | F. Rabelo Rodrigues, A. de Souza Ramos, A. C. Fernandes Amaral, J. L. Pinto Ferreira, C. da Silva Carneiro y J. Rocha de Andrade Silva, “Evaluation of Amazon fruits: chemical and nutritional studies on Borojoa sorbilis,” J Sci Food Agric, vol. 98, no. 10, pp. 3943–3952, Aug. 2018, doi: 10.1002/jsfa.8917 | spa |
dc.relation.references | L. Peres et al., “Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. in the control of Plutella xylostella L. (Lepidoptera: Plutellidae),” Insects, vol. 8, no. 4, p. 125, Nov. 2017, doi: 10.3390/insects8040125 | spa |
dc.relation.references | V. D. S. Bolzani, L. M. V. Trevisa y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991 | spa |
dc.relation.references | C. M. Taylor, “Rubiacearum Americanarum Magna Hama Pars XXVIII: New Taxa, New Combinations, New Names, and Lectotypification for Several Species Found in Mexico and Central America,” Novon (St Louis), vol. 21, no. 1, pp. 133–148, Apr. 2011, doi: 10.3417/2009129. | spa |
dc.relation.references | J. Cuatrecasas, “Borojoa, un nuevo género de rubiáceas.,” Revista de la Academia Colombiana de Ciencias Exactas, Ffsicas y Naturales, vol. 7, pp. 474–477, 1950 | spa |
dc.relation.references | M. Ricker, J. H. Jessen, and D. C. Daly, “The case for Borojoa patinoi (rubiaceae) in the Chocó region, Colombia,” Econ Bot, vol. 51, no. 1, pp. 39–48, 1997 | spa |
dc.relation.references | L. H. Mosquera, G. Moraga, y N. Martínez-Navarrete, “Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder,” J Food Eng, vol. 97, no. 1, pp. 72–78, Mar. 2010, doi: 10.1016/j.jfoodeng.2009.09.017 | spa |
dc.relation.references | J. Asprilla-Perea, J. M. Díaz-Puente, and S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi: 10.1007/s13280-021-01624-9 | spa |
dc.relation.references | G. Salamanca Grosso, P. M, L. O, y Montoya Devia L, “Formulation of a functional beverage of high biological value based on Borojo (Borojoa patinoi Cuatr.),” Revista chilena de nutrición, vol. 37, 2010 | spa |
dc.relation.references | Instituto colombiano de bienestar familiar, “Tabla de composición de alimentos colombianos,” Universidad Nacional de Colombia, Bogotá, vol. 1, 2018 | spa |
dc.relation.references | M. Burbano Pulles, “Caracterización físico, química y bromatológica del Borojó (Borojoa patinoi) proveniente de la Parroquia de Chical de la Provincia del Carchi,” SATHIRI, no. 6, p. 79, Jul. 2018, doi: 10.32645/13906925.280 | spa |
dc.relation.references | R. Díaz Ocampo, C. Vallejo Torres, J. M. Franco Gómez, and L. García Zapateiro, “Caracterización bromatológica, fisicoquímica, microbiológica y reológica de la pulpa de Borojó (Borojoa patinoi Cuatrec),” Ciencia y Tecnología, vol. 5, no. 1, pp. 17–24, Jul. 2012, doi: 10.18779/cyt.v5i1.118 | spa |
dc.relation.references | L. H. Mosquera, H. A. Ríos, y P. S. Zapata, “Obtención de una materia prima con valor agregado mediante secado por aspersión a partir del fruto fresco de borojó (Borojoa patinoi Cuatrec.),” Rev Inst Univ Tecnológica Chocó, vol. 11, no. 23, pp. 5–10, 2005 | spa |
dc.relation.references | L. Ospina Medina, M. Pastrana, y W. Maya, “Extractos de frutas afrodisíacas como inhibidores de la movilidad espermática humana in vitro,” Revista cubana Plant Med, vol. 23, 2018. | spa |
dc.relation.references | I. Sotelo, N. Casas, y G. Camelo, “Borojó (Borojoa patinoi): fuente de polifenoles con actividad antimicrobiana,” Vitae, vol. 17, pp. 329–336, 2010 | spa |
dc.relation.references | C. Chaves-López et al., “Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro,” Food Funct, vol. 9, no. 5, pp. 2725–2734, 2018, doi: 10.1039/C7FO01542A | spa |
dc.relation.references | G. A. Hincapié Llanos, J. C. Palacio Piedrahita, S. Paez Sierra, C. E. Restrepo Flórez, y L. M. Vélez Acosta, “Elaboración de una bebida energizante a partir de borojó (Borojoa patinoi Cuatrec.),” Rev Lasallista Investig, vol. 9, no. 2, pp. 33–43, 2012 | spa |
dc.relation.references | L. M. Vélez Acosta, “Borojó, todo lo que debe saber sobre esta ‘superfruta,’” Revista I Alimentos | spa |
dc.relation.references | J. Asprilla-Perea, J. M. Díaz-Puente, y S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi: 10.1007/s13280-021-01624-9 | spa |
dc.relation.references | G. Camelo-Mendez y I. Sotelo-Díaz, “Effect of storage conditions on color, polyphenol content and antioxidant capacity of Borojoa patinoi Cuatrecasas beverage,” Bol Latinoamerica Caribe Plantas Med Aromat, vol. 11, no. 2, pp. 196–205, Jan. 2012 | spa |
dc.relation.references | M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, y K. R. Pardesi, “Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,” Front Microbiol, vol. 10, Apr. 2019, doi: 10.3389/fmicb.2019.00539 | spa |
dc.relation.references | F. Buccioni, “Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study,” Microorganisms, vol. 10, no. 5, p. 920, Apr. 2022, doi: 10.3390/microorganisms10050920 | spa |
dc.relation.references | J. D. Pitout, “Multiresistant Enterobacteriaceae: new threat of an old problem,” Expert Rev Anti Infect Ther, vol. 6, no. 5, pp. 657–669, Oct. 2008, doi: 10.1586/14787210.6.5.657 | spa |
dc.relation.references | T.-K. Yeh, H.-J. Lin, P.-Y. Liu, J.-H. Wang, y P.-R. Hsueh, “Antibiotic resistance in Enterobacter hormaechei,” Int J Antimicrob Agents, vol. 60, no. 4, p. 106650, Oct. 2022, doi: 10.1016/j.ijantimicag.2022.106650 | spa |
dc.relation.references | H. Wang, “Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions,” Front Sustain Food Syst, vol. 7, Apr. 2023, doi: 10.3389/fsufs.2023.1179835 | spa |
dc.relation.references | M. P. Falomir, H. Rico, y D. Gozalbo, “Enterobacter and Klebsiella Species Isolated from Fresh Vegetables Marketed in Valencia (Spain) and Their Clinically Relevant Resistances to Chemotherapeutic Agents,” Foodborne Pathog Dis, vol. 10, no. 12, pp. 1002–1007, Dec. 2013, doi: 10.1089/fpd.2013.1552 | spa |
dc.relation.references | J. Gil-Serna, M. García-Díaz, C. Vázquez, M. T. González-Jaén, y B. Patiño, “Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins,” Food Microbiology, vol. 82, pp. 240–248, Sep. 2019, doi: 10.1016/j.fm.2019.02.013. | spa |
dc.relation.references | G. S. Patten, M. Y. Abeywardena, y L. E. Bennett, “Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families,” Crit Rev Food Sci Nutr, vol. 56, no. 2, pp. 181–214, Jan. 2016, doi: 10.1080/10408398.2011.651176 | spa |
dc.relation.references | F. H. Messerli, S. Bangalore, C. Bavishi, y S. F. Rimoldi, “Angiotensin-Converting Enzyme Inhibitors in Hypertension,” J Am Coll Cardiol, vol. 71, no. 13, pp. 1474–1482, Apr. 2018, doi: 10.1016/j.jacc.2018.01.058 | spa |
dc.relation.references | Y.-W. Liu, M.-T. Liong, y Y.-C. Tsai, “New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis,” Journal of Microbiology, vol. 56, no. 9, pp. 601–613, Sep. 2018, doi: 10.1007/s12275-018-8079-2 | spa |
