Bioprospección de tejidos in vivo y cultivos de células in vitro de Alibertia patinoi

dc.contributor.advisorDurango Restrepo, Diego Luis
dc.contributor.advisorOrozco Sánchez, Fernando
dc.contributor.authorChiquiza Montaño, Laura Natalia
dc.contributor.cvlacLaura Natalia Chiquiza Montañospa
dc.contributor.orcidChiquiza Montaño, Laura Natalia [0000-0002-9563-9610]spa
dc.coverage.countryColombia
dc.date.accessioned2024-11-14T19:04:02Z
dc.date.available2024-11-14T19:04:02Z
dc.date.issued2024
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractLa bioprospección en Colombia representa una oportunidad de desarrollo creciente. Plantas como el borojó han sido usadas por sus propiedades medicinales, atribuidas por conocimiento popular. Sin embargo, sus características de crecimiento requieren alternativas de obtención de metabolitos de interés. Este trabajo retoma los usos medicinales para evaluar algunos de ellos y estudiar la composición química de la planta que pueda explicar su potencial farmacéutico. Además, evalúa ese mismo potencial en sus cultivos de células en suspensión y bajo el efecto de elicitores estudiando compuestos presentes. Este estudio parte de una revisión de reportes previos de la especie Alibertia patinoi y otras especies del mismo género. Conocido por su aroma característico, se realizó un estudio de la composición de compuestos volátiles en el fruto teniendo en cuenta diferentes estados de maduración usando microextracción de fase sólida en el espacio de cabeza. Posteriormente, se evaluaron varias bioactividades referentes a algunas de las propiedades que se le han atribuido, en diferentes tejidos de la planta; teniendo en cuenta el extracto con actividad, se identificaron tentativamente algunos de sus compuestos usando cromatografía líquida y cromatografía de gasas ambas acopladas a espectrometría de masas. Adicionalmente, se aislaron algunos compuestos de diferentes partes de la planta y se identificaron usando resonancia magnética nuclear. Teniendo en cuenta las características de crecimiento y obtención de metabolitos de la planta, se consideró el cultivo de células en suspensión para evaluar algunas de estas bioactividades relacionadas a la planta y el uso de elicitores en este tipo de cultivos para estudiar los metabolitos presentes usando cromatografía de gases y cromatografía líquida. (Tomado de la fuente)spa
dc.description.abstractBioprospecting in Colombia represents a growing development opportunity. Plants such as borojó have been used for their supposed medicinal properties. However, its growth characteristics require alternatives to obtain metabolites of interest. This work takes the medicinal uses to evaluate some of them and study the chemical composition of the plant that can explain its pharmaceutical potential. Furthermore, it evaluates the same potential in its cell cultures and under elicitors effect by evaluating its compounds. This study is based on a review of previous reports of Alibertia patinoi and other species of the same genus with the same common name that generate confusion. Subsequently, several bioactivities were evaluated, related to properties attributed to the fruit, in different plant tissues and the extract with activity, some of its compounds were characterized using gas chromatography and liquid chromatography coupled to mass spectrometry. Additionally, a study of the composition of volatile compounds in the fruit was carried out taking into account the characteristic aroma in different stages of ripening using headspace solid phase microextraction. Several compounds were isolated from different parts of the plant and identified using nuclear magnetic resonance. Taking into account the characteristics of growth and obtaining metabolites of the plant, the culture of cells in suspension was considered to evaluate some of these bioactivities related to the plant and the use of elicitors in this type of cultures to study the metabolites present using gas chromatography and mass spectrometry- liquid chromatography.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaBiotecnología Vegetalspa
dc.format.extent267 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87178
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesMinambiente, “Política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos,” https://archivo.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/politica-nacional-de-biodiversidad, 2023spa
dc.relation.referencesD. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi: 10.3390/molecules200713422spa
dc.relation.referencesC. Cháves López, G. Mazzarrino, A. Rodríguez, J. Fernández-López, J. A. Pérez-Álvarez y M. Viuda-Martos, “Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America,” Ind Crops Prod, vol. 63, pp. 79–86, Jan. 2015, doi: 10.1016/j.indcrop.2014.10.047.spa
dc.relation.referencesJ. B. Calixto, “The role of natural products in modern drug discovery.,” An Academia Brasilera Ciencias, vol. 91, no. suppl 3, 2019, doi: 10.1590/0001-3765201920190105.spa
dc.relation.referencesN. González-Jaramillo, N. Bailon-Moscoso, R. Duarte-Casar, y J. C. Romero-Benavides, “Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential,” SN Appl Sci, vol. 5, no. 1, p. 27, Jan. 2023, doi: 10.1007/s42452-022-05251-1.spa
dc.relation.referencesL. Svetaz, “Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries,” J Ethnopharmacol, vol. 127, no. 1, pp. 137–158, Jan. 2010, doi: 10.1016/j.jep.2009.09.034.spa
dc.relation.referencesV. Muñoz, “A search for natural bioactive compounds in Bolivia through a multidisciplinary approach,” J Ethnopharmacol, vol. 69, no. 2, pp. 127–137, Feb. 2000, doi: 10.1016/S0378-8741(99)00148-8.spa
dc.relation.referencesD. Figueiredo de Santana Aquino, “Investigation of the antioxidant and hypoglycemiant properties of Alibertia edulis (L.C. Rich.) A.C. Rich. leaves,” J Ethnopharmacology, vol. 253, p. 112648, May 2020, doi: 10.1016/j.jep.2020.112648spa
dc.relation.referencesV. Cândida da Silva, “New Antifungal Terpenoid Glycosides from Alibertia edulis (Rubiaceae),” Helv Chim Acta, vol. 91, no. 7, pp. 1355–1362, Jul. 2008, doi: 10.1002/hlca.200890147spa
dc.relation.referencesR. S. Gallegos Olea, N. F. Roque, y V. da S. Bolzani, “Acylated flavonol glycosides and terpenoids from the leaves of Alibertia sessilis,” J. Braz. Chem. Soc, vol. 8, pp. 257–259, 1997.spa
dc.relation.referencesF. Xu, “Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter,” Carbohydrates Polymers, vol. 151, pp. 364–372, Oct. 2016, doi: 10.1016/j.carbpol.2016.05.091spa
dc.relation.referencesF. Rabelo Rodrigues, A. de Souza Ramos, A. C. Fernandes Amaral, J. L. Pinto Ferreira, C. da Silva Carneiro y J. Rocha de Andrade Silva, “Evaluation of Amazon fruits: chemical and nutritional studies on Borojoa sorbilis,” J Sci Food Agric, vol. 98, no. 10, pp. 3943–3952, Aug. 2018, doi: 10.1002/jsfa.8917spa
dc.relation.referencesL. Peres et al., “Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. in the control of Plutella xylostella L. (Lepidoptera: Plutellidae),” Insects, vol. 8, no. 4, p. 125, Nov. 2017, doi: 10.3390/insects8040125spa