dc.relation.references | J. B. Molina-Hernandez, “The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death,” Sci Rep, vol. 11, no. 1, p. 21557, Nov. 2021, doi: 10.1038/s41598-021-00545-7 | spa |
dc.relation.references | J. de S. Aquino, K. S. Batista, F. N. D. D. Menezes, P. P. Lins, J. A. de S. Gomes, y L. A. da Silva, “Models to Evaluate the Prebiotic Potential of Foods,” in Functional Food - Improve Health through Adequate Food, InTech, 2017. doi: 10.5772/intechopen.69174 | spa |
dc.relation.references | M. Wang et al., “Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum,” LWT, vol. 154, p. 112572, Jan. 2022, doi: 10.1016/j.lwt.2021.112572 | spa |
dc.relation.references | L. L. Antunes, A. L. Back, M. L. B. C. Kossar, A. G. Spessato, E. Colla, y D. A. Drunkler, “Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods,” Food Chem, vol. 404, p. 134539, Mar. 2023, doi: 10.1016/j.foodchem.2022.134539 | spa |
dc.relation.references | D. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi: 10.1016/j.fbio.2023.102808 | spa |
dc.relation.references | T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi: 10.1186/1471-2105-11-395. | spa |
dc.relation.references | Y. Cui et al., “AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria,” Food Microbiol, vol. 29, no. 1, pp. 80–87, Feb. 2012, doi: 10.1016/j.fm.2011.08.019 | spa |
dc.relation.references | L. A. Clifton, “Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models,” Langmuir, vol. 31, no. 1, pp. 404–412, Jan. 2015, doi: 10.1021/la504407v | spa |
dc.relation.references | W. Mędrzycka-Dąbrowska, S. Lange, K. Zorena, S. Dąbrowski, D. Ozga, y L. Tomaszek, “Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review,” J Clin Med, vol. 10, no. 10, p. 2067, May 2021, doi: 10.3390/jcm10102067 | spa |
dc.relation.references | F. Maggio, “Effectiveness of essential oils against dual-species biofilm of Listeria monocytogenes and Pseudomonas fluorescens in a Ricotta-based model system,” Ital J Food Saf, vol. 12, no. 1, Mar. 2023, doi: 10.4081/ijfs.2023.11048 | spa |
dc.relation.references | L. L. Herman, S. A. Padala, I. Ahmed, y K. Bashir, Angiotensin-Converting Enzyme Inhibitors (ACEI). 2023 | spa |
dc.relation.references | H.-J. Park, J.-Y. Kim, H. S. Kim, S.-H. Lee, J. S. Jang, y M. H. Lee, “Synergistic effect of fruit–seed mixed juice on inhibition of angiotensin I-converting enzyme and activation of NO production in EA.hy926 cells,” Food Sci Biotechnol, vol. 28, no. 3, pp. 881–893, Jun. 2019, doi: 10.1007/s10068-018-0512-0 | spa |
dc.relation.references | L. Actis-Goretta, J. I. Ottaviani, y C. G. Fraga, “Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods,” J Agric Food Chem, vol. 54, no. 1, pp. 229–234, Jan. 2006, doi: 10.1021/jf052263o | spa |
dc.relation.references | D. M. A. Saulnier, D. Molenaar, W. M. de Vos, G. R. Gibson, y S. Kolida, “Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays,” Appl Environ Microbiol, vol. 73, no. 6, pp. 1753–1765, Mar. 2007, doi: 10.1128/AEM.01151-06 | spa |
dc.relation.references | Q.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi: 10.3390/foods12163011 | spa |
dc.relation.references | R. Álvarez, H. Araya, R. Navarro-Lisboa y C. Lopez de Dicastillo, “Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method,” Food Technol Biotechnol, vol. 54, no. 4, 2016, doi: 10.17113/ftb.54.04.16.4497 | spa |
dc.relation.references | H. A. R. Suleria, C. J. Barrow, y F. R. Dunshea, “Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels,” Foods, vol. 9, no. 9, p. 1206, Sep. 2020, doi: 10.3390/foods9091206 | spa |
dc.relation.references | I. Gutiérrez-del-Río, J. Fernández, y F. Lombó, “Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols,” Int J Antimicrob Agents, vol. 52, no. 3, pp. 309–315, Sep. 2018, doi: 10.1016/j.ijantimicag.2018.04.024 | spa |
dc.relation.references | E. Sousa y M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019. | spa |
dc.relation.references | B. Dinda, S. Debnath, y R. Banik, “Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4,” Chem Pharm Bull (Tokyo), vol. 59, no. 7, pp. 803–833, 2011, doi: 10.1248/cpb.59.803 | spa |
dc.relation.references | C. Wang et al., “Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics,” Molecules, vol. 25, no. 2, p. 287, Jan. 2020, doi: 10.3390/molecules25020287 | spa |
dc.relation.references | D. D. Orhan, B. Özçelik, S. Özgen, y F. Ergun, “Antibacterial, antifungal, and antiviral activities of some flavonoids,” Microbiol Res, vol. 165, no. 6, pp. 496–504, Aug. 2010, doi: 10.1016/j.micres.2009.09.002 | spa |
dc.relation.references | T. H. Grenby y J. Colley, “Dental effects of xylitol compared with other carbohydrates and polyols in the diet of laboratory rats,” Arch Oral Biol, vol. 28, no. 8, pp. 745–758, 1983, doi: 10.1016/0003-9969(83)90111-5 | spa |
dc.relation.references | D. Tuncer, A. Onen, y A. R. Yazici, “Effect of chewing gums with xylitol, sorbitol and xylitol-sorbitol on the remineralization and hardness of initial enamel lesions in situ.,” Dent Res J (Isfahan), vol. 11, no. 5, pp. 537–43, Sep. 2014 | spa |
dc.relation.references | J.-L. Zhang, J. Yao, J.-N. Zhuge, y Y.-J. Zhang, “[Antibacterial activity of erythritol on periodontal pathogen].,” Shanghai Kou Qiang Yi Xue, vol. 28, no. 4, pp. 362–367, Aug. 2019 | spa |
dc.relation.references | V. Loimaranta, D. Mazurel, D. Deng, y E. Söderling, “Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans,” BMC Microbiol, vol. 20, no. 1, p. 184, Dec. 2020, doi: 10.1186/s12866-020-01867-8 | spa |
dc.relation.references | T. O. Ajiboye, “Involvement of oxidative stress in protocatechuic acid‐mediated bacterial lethality,” Microbiologyopen, vol. 6, no. 4, Aug. 2017, doi: 10.1002/mbo3.472 | spa |
dc.relation.references | N. Silva, S. Alves, A. Gonçalves, J. S. Amaral, y P. Poeta, “Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria,” Food Science and Technology International, vol. 19, no. 6, pp. 503–510, Dec. 2013, doi: 10.1177/1082013212442198 | spa |
dc.relation.references | S. Kakkar y S. Bais, “A Review on Protocatechuic Acid and Its Pharmacological Potential,” ISRN Pharmacol, vol. 2014, pp. 1–9, Mar. 2014, doi: 10.1155/2014/952943 | spa |
dc.relation.references | M. Kępa, “Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains,” Biomed Res Int, vol. 2018, pp. 1–9, Jul. 2018, doi: 10.1155/2018/7413504. | spa |
dc.relation.references | V. D. S. Bolzani, L. M. V. Trevisa, y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991 | spa |
dc.relation.references | N. C. C. Carvalho, O. S. Monteiro, C. Q. da Rocha, J. K. R. da Silva, y J. G. S. Maia, “Phenolic Compounds and Antioxidant Properties of Puruí (Alibertia edulis, Rubiaceae), an Edible Dark Purple Fruit from the Brazilian Amazon,” Nutraceuticals, vol. 3, no. 4, pp. 529–539, Nov. 2023, doi: 10.3390/nutraceuticals3040038 | spa |