dc.relation.referencesV. D. S. Bolzani, L. M. V. Trevisa y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991spa
dc.relation.referencesC. M. Taylor, “Rubiacearum Americanarum Magna Hama Pars XXVIII: New Taxa, New Combinations, New Names, and Lectotypification for Several Species Found in Mexico and Central America,” Novon (St Louis), vol. 21, no. 1, pp. 133–148, Apr. 2011, doi: 10.3417/2009129.spa
dc.relation.referencesJ. Cuatrecasas, “Borojoa, un nuevo género de rubiáceas.,” Revista de la Academia Colombiana de Ciencias Exactas, Ffsicas y Naturales, vol. 7, pp. 474–477, 1950spa
dc.relation.referencesM. Ricker, J. H. Jessen, and D. C. Daly, “The case for Borojoa patinoi (rubiaceae) in the Chocó region, Colombia,” Econ Bot, vol. 51, no. 1, pp. 39–48, 1997spa
dc.relation.referencesL. H. Mosquera, G. Moraga, y N. Martínez-Navarrete, “Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder,” J Food Eng, vol. 97, no. 1, pp. 72–78, Mar. 2010, doi: 10.1016/j.jfoodeng.2009.09.017spa
dc.relation.referencesJ. Asprilla-Perea, J. M. Díaz-Puente, and S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi: 10.1007/s13280-021-01624-9spa
dc.relation.referencesG. Salamanca Grosso, P. M, L. O, y Montoya Devia L, “Formulation of a functional beverage of high biological value based on Borojo (Borojoa patinoi Cuatr.),” Revista chilena de nutrición, vol. 37, 2010spa
dc.relation.referencesInstituto colombiano de bienestar familiar, “Tabla de composición de alimentos colombianos,” Universidad Nacional de Colombia, Bogotá, vol. 1, 2018spa
dc.relation.referencesM. Burbano Pulles, “Caracterización físico, química y bromatológica del Borojó (Borojoa patinoi) proveniente de la Parroquia de Chical de la Provincia del Carchi,” SATHIRI, no. 6, p. 79, Jul. 2018, doi: 10.32645/13906925.280spa
dc.relation.referencesR. Díaz Ocampo, C. Vallejo Torres, J. M. Franco Gómez, and L. García Zapateiro, “Caracterización bromatológica, fisicoquímica, microbiológica y reológica de la pulpa de Borojó (Borojoa patinoi Cuatrec),” Ciencia y Tecnología, vol. 5, no. 1, pp. 17–24, Jul. 2012, doi: 10.18779/cyt.v5i1.118spa
dc.relation.referencesL. H. Mosquera, H. A. Ríos, y P. S. Zapata, “Obtención de una materia prima con valor agregado mediante secado por aspersión a partir del fruto fresco de borojó (Borojoa patinoi Cuatrec.),” Rev Inst Univ Tecnológica Chocó, vol. 11, no. 23, pp. 5–10, 2005spa
dc.relation.referencesL. Ospina Medina, M. Pastrana, y W. Maya, “Extractos de frutas afrodisíacas como inhibidores de la movilidad espermática humana in vitro,” Revista cubana Plant Med, vol. 23, 2018.spa
dc.relation.referencesI. Sotelo, N. Casas, y G. Camelo, “Borojó (Borojoa patinoi): fuente de polifenoles con actividad antimicrobiana,” Vitae, vol. 17, pp. 329–336, 2010spa
dc.relation.referencesC. Chaves-López et al., “Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro,” Food Funct, vol. 9, no. 5, pp. 2725–2734, 2018, doi: 10.1039/C7FO01542Aspa
dc.relation.referencesG. A. Hincapié Llanos, J. C. Palacio Piedrahita, S. Paez Sierra, C. E. Restrepo Flórez, y L. M. Vélez Acosta, “Elaboración de una bebida energizante a partir de borojó (Borojoa patinoi Cuatrec.),” Rev Lasallista Investig, vol. 9, no. 2, pp. 33–43, 2012spa
dc.relation.referencesL. M. Vélez Acosta, “Borojó, todo lo que debe saber sobre esta ‘superfruta,’” Revista I Alimentosspa
dc.relation.referencesJ. Asprilla-Perea, J. M. Díaz-Puente, y S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi: 10.1007/s13280-021-01624-9spa