dc.relation.references | P.-G. Li et al., “Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats,” Hypertension Research, vol. 28, no. 4, pp. 369–377, 2005, doi: 10.1291/hypres.28.369 | spa |
dc.relation.references | W. Londoño Jaramillo, “Manejo post-cosecha y comercialización de Borojó. Programa post-cosecha.” Convenio SENA - Reino Unido, 1999. Acceso: Jan. 22, 2024. [Online]. Disponible: https://hdl.handle.net/11404/7009 | spa |
dc.relation.references | C. Li, “Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing,” Food Chem, vol. 355, p. 129685, Sep. 2021, doi: 10.1016/j.foodchem.2021.129685. | spa |
dc.relation.references | Y. Wang, “Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS,” Food Chem, vol. 116, no. 1, pp. 356–364, Sep. 2009, doi: 10.1016/j.foodchem.2009.02.004 | spa |
dc.relation.references | H. Deng, “Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars,” Front Plant Sci, vol. 13, Dec. 2022, doi: 10.3389/fpls.2022.1050289 | spa |
dc.relation.references | H. Van Den Dool y D. J. Kratz, “A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography,” J Chromatogr A, vol. 11, pp. 463–471, 1963, doi: 10.1016/S0021-9673(01)80947-X. | spa |
dc.relation.references | J. Kreissl, V. Mall, P. Steinhaus, y M. Steinhaus, “Leibniz-LSB@TUM Odorant Database. | spa |
dc.relation.references | N. Reyes-Garcés, “Advances in Solid Phase Microextraction and Perspective on Future Directions,” Anal Chem, vol. 90, no. 1, pp. 302–360, Jan. 2018, doi: 10.1021/acs.analchem.7b04502 | spa |
dc.relation.references | J.-F. Cavalli, X. Fernandez, L. Lizzani-Cuvelier, y A.-M. Loiseau, “Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils,” J Agric Food Chem, vol. 51, no. 26, pp. 7709–7716, Dec. 2003, doi: 10.1021/jf034834n | spa |
dc.relation.references | I. Eduardo, G. Chietera, D. Bassi, L. Rossini, y A. Vecchietti, “Identification of key odor volatile compounds in the essential oil of nine peach accessions,” J Sci Food Agric, vol. 90, no. 7, pp. 1146–1154, May 2010, doi: 10.1002/jsfa.3932 | spa |
dc.relation.references | R. R. Jetti, E. Yang, A. Kurnianta, C. Finn, y M. C. Qian, “Quantification of Selected Aroma‐Active Compounds in Strawberries by Headspace Solid‐Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis,” J Food Sci, vol. 72, no. 7, Sep. 2007, doi: 10.1111/j.1750-3841.2007.00445.x. | spa |
dc.relation.references | K. Matsui, “Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism,” Curr Opin Plant Biol, vol. 9, no. 3, pp. 274–280, Jun. 2006, doi: 10.1016/j.pbi.2006.03.002 | spa |
dc.relation.references | . G. Defilippi, D. Manríquez, K. Luengwilai, y M. González-Agüero, “Chapter 1 Aroma Volatiles,” 2009, pp. 1–37. doi: 10.1016/S0065-2296(08)00801-X | spa |
dc.relation.references | D. Holland, “Developmental and Varietal Differences in Volatile Ester Formation and Acetyl-CoA: Alcohol Acetyl Transferase Activities in Apple (Malus domestica Borkh.) Fruit,” J Agric Food Chem, vol. 53, no. 18, pp. 7198–7203, Sep. 2005, doi: 10.1021/jf050519k | spa |
dc.relation.references | H. Yao, “Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening,” Food Research International, vol. 143, p. 110330, May 2021, doi: 10.1016/j.foodres.2021.110330 | spa |
dc.relation.references | M. El Hadi, F.-J. Zhang, F.-F. Wu, C.-H. Zhou, y J. Tao, “Advances in Fruit Aroma Volatile Research,” Molecules, vol. 18, no. 7, pp. 8200–8229, Jul. 2013, doi: 10.3390/molecules18078200 | spa |
dc.relation.references | R. G. Berger, Flavours y Fragrances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-49339-6. | spa |
dc.relation.references | S. A. Goff y H. J. Klee, “Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?,” Science (1979), vol. 311, no. 5762, pp. 815–819, Feb. 2006, doi: 10.1126/science.1112614 | spa |
dc.relation.references | S. K. Wendakoon, Y. Ueda, Y. Imahori, y M. Ishimaru, “Effect of short‐term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas,” J Sci Food Agric, vol. 86, no. 10, pp. 1475–1480, Aug. 2006, doi: 10.1002/jsfa.2518. | spa |
dc.relation.references | J. A. Pino y J. Mesa, “Contribution of volatile compounds to mango (Mangifera indica L.) aroma,” Flavour Fragr J, vol. 21, no. 2, pp. 207–213, Mar. 2006, doi: 10.1002/ffj.1703 | spa |
dc.relation.references | Y. Tokitomo, M. Steinhaus, A. Buttner, y P. Schieberle, “Odor-Active Constituents in Fresh Pineapple (Ananas comosus [L.] Merr.) by Quantitative and Sensory Evaluation,” Biosci Biotechnol Biochem, vol. 69, no. 7, pp. 1323–1330, Jan. 2005, doi: 10.1271/bbb.69.1323. | spa |
dc.relation.references | X. Song, “Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS,” LWT, vol. 184, p. 115011, Jul. 2023, doi: 10.1016/j.lwt.2023.115011 | spa |
dc.relation.references | Q. Wu et al., “Effect of solvent extraction on the key aroma components of Tamarindus indica L. pulp,” Journal of Food Composition and Analysis, vol. 123, p. 105613, Oct. 2023, doi: 10.1016/j.jfca.2023.105613 | spa |
dc.relation.references | . Oliveira, P. Guedes de Pinho, R. Malheiro, P. Baptista, y J. A. Pereira, “Volatile profile of Arbutus unedo L. fruits through ripening stage,” Food Chem, vol. 128, no. 3, pp. 667–673, Oct. 2011, doi: 10.1016/j.foodchem.2011.03.084 | spa |
dc.relation.references | M. Abd El-Mageed, “Development of volatile compounds of avocado and casimiroa during fruit maduration,” Arab Universities Journal of Agricultural Sciences, vol. 15, no. 1, pp. 89–100, Mar. 2007, doi: 10.21608/ajs.2007.14626 | spa |
dc.relation.references | P. Fuggate, C. Wongs-Aree, S. Noichinda, y S. Kanlayanarat, “Quality and volatile attributes of attached and detached ‘Pluk Mai Lie’ papaya during fruit ripening,” Sci Hortic, vol. 126, no. 2, pp. 120–129, Sep. 2010, doi: 10.1016/j.scienta.2010.06.019 | spa |
dc.relation.references | E. J. F. Souleyre, “Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit,” Plant Physiol, vol. 190, no. 2, pp. 1100–1116, Sep. 2022, doi: 10.1093/plphys/kiac316 | spa |
dc.relation.references | Z. Guler y Y. E. Sekerli, “Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages,” Academic Food Journal, vol. 11, no. 2, pp. 6–13, 2013. | spa |
dc.relation.references | O. Nevo y K. Valenta, “The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal,” Int J Primatol, vol. 39, no. 3, pp. 338–355, Jun. 2018, doi: 10.1007/s10764-018-0021-2. | spa |
dc.relation.references | O. Nevo, “Fruit defense syndromes: the independent evolution of mechanical and chemical defenses,” Evol Ecol, vol. 31, no. 6, pp. 913–923, Dec. 2017, doi: 10.1007/s10682-017-9919-y. | spa |
dc.relation.references | O. Nevo y M. Ayasse, “Fruit Scent: Biochemistry, Ecological Function, and Evolution,” 2020, pp. 403–425. doi: 10.1007/978-3-319-96397-6_33. | spa |
dc.relation.references | J.-L. Wolfender, G. Marti, A. Thomas, y S. Bertrand, “Current approaches and challenges for the metabolite profiling of complex natural extracts,” J Chromatogr A, vol. 1382, pp. 136–164, Feb. 2015, doi: 10.1016/j.chroma.2014.10.091. | spa |
dc.relation.references | C. Persson y P. G. Delprete, The Alibertia Group (Gardenieae–Rubiaceae), Part 1 (Agouticarpa, Alibertia, Cordiera, Melanopsidium, Riodocea, and Stenosepala). 2017. [Online]. Available: https://www.nhbs.com/flora-neotropica-volume-119-the-alibertia-group-gardenieae-rubiaceae-part-1-agouticarpa-alibertia-cordiera-melanopsidium-riodocea-and-stenosepala-book | spa |
dc.relation.references | A. C. Estupiñán-González y N. D. Jiménez-Escobar, “Uso de las plantas por grupos campesinos en la franja tropical del parque nacional natural Jaramillo (Córdoba, Colombia),” Caldasia, vol. 32, no. 1, pp. 21–38, 2010 | spa |
dc.relation.references | M. C. M. Young, M. R. Braga, S. M. C. Dietrich, H. E. Gottlieb, L. M. V. Trevisan, y V. D. S. Bolzani, “Fungitoxic non-glycosidic iridoids from Alibertia macrophylla,” Phytochemistry, vol. 31, no. 10, pp. 3433–3435, Oct. 1992, doi: 10.1016/0031-9422(92)83701-Y | spa |
dc.relation.references | A. Nahrstedt, J. Rockenbach, y V. Wray, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the Rubiaceae,” Phytochemistry, vol. 29, pp. 375–378, Aug. 1995 | spa |
dc.relation.references | I. A. Neri-Numa et al., “Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids,” Food Research International, vol. 134, p. 109252, Aug. 2020, doi: 10.1016/j.foodres.2020.109252. | spa |
dc.relation.references | S.-J. Kim, K.-M. Kim, J. Park, J.-H. Kwak, Y. S. Kim, y S.-M. Lee, “Geniposidic acid protects against d-galactosamine and lipopolysaccharide-induced hepatic failure in mice,” J Ethnopharmacol, vol. 146, no. 1, pp. 271–277, Mar. 2013, doi: 10.1016/j.jep.2012.12.042 | spa |
dc.relation.references | C. Wang et al., “Iridoids and sfingolipids from Hedyotis diffusa,” Fitoterapia, vol. 124, pp. 152–159, Jan. 2018, doi: 10.1016/j.fitote.2017.11.004 | spa |
dc.relation.references | Y. Wang et al., “Systematic Separation and Purification of Iridoid Glycosides and Crocetin Derivatives from Gardenia jasminoides Ellis by High-speed Counter-current Chromatography,” Phytochemical Analysis, vol. 26, no. 3, pp. 202–208, May 2015, doi: 10.1002/pca.2553 | spa |
dc.relation.references | R. Buathong et al., “Uncommon fatty acids, Iridoids and other secondary metabolites from the medicinal plant species Ixora cibdela Craib (Rubiaceae),” Phytochem Lett, vol. 33, pp. 77–80, Oct. 2019, doi: 10.1016/j.phytol.2019.07.011 | spa |
dc.relation.references | . Takeda, H. Nishimura, y H. Inouye, “Two new iridoid glucosides from Ixora chinensis,” Phytochemistry, vol. 14, pp. 2647–2650, Feb. 1975 | spa |
dc.relation.references | L. J. El-Naggar y J. L. Beal, “Iridoids. A Review,” J Nat Prod, vol. 43, no. 6, pp. 649–707, Nov. 1980, doi: 10.1021/np50012a001 | spa |
dc.relation.references | Y. Takeda, H. Nishimura, y H. Inouye, “Studies on monoterpene glucosides and related natural products. XXXII. Iridoid glucosides of Tarenna kotoensis var. gyokushinka.,” Chem Pharm Bull (Tokyo), vol. 24, no. 6, pp. 1216–1218, 1976, doi: 10.1248/cpb.24.1216 | spa |
dc.relation.references | D. F. de Santana Aquino et al., “Alibertia edulis (L.C. Rich.) A.C. Rich – A potent diuretic arising from Brazilian indigenous species,” J Ethnopharmacol, vol. 196, pp. 193–200, Jan. 2017, doi: 10.1016/j.jep.2016.12.024. | spa |
dc.relation.references | W. M. Abdel-Mageed, E. Y. Backheet, A. A. Khalifa, Z. Z. Ibraheim, y S. A. Ross, “Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis,” Fitoterapia, vol. 83, no. 3, pp. 500–507, Apr. 2012, doi: 10.1016/j.fitote.2011.12.025 | spa |
dc.relation.references | M. Singh et al., “Isolation of phytochemicals from Dolichandrone atrovirens followed by semisynthetic modification of ixoside via azomethine ylide cycloaddition; computational approach towards chemo-selection,” Nat Prod Res, vol. 37, no. 13, pp. 2215–2224, Jul. 2023, doi: 10.1080/14786419.2022.2037084. | spa |
dc.relation.references | D. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi: 10.3390/molecules200713422 | spa |
dc.relation.references | . Bano, T. A. Qadri, Mahnoor, y N. Khan, “Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress,” South African Journal of Botany, vol. 159, pp. 98–109, Aug. 2023, doi: 10.1016/j.sajb.2023.05.049. | spa |
dc.relation.references | T. Wu, S. M. Kerbler, A. R. Fernie, y Y. Zhang, “Plant cell cultures as heterologous bio-factories for secondary metabolite production,” Plant Commun, vol. 2, no. 5, p. 100235, Sep. 2021, doi: 10.1016/j.xplc.2021.100235. | spa |
dc.relation.references | S. S. Arya, J. E. Rookes, D. M. Cahill, y S. K. Lenka, “Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories,” Biotechnol Adv, vol. 45, p. 107635, Dec. 2020, doi: 10.1016/j.biotechadv.2020.107635. | spa |
dc.relation.references | R. Eibl, P. Meier, I. Stutz, D. Schildberger, T. Hühn, y D. Eibl, “Plant cell culture technology in the cosmetics and food industries: current state and future trends,” Appl Microbiol Biotechnol, vol. 102, no. 20, pp. 8661–8675, Oct. 2018, doi: 10.1007/s00253-018-9279-8 | spa |
dc.relation.references | G. Guerriero et al., “Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists,” Genes (Basel), vol. 9, no. 6, p. 309, Jun. 2018, doi: 10.3390/genes9060309 | spa |
dc.relation.references | M. Davey, “Secondary Metabolism in Plant Cell Cultures,” in Encyclopedia of Applied Plant Sciences, Elsevier, 2017, pp. 462–467. doi: 10.1016/B978-0-12-394807-6.00146-5. | spa |
dc.relation.references | Y. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi: 10.1016/j.scitotenv.2021.151990 | spa |
dc.relation.references | S. Karuppusamy, “A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures,” Journal of medicinal plants research, vol. 3, no. 13, pp. 1222–1239, 2009 | spa |
dc.relation.references | H. N. Murthy, E.-J. Lee, y K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7 | spa |
dc.relation.references | E. A. Motolinía-Alcántara, C. O. Castillo-Araiza, M. Rodríguez-Monroy, A. Román-Guerrero, y F. Cruz-Sosa, “Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors,” Plants, vol. 10, no. 12, p. 2762, Dec. 2021, doi: 10.3390/plants10122762 | spa |
dc.relation.references | M. Takahashi y H. Aoyagi, “Effect of intermittent opening of breathable culture plugs and aeration of headspace on the structure of microbial communities in shake-flask culture,” J Biosci Bioeng, vol. 126, no. 1, pp. 96–101, Jul. 2018, doi: 10.1016/j.jbiosc.2018.01.009 | spa |
dc.relation.references | S. T. Häkkinen et al., “Plant cell cultures as food—aspects of sustainability and safety,” Plant Cell Rep, vol. 39, no. 12, pp. 1655–1668, Dec. 2020, doi: 10.1007/s00299-020-02592-2. | spa |