dc.relation.referencesG. Camelo-Mendez y I. Sotelo-Díaz, “Effect of storage conditions on color, polyphenol content and antioxidant capacity of Borojoa patinoi Cuatrecasas beverage,” Bol Latinoamerica Caribe Plantas Med Aromat, vol. 11, no. 2, pp. 196–205, Jan. 2012spa
dc.relation.referencesM. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, y K. R. Pardesi, “Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,” Front Microbiol, vol. 10, Apr. 2019, doi: 10.3389/fmicb.2019.00539spa
dc.relation.referencesF. Buccioni, “Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study,” Microorganisms, vol. 10, no. 5, p. 920, Apr. 2022, doi: 10.3390/microorganisms10050920spa
dc.relation.referencesJ. D. Pitout, “Multiresistant Enterobacteriaceae: new threat of an old problem,” Expert Rev Anti Infect Ther, vol. 6, no. 5, pp. 657–669, Oct. 2008, doi: 10.1586/14787210.6.5.657spa
dc.relation.referencesT.-K. Yeh, H.-J. Lin, P.-Y. Liu, J.-H. Wang, y P.-R. Hsueh, “Antibiotic resistance in Enterobacter hormaechei,” Int J Antimicrob Agents, vol. 60, no. 4, p. 106650, Oct. 2022, doi: 10.1016/j.ijantimicag.2022.106650spa
dc.relation.referencesH. Wang, “Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions,” Front Sustain Food Syst, vol. 7, Apr. 2023, doi: 10.3389/fsufs.2023.1179835spa
dc.relation.referencesM. P. Falomir, H. Rico, y D. Gozalbo, “Enterobacter and Klebsiella Species Isolated from Fresh Vegetables Marketed in Valencia (Spain) and Their Clinically Relevant Resistances to Chemotherapeutic Agents,” Foodborne Pathog Dis, vol. 10, no. 12, pp. 1002–1007, Dec. 2013, doi: 10.1089/fpd.2013.1552spa
dc.relation.referencesJ. Gil-Serna, M. García-Díaz, C. Vázquez, M. T. González-Jaén, y B. Patiño, “Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins,” Food Microbiology, vol. 82, pp. 240–248, Sep. 2019, doi: 10.1016/j.fm.2019.02.013.spa
dc.relation.referencesG. S. Patten, M. Y. Abeywardena, y L. E. Bennett, “Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families,” Crit Rev Food Sci Nutr, vol. 56, no. 2, pp. 181–214, Jan. 2016, doi: 10.1080/10408398.2011.651176spa
dc.relation.referencesF. H. Messerli, S. Bangalore, C. Bavishi, y S. F. Rimoldi, “Angiotensin-Converting Enzyme Inhibitors in Hypertension,” J Am Coll Cardiol, vol. 71, no. 13, pp. 1474–1482, Apr. 2018, doi: 10.1016/j.jacc.2018.01.058spa
dc.relation.referencesY.-W. Liu, M.-T. Liong, y Y.-C. Tsai, “New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis,” Journal of Microbiology, vol. 56, no. 9, pp. 601–613, Sep. 2018, doi: 10.1007/s12275-018-8079-2spa
dc.relation.referencesJ. B. Molina-Hernandez, “The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death,” Sci Rep, vol. 11, no. 1, p. 21557, Nov. 2021, doi: 10.1038/s41598-021-00545-7spa
dc.relation.referencesJ. de S. Aquino, K. S. Batista, F. N. D. D. Menezes, P. P. Lins, J. A. de S. Gomes, y L. A. da Silva, “Models to Evaluate the Prebiotic Potential of Foods,” in Functional Food - Improve Health through Adequate Food, InTech, 2017. doi: 10.5772/intechopen.69174spa
dc.relation.referencesM. Wang et al., “Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum,” LWT, vol. 154, p. 112572, Jan. 2022, doi: 10.1016/j.lwt.2021.112572spa
dc.relation.referencesL. L. Antunes, A. L. Back, M. L. B. C. Kossar, A. G. Spessato, E. Colla, y D. A. Drunkler, “Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods,” Food Chem, vol. 404, p. 134539, Mar. 2023, doi: 10.1016/j.foodchem.2022.134539spa