dc.relation.references | A. C. Alvarez-Yela, L. N. Chiquiza-Montaño, R. Hoyos, y F. Orozco-Sánchez, “Rheology and mixing analysis of plant cell cultures (Azadirachta indica, Borojoa patinoi and Thevetia peruviana) in shake flasks,” Biochem Eng J, vol. 114, 2016, doi: 10.1016/j.bej.2016.06.019 | spa |
dc.relation.references | A. Scroccarello et al., “Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger,” Colloids Surf B Biointerfaces, vol. 199, p. 111533, Mar. 2021, doi: 10.1016/j.colsurfb.2020.111533 | spa |
dc.relation.references | D. Pan, Y. Luo, y M. Tanokura, “Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004,” Food Chem, vol. 91, no. 1, pp. 123–129, Jun. 2005, doi: 10.1016/j.foodchem.2004.05.055 | spa |
dc.relation.references | D. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi: 10.1016/j.fbio.2023.102808 | spa |
dc.relation.references | L.-F. Nothias et al., “Feature-based molecular networking in the GNPS analysis environment,” Nat Methods, vol. 17, no. 9, pp. 905–908, Sep. 2020, doi: 10.1038/s41592-020-0933-6. | spa |
dc.relation.references | M. Wang et al., “Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.,” Nat Biotechnol, vol. 34, no. 8, pp. 828–837, Aug. 2016, doi: 10.1038/nbt.3597 | spa |
dc.relation.references | D. Petras et al., “GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser,” Nat Methods, vol. 19, no. 2, pp. 134–136, Feb. 2022, doi: 10.1038/s41592-021-01339-5 | spa |
dc.relation.references | T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi: 10.1186/1471-2105-11-395 | spa |
dc.relation.references | H. Horai et al., “MassBank: a public repository for sharing mass spectral data for life sciences,” Journal of Mass Spectrometry, vol. 45, no. 7, pp. 703–714, Jul. 2010, doi: 10.1002/jms.1777. | spa |
dc.relation.references | P. Shannon et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi: 10.1101/gr.1239303. | spa |
dc.relation.references | C. W. T. Lee y M. L. Shuler, “The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells,” Biotechnol Bioeng, vol. 67, no. 1, pp. 61–71, Jan. 2000, doi: 10.1002/(SICI)1097 | spa |
dc.relation.references | K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi: 10.1007/BF00269047. | spa |
dc.relation.references | H. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7. | spa |
dc.relation.references | S. Werner, R. W. Maschke, D. Eibl, and R. Eibl, “Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products,” 2018, pp. 413–432. doi: 10.1007/978-3-319-54600-1_6. | spa |
dc.relation.references | M. I. Georgiev, J. Weber, and A. Maciuk, “Bioprocessing of plant cell cultures for mass production of targeted compounds,” Appl Microbiol Biotechnol, vol. 83, no. 5, pp. 809–823, Jul. 2009, doi: 10.1007/s00253-009-2049-x. | spa |
dc.relation.references | P. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi: 10.1016/B978-0-12-812689-9.00009-1. | spa |
dc.relation.references | F. Bourgaud, A. Gravot, S. Milesi, and E. Gontier, “Production of plant secondary metabolites: a historical perspective,” Plant Science, vol. 161, no. 5, pp. 839–851, Oct. 2001, doi: 10.1016/S0168-9452(01)00490-3 | spa |
dc.relation.references | . Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi: 10.1186/s40659-019-0246-3. | spa |
dc.relation.references | S. Chung, V. Nguyen, Y. L. Lin, L. Kamen, and A. Song, “Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays,” J Immunol Methods, vol. 447, pp. 37–46, Aug. 2017, doi: 10.1016/j.jim.2017.04.005. | spa |
dc.relation.references | M. Ghasemi, T. Turnbull, S. Sebastian, and I. Kempson, “The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis,” Int J Mol Sci, vol. 22, no. 23, p. 12827, Nov. 2021, doi: 10.3390/ijms222312827 | spa |
dc.relation.references | J. C. Stockert, R. W. Horobin, L. L. Colombo, and A. Blázquez-Castro, “Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives,” Acta Histochem, vol. 120, no. 3, pp. 159–167, Apr. 2018, doi: 10.1016/j.acthis.2018.02.005. | spa |
dc.relation.references | T. J. Mead and V. Lefebvre, “Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections,” 2014, pp. 233–243. doi: 10.1007/978-1-62703-989-5_17. | spa |
dc.relation.references | C. Chaves-López, R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi, “Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk,” Int J Food Microbiol, vol. 159, no. 1, pp. 39–46, Sep. 2012, doi: 10.1016/j.ijfoodmicro.2012.07.028 | spa |
dc.relation.references | J. Wu, W. Liao, and C. C. Udenigwe, “Revisiting the mechanisms of ACE inhibitory peptides from food proteins,” Trends Food Sci Technol, vol. 69, pp. 214–219, Nov. 2017, doi: 10.1016/j.tifs.2017.07.011. | spa |
dc.relation.references | L. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules, vol. 24, no. 20, p. 3770, Oct. 2019, doi: 10.3390/molecules24203770 | spa |
dc.relation.references | H.-L. Alakomi, E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander, “Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane,” Appl Environ Microbiol, vol. 66, no. 5, pp. 2001–2005, May 2000, doi: 10.1128/AEM.66.5.2001-2005.2000 | spa |
dc.relation.references | Q.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi: 10.3390/foods12163011 | spa |
dc.relation.references | M. E. Terzioğlu and İ. Bakirci, “Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture,” Probiotics Antimicrob Proteins, Jul. 2023, doi: 10.1007/s12602-023-10123-0. | spa |
dc.relation.references | H. Fan, H. Liu, Y. Zhang, S. Zhang, T. Liu, and D. Wang, “Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development,” Journal of Future Foods, vol. 2, no. 2, pp. 143–159, Jun. 2022, doi: 10.1016/j.jfutfo.2022.03.003 | spa |
dc.relation.references | A. Durak, B. Baraniak, A. Jakubczyk, and M. Świeca, “Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds,” Food Chem, vol. 141, no. 3, pp. 2177–2183, Dec. 2013, doi: 10.1016/j.foodchem.2013.05.012 | spa |
dc.relation.references | A. Kaur, B. A. Kehinde, P. Sharma, D. Sharma, and S. Kaur, “Recently isolated food-derived antihypertensive hydrolysates and peptides: A review,” Food Chem, vol. 346, p. 128719, Jun. 2021, doi: 10.1016/j.foodchem.2020.128719. | spa |
dc.relation.references | N. Ciau-Solís, W. Rodríguez-Canto, L. Fernández-Martínez, M. Sandoval-Peraza, L. Chel-Guerrero, and D. Betancur-Ancona, “Inhibitory activity of Angiotensin-I converting enzyme (ACE-I) from partially purified Phaseolus lunatus peptide fractions,” Process Biochemistry, Feb. 2024, doi: 10.1016/j.procbio.2024.01.022. | spa |
dc.relation.references | E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi: 10.5586/asbp.3638. | spa |
dc.relation.references | L. J. McGaw, A. K. Jäger, and J. van Staden, “Antibacterial effects of fatty acids and related compounds from plants,” South African Journal of Botany, vol. 68, no. 4, pp. 417–423, Dec. 2002, doi: 10.1016/S0254-6299(15)30367-7. | spa |
dc.relation.references | G. Casillas-Vargas et al., “Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents,” Prog Lipid Res, vol. 82, p. 101093, Apr. 2021, doi: 10.1016/j.plipres.2021.101093 | spa |
dc.relation.references | B. H. Kallipolitis, “How can naturally occurring fatty acids neutralize Listeria ?,” Future Microbiol, vol. 12, no. 14, pp. 1239–1241, Nov. 2017, doi: 10.2217/fmb-2017-0176 | spa |
dc.relation.references | V. S. Thibane, J. L. F. Kock, R. Ells, P. W. J. van Wyk, and C. H. Pohl, “Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis,” Mar Drugs, vol. 8, no. 10, pp. 2597–2604, Oct. 2010, doi: 10.3390/md8102597. | spa |
dc.relation.references | C. Borreby, E. M. S. Lillebæk, and B. H. Kallipolitis, “Anti-infective activities of long-chain fatty acids against foodborne pathogens,” FEMS Microbiol Rev, vol. 47, no. 4, Jul. 2023, doi: 10.1093/femsre/fuad037. | spa |
dc.relation.references | C. Altieri, D. Cardillo, A. Bevilacqua, and M. Sinigaglia, “Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides,” J Food Prot, vol. 70, no. 5, pp. 1206–1212, May 2007, doi: 10.4315/0362-028X-70.5.1206 | spa |
dc.relation.references | U. N. Das, “Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules,” Lipids Health Dis, vol. 7, no. 1, p. 37, 2008, doi: 10.1186/1476-511X-7-37. | spa |
dc.relation.references | X. Li, W. Zhang, D. Niu, and X. Liu, “Effects of abiotic stress on chlorophyll metabolism,” Plant Science, vol. 342, p. 112030, May 2024, doi: 10.1016/j.plantsci.2024.112030. | spa |
dc.relation.references | J. Kim, Y.-Y. Kim, J.-Y. Chang, and H.-S. Kho, “Candidacidal Activity of Xylitol and Sorbitol,” J Oral Med Pain, vol. 41, no. 4, pp. 155–160, Dec. 2016, doi: 10.14476/jomp.2016.41.4.155 | spa |
dc.relation.references | V. Lattanzio, A. Cardinali, and V. Linsalata, “Plant Phenolics: A Biochemical and Physiological Perspective,” in Recent Advances in Polyphenol Research, Wiley, 2012, pp. 1–39. doi: 10.1002/9781118299753.ch1 | spa |
dc.relation.references | N. Hounsome, B. Hounsome, D. Tomos, and G. Edwards‐Jones, “Plant Metabolites and Nutritional Quality of Vegetables,” J Food Sci, vol. 73, no. 4, May 2008, doi: 10.1111/j.1750-3841.2008.00716.x. | spa |
dc.relation.references | Elfahmi et al., “Lignans from Cell Suspension Cultures of Phyllanthus n iruri , an Indonesian Medicinal Plant,” J Nat Prod, vol. 69, no. 1, pp. 55–58, Jan. 2006, doi: 10.1021/np050288b. | spa |
dc.relation.references | J. N. Kabera, E. Semana, A. R. Mussa, and X. He, “Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties,” Journal of Pharmacy and Pharmacology, vol. 2, pp. 377–392, 2014. | spa |
dc.relation.references | H. Haraguchi, S. Kataoka, S. Okamoto, M. Hanafi, and K. Shibata, “Antimicrobial triterpenes fromIlex integra and the mechanism of antifungal action,” Phytotherapy Research, vol. 13, no. 2, pp. 151–156, Mar. 1999, doi: 10.1002/(SICI)1099-1573(199903)13:2<151::AID-PTR391>3.0.CO;2-C. | spa |
dc.relation.references | M. Modaressi et al., “Antibacterial iridoid glucosides from Eremostachys laciniata,” Phytotherapy Research, vol. 23, no. 1, pp. 99–103, Jan. 2009, doi: 10.1002/ptr.2568 | spa |
dc.relation.references | H. You, H.-E. Yoon, J.-H. Yoon, H. Ko, and Y.-C. Kim, “Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents,” Bioorg Med Chem, vol. 19, no. 18, pp. 5383–5391, Sep. 2011, doi: 10.1016/j.bmc.2011.07.058. | spa |
dc.relation.references | P. Behera and S. Balaji, “The forgotten sugar: A review on multifarious applications of melezitose,” Carbohydr Res, vol. 500, p. 108248, Feb. 2021, doi: 10.1016/j.carres.2021.108248. | spa |
dc.relation.references | J. A. Mora Vargas, J. Orduña Ortega, G. Metzker, J. E. Larrahondo, and M. Boscolo, “Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds,” Phytochemistry, vol. 177, p. 112433, Sep. 2020, doi: 10.1016/j.phytochem.2020.112433. | spa |
dc.relation.references | W. Kobayashi, T. Miyase, S. Suzuki, H. Noguchi, and X.-M. Chen, “Oligosaccharide Esters from the Roots of Polygala a rillata,” J Nat Prod, vol. 63, no. 8, pp. 1066–1069, Aug. 2000, doi: 10.1021/np0000567 | spa |
dc.relation.references | P. R. K. Reddy et al., “Plant secondary metabolites as feed additives in calves for antimicrobial stewardship,” Anim Feed Sci Technol, vol. 264, p. 114469, Jun. 2020, doi: 10.1016/j.anifeedsci.2020.114469. | spa |
dc.relation.references | N. Selwal et al., “Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies,” J Agric Food Res, vol. 14, p. 100702, Dec. 2023, doi: 10.1016/j.jafr.2023.100702. | spa |
dc.relation.references | Y. Li, D. Kong, Y. Fu, M. R. Sussman, and H. Wu, “The effect of developmental and environmental factors on secondary metabolites in medicinal plants,” Plant Physiology and Biochemistry, vol. 148, pp. 80–89, Mar. 2020, doi: 10.1016/j.plaphy.2020.01.006. | spa |
dc.relation.references | B. A. Rasool Hassan, “Medicinal Plants (Importance and Uses),” Pharm Anal Acta, vol. 03, no. 10, 2012, doi: 10.4172/2153-2435.1000e139. | spa |
dc.relation.references | A. G. Atanasov et al., “Discovery and resupply of pharmacologically active plant-derived natural products: A review,” Biotechnol Adv, vol. 33, no. 8, pp. 1582–1614, Dec. 2015, doi: 10.1016/j.biotechadv.2015.08.001 | spa |
dc.relation.references | T. Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi: 10.1186/s40659-019-0246-3. | spa |
dc.relation.references | H. Patel and R. Krishnamurthy, “Elicitors in plant tissue culture,” J Pharmacogn Phytochem, vol. 2, no. 2, pp. 60–65, 2013 | spa |
dc.relation.references | J. M. Al Khayri and P. M. Naik, “Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review,” Journal of Advanced Research in Biotechnology, vol. 1, no. 2, pp. 1–7, Jan. 2016, doi: 10.15226/2475-4714/1/2/00102 | spa |
dc.relation.references | P. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi: 10.1016/B978-0-12-812689-9.00009-1. | spa |
dc.relation.references | M. Onrubia, E. Moyano, M. Bonfill, O. Expósito, J. Palazón, and R. M. Cusidó, “An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: The role of txs and bapt gene expression,” Biochem Eng J, vol. 53, no. 1, pp. 104–111, Dec. 2010, doi: 10.1016/j.bej.2010.10.001. | spa |
dc.relation.references | O. Exposito et al., “Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate,” Biotechnol Prog, vol. 26, no. 4, pp. 1145–1153, Jul. 2010, doi: 10.1002/btpr.424. | spa |
dc.relation.references | M. Arias Zabala, M. Angarita, J. M. Restrepo, L. A. Caicedo, and M. Perea, “Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana,” In Vitro Cellular & Developmental Biology - Plant, vol. 46, no. 3, pp. 233–238, Jun. 2010, doi: 10.1007/s11627-009-9249-z. | spa |
dc.relation.references | M. Yousefzadi, M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon, “Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis,” Biotechnol Lett, vol. 32, no. 11, pp. 1739–1743, Nov. 2010, doi: 10.1007/s10529-010-0343-4. | spa |
dc.relation.references | E. Sousa and M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019. | spa |
dc.relation.references | T. Krumm, K. Bandemer, and W. Boland, “Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine‐ and isoleucine conjugates of 1‐oxo‐ and 1‐hydroxyindan‐4‐carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway,” FEBS Lett, vol. 377, no. 3, pp. 523–529, Dec. 1995, doi: 10.1016/0014-5793(95)01398-9. | spa |
dc.relation.references | L. Botero, S. Vizcaíno, W. Quiñones, F. Echeverri, J. Gil, and D. Durango, “Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives,” Biotechnology Reports, vol. 29, p. e00601, Mar. 2021, doi: 10.1016/j.btre.2021.e00601 | spa |
dc.relation.references | Y. Nakamura et al., “Synthesis of 6-Substituted 1-oxoindanoyl Isoleucine Conjugates and Modeling Studies with the COI1-JAZ Co-Receptor Complex of Lima Bean,” J Chem Ecol, vol. 40, no. 7, pp. 687–699, Jul. 2014, doi: 10.1007/s10886-014-0469-2. | spa |
dc.relation.references | T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiol Plant, vol. 15, no. 3, pp. 473–497, Jul. 1962, doi: 10.1111/j.1399-3054.1962.tb08052.x. | spa |
dc.relation.references | J. Garg, G. Ghoshal, S. K. Bhadada, and O. Katare, “Derivatisation Mechanistic-guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, p. 100601, Jun. 2024, doi: 10.1016/j.phyplu.2024.100601. | spa |
dc.relation.references | K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi: 10.1007/BF00269047 | spa |
dc.relation.references | H. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7. | spa |
dc.relation.references | D. Gabotti et al., “Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity,” Molecules, vol. 24, no. 22, p. 4056, Nov. 2019, doi: 10.3390/molecules24224056 | spa |
dc.relation.references | T.-T. Ho, H. N. Murthy, and S.-Y. Park, “Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures,” Int J Mol Sci, vol. 21, no. 3, p. 716, Jan. 2020, doi: 10.3390/ijms21030716 | spa |
dc.relation.references | J. Dong, G. Wan, and Z. Liang, “Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture,” J Biotechnol, vol. 148, no. 2–3, pp. 99–104, Jul. 2010, doi: 10.1016/j.jbiotec.2010.05.009 | spa |
dc.relation.references | S. Chattopadhyay, S. Farkya, A. K. Srivastava, and V. S. Bisaria, “Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures,” Biotechnology and Bioprocess Engineering, vol. 7, no. 3, pp. 138–149, Jun. 2002, doi: 10.1007/BF02932911 | spa |
dc.relation.references | R. Jeyasri, P. Muthuramalingam, K. Karthick, H. Shin, S. H. Choi, and M. Ramesh, “Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 153, no. 3, pp. 447–458, Jun. 2023, doi: 10.1007/s11240-023-02485-8. | spa |
dc.relation.references | A. Humbal and B. Pathak, “Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (‘VSI: secondary metabolites’),” Plant Stress, vol. 8, p. 100166, Jun. 2023, doi: 10.1016/j.stress.2023.100166. | spa |
dc.relation.references | J.-H. Kim et al., “Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors,” Plants, vol. 12, no. 6, p. 1390, Mar. 2023, doi: 10.3390/plants12061390. | spa |
dc.relation.references | M. A. Farag, H. Mekky, and S. El-Masry, “Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation,” J Adv Res, vol. 7, no. 5, pp. 681–689, Sep. 2016, doi: 10.1016/j.jare.2016.07.002 | spa |
dc.relation.references | J. Zhao, L. C. Davis, and R. Verpoorte, “Elicitor signal transduction leading to production of plant secondary metabolites,” Biotechnol Adv, vol. 23, no. 4, pp. 283–333, Jun. 2005, doi: 10.1016/j.biotechadv.2005.01.003 | spa |
dc.relation.references | E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi: 10.5586/asbp.3638 | spa |
dc.relation.references | P. Ahmad et al., “Jasmonates: Multifunctional Roles in Stress Tolerance,” Front Plant Sci, vol. 7, Jun. 2016, doi: 10.3389/fpls.2016.00813 | spa |
dc.relation.references | N. De Geyter, A. Gholami, S. Goormachtig, and A. Goossens, “Transcriptional machineries in jasmonate-elicited plant secondary metabolism,” Trends Plant Sci, vol. 17, no. 6, pp. 349–359, Jun. 2012, doi: 10.1016/j.tplants.2012.03.001 | spa |
dc.relation.references | N. Verma and S. Shukla, “Impact of various factors responsible for fluctuation in plant secondary metabolites,” J Appl Res Med Aromat Plants, vol. 2, no. 4, pp. 105–113, Dec. 2015, doi: 10.1016/j.jarmap.2015.09.002. | spa |
dc.relation.references | G. TopÇu, G. Herrmann, U. Kolak, C. Gören, A. Porzel, and T. M. Kutchan, “Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia,” Nat Prod Res, vol. 21, no. 2, pp. 100–105, Feb. 2007, doi: 10.1080/14786410500462884. | spa |
dc.relation.references | K. Zalewski, S. Czaplicki, R. Rafałowski, R. Stryiński, A. Okorski, and B. Nitkiewicz, “The effect of exogenous methyl jasmonate on the fatty acid composition of germinating triticale kernels (x Triticosecale Wittmack, cv. Ugo),” Curr Plant Biol, vol. 28, p. 100225, Dec. 2021, doi: 10.1016/j.cpb.2021.100225 | spa |
dc.relation.references | O. Parra, A. M. Gallego, A. Urrea, L. F. Rojas, C. Correa, and L. Atehortúa, “Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.,” Plant Physiology and Biochemistry, vol. 111, pp. 59–66, Feb. 2017, doi: 10.1016/j.plaphy.2016.11.013 | spa |
dc.relation.references | B. Parthier, “Jasmonates, New Regulators of Plant Growth and Development: Many Facts and Few Hypotheses on their Actions,” Botanica Acta, vol. 104, no. 6, pp. 446–454, Dec. 1991, doi: 10.1111/j.1438-8677.1991.tb00257.x. | spa |
dc.relation.references | S. Fonseca, J. M. Chico, and R. Solano, “The jasmonate pathway: the ligand, the receptor and the core signalling module,” Curr Opin Plant Biol, vol. 12, no. 5, pp. 539–547, Oct. 2009, doi: 10.1016/j.pbi.2009.07.013 | spa |
dc.relation.references | J. Szczegielniak, “[Wound signal transduction pathways in plants].,” Postepy Biochem, vol. 53, no. 2, pp. 121–32, 2007 | spa |
dc.relation.references | Y. Wang, S. Mostafa, W. Zeng, and B. Jin, “Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses,” Int J Mol Sci, vol. 22, no. 16, p. 8568, Aug. 2021, doi: 10.3390/ijms22168568. | spa |
dc.relation.references | S. Gandi, K. Rao, B. Chodisetti, and A. Giri, “Elicitation of Andrographolide in the Suspension Cultures of Andrographis paniculata,” Appl Biochem Biotechnol, vol. 168, no. 7, pp. 1729–1738, Dec. 2012, doi: 10.1007/s12010-012-9892-4. | spa |
dc.relation.references | S. S. Mian, M. I. Alam, N. A. Khan, and M. Shuaib, “Standardisation of different extracts of detoxified Nux-vomica seeds with its comparative study by TLC and HPTLC,” J Herb Med, vol. 42, p. 100792, Dec. 2023, doi: 10.1016/j.hermed.2023.100792 | spa |
dc.relation.references | E. Kaale, P. Risha, and T. Layloff, “TLC for pharmaceutical analysis in resource limited countries,” J Chromatogr A, vol. 1218, no. 19, pp. 2732–2736, May 2011, doi: 10.1016/j.chroma.2010.12.022 | spa |
dc.relation.references | W. Wen et al., “Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC–direct bioautography combined with comprehensive 2D GC × GC-TOFMS,” Journal of Chromatography B, vol. 1234, p. 124026, Feb. 2024, doi: 10.1016/j.jchromb.2024.124026 | spa |
dc.relation.references | L. Qi, C. Chen, and P. Li, “Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode‐array detection and time‐of‐flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 19, pp. 3227–3242, Oct. 2009, doi: 10.1002/rcm.4245 | spa |
dc.relation.references | S. Sang et al., “Citrifolinin A, a new unusual iridoid with inhibition of activator protein-1 (AP-1) from the leaves of noni (Morinda citrifolia L.) ,” Tetrahedron Lett, pp. 1823–1825, 2001. | spa |
dc.relation.references | F. Xu, X. Huang, H. Wu, and X. Wang, “Beneficial health effects of lupenone triterpene: A review,” Biomedicine & Pharmacotherapy, vol. 103, pp. 198–203, Jul. 2018, doi: 10.1016/j.biopha.2018.04.019 | spa |
dc.relation.references | S.-S. Lee et al., “Tricin derivatives as anti-inflammatory and anti-allergic constituents from the aerial part of Zizania latifolia,” Biosci Biotechnol Biochem, vol. 79, no. 5, pp. 700–706, May 2015, doi: 10.1080/09168451.2014.997184. | spa |
dc.relation.references | M. O. Agbo, D. Lai, F. B. C. Okoye, P. O. Osadebe, and P. Proksch, “Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis,” Fitoterapia, vol. 86, pp. 78–83, Apr. 2013, doi: 10.1016/j.fitote.2013.02.006 | spa |
dc.relation.references | Y. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi: 10.1016/j.scitotenv.2021.151990 | spa |
dc.relation.references | S. Z. M. R. Jamil, E. R. Rohani, S. N. Baharum, and N. M. Noor, “Metabolite profiles of callus and cell suspension cultures of mangosteen,” 3 Biotech, vol. 8, no. 8, p. 322, Aug. 2018, doi: 10.1007/s13205-018-1336-6 | spa |
dc.relation.references | L. K. Rodríguez-Sánchez et al., “Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae),” Biotechnology Reports, vol. 28, p. e00559, Dec. 2020, doi: 10.1016/j.btre.2020.e00559 | spa |
dc.relation.references | D. Durango, N. Pulgarin, F. Echeverri, G. Escobar, and W. Quiñones, “Effect of Salicylic Acid and Structurally Related Compounds in the Accumulation of Phytoalexins in Cotyledons of Common Bean (Phaseolus vulgaris L.) Cultivars,” Molecules, vol. 18, no. 9, pp. 10609–10628, Sep. 2013, doi: 10.3390/molecules180910609 | spa |
dc.relation.references | A. Nahrstedt, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae,” Phytochemistry, vol. 39, no. 2, pp. 375–378, May 1995, doi: 10.1016/0031-9422(94)00906-A. | spa |
dc.relation.references | L.-X. Wang et al., “Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications,” Phytochemistry, vol. 202, p. 113326, Oct. 2022, doi: 10.1016/j.phytochem.2022.113326 | spa |
dc.relation.references | D. Mendoza, O. Cuaspud, J. P. Arias, O. Ruiz, and M. Arias, “Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana,” Biotechnology Reports, vol. 19, p. e00273, Sep. 2018, doi: 10.1016/j.btre.2018.e00273 | spa |
dc.relation.references | D. Mendoza, J. P. Arias, O. Cuaspud, O. Ruiz, and M. Arias, “FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate,” Biotechnology Reports, vol. 27, p. e00519, Sep. 2020, doi: 10.1016/j.btre.2020.e00519. | spa |
dc.relation.references | B. Chodisetti, K. Rao, S. Gandi, and A. Giri, “Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid,” In Vitro Cellular & Developmental Biology - Plant, vol. 51, no. 1, pp. 88–92, Feb. 2015, doi: 10.1007/s11627-014-9655-8. | spa |
dc.relation.references | M. Taurino et al., “Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures,” Springerplus, vol. 4, no. 1, p. 49, Dec. 2015, doi: 10.1186/s40064-015-0831-z | spa |
dc.relation.references | C. D’Onofrio, A. Cox, C. Davies, and P. K. Boss, “Induction of secondary metabolism in grape cell cultures by jasmonates,” Functional Plant Biology, vol. 36, no. 4, p. 323, 2009, doi: 10.1071/FP08280 | spa |
dc.relation.references | J. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi: 10.1016/j.pbi.2009.05.011 | spa |
dc.relation.references | J. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi: 10.1016/j.pbi.2009.05.011 | spa |
dc.relation.references | M. He and N.-Z. Ding, “Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response,” Front Plant Sci, vol. 11, Sep. 2020, doi: 10.3389/fpls.2020.562785 | spa |
dc.relation.references | K.-X. Zhang, Y.-J. Hao, M.-Y. Jin, M.-L. Lian, J. Jiang, and X.-C. Piao, “Cell culture of Euphorbia fischeriana and enhancement of terpenoid accumulation through MeJA elicitation,” Ind Crops Prod, vol. 207, p. 117781, Jan. 2024, doi: 10.1016/j.indcrop.2023.117781. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Bioprospección | |
dc.subject.agrovoc | Cultivo de tejidos | |
dc.subject.agrovoc | Cultivo in vitro | |
dc.subject.ddc | 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas | spa |
dc.subject.lemb | Borojó - Propiedades medicinales | |
dc.subject.lemb | Biotecnología de alimentos | |
dc.subject.proposal | Alibertia patinoi | |
dc.subject.proposal | Bioprospección | spa |
dc.subject.proposal | Cultivos de células vegetales en suspensión | spa |
dc.subject.proposal | Bioactividades | spa |
dc.subject.proposal | Fitoquímica | spa |
dc.subject.proposal | Volátiles | spa |
dc.subject.proposal | Bioprospecting | eng |
dc.subject.proposal | Plant cell suspension culture | eng |
dc.subject.proposal | Phytochemistry | eng |
dc.subject.proposal | antimicrobiana | spa |
dc.subject.proposal | composición química | spa |
dc.subject.proposal | elicitores | spa |
dc.subject.proposal | antimicrobial | eng |
dc.subject.proposal | chemical composition | eng |
dc.subject.proposal | elicitors | eng |
dc.title | Bioprospección de tejidos in vivo y cultivos de células in vitro de Alibertia patinoi | spa |
dc.title.translated | Bioprospecting of Alibertia patinoi in vivo tissues and in vitro cell cultures | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/draft | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Bioprospección de borojó | spa |
oaire.fundername | MinCiencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1075657057.2024.pdf
- Tamaño:
- 7.77 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 2 de 2
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4 (4) (1).pdf
- Tamaño:
- 256.4 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia tesis