dc.relation.referencesD. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi: 10.1016/j.fbio.2023.102808spa
dc.relation.referencesT. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi: 10.1186/1471-2105-11-395.spa
dc.relation.referencesY. Cui et al., “AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria,” Food Microbiol, vol. 29, no. 1, pp. 80–87, Feb. 2012, doi: 10.1016/j.fm.2011.08.019spa
dc.relation.referencesL. A. Clifton, “Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models,” Langmuir, vol. 31, no. 1, pp. 404–412, Jan. 2015, doi: 10.1021/la504407vspa
dc.relation.referencesW. Mędrzycka-Dąbrowska, S. Lange, K. Zorena, S. Dąbrowski, D. Ozga, y L. Tomaszek, “Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review,” J Clin Med, vol. 10, no. 10, p. 2067, May 2021, doi: 10.3390/jcm10102067spa
dc.relation.referencesF. Maggio, “Effectiveness of essential oils against dual-species biofilm of Listeria monocytogenes and Pseudomonas fluorescens in a Ricotta-based model system,” Ital J Food Saf, vol. 12, no. 1, Mar. 2023, doi: 10.4081/ijfs.2023.11048spa
dc.relation.referencesL. L. Herman, S. A. Padala, I. Ahmed, y K. Bashir, Angiotensin-Converting Enzyme Inhibitors (ACEI). 2023spa
dc.relation.referencesH.-J. Park, J.-Y. Kim, H. S. Kim, S.-H. Lee, J. S. Jang, y M. H. Lee, “Synergistic effect of fruit–seed mixed juice on inhibition of angiotensin I-converting enzyme and activation of NO production in EA.hy926 cells,” Food Sci Biotechnol, vol. 28, no. 3, pp. 881–893, Jun. 2019, doi: 10.1007/s10068-018-0512-0spa
dc.relation.referencesL. Actis-Goretta, J. I. Ottaviani, y C. G. Fraga, “Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods,” J Agric Food Chem, vol. 54, no. 1, pp. 229–234, Jan. 2006, doi: 10.1021/jf052263ospa
dc.relation.referencesD. M. A. Saulnier, D. Molenaar, W. M. de Vos, G. R. Gibson, y S. Kolida, “Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays,” Appl Environ Microbiol, vol. 73, no. 6, pp. 1753–1765, Mar. 2007, doi: 10.1128/AEM.01151-06spa
dc.relation.referencesQ.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi: 10.3390/foods12163011spa
dc.relation.referencesR. Álvarez, H. Araya, R. Navarro-Lisboa y C. Lopez de Dicastillo, “Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method,” Food Technol Biotechnol, vol. 54, no. 4, 2016, doi: 10.17113/ftb.54.04.16.4497spa
dc.relation.referencesH. A. R. Suleria, C. J. Barrow, y F. R. Dunshea, “Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels,” Foods, vol. 9, no. 9, p. 1206, Sep. 2020, doi: 10.3390/foods9091206spa
dc.relation.referencesI. Gutiérrez-del-Río, J. Fernández, y F. Lombó, “Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols,” Int J Antimicrob Agents, vol. 52, no. 3, pp. 309–315, Sep. 2018, doi: 10.1016/j.ijantimicag.2018.04.024spa
dc.relation.referencesE. Sousa y M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.spa
dc.relation.referencesB. Dinda, S. Debnath, y R. Banik, “Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4,” Chem Pharm Bull (Tokyo), vol. 59, no. 7, pp. 803–833, 2011, doi: 10.1248/cpb.59.803spa
dc.relation.referencesC. Wang et al., “Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics,” Molecules, vol. 25, no. 2, p. 287, Jan. 2020, doi: 10.3390/molecules25020287spa
dc.relation.referencesD. D. Orhan, B. Özçelik, S. Özgen, y F. Ergun, “Antibacterial, antifungal, and antiviral activities of some flavonoids,” Microbiol Res, vol. 165, no. 6, pp. 496–504, Aug. 2010, doi: 10.1016/j.micres.2009.09.002spa
dc.relation.referencesT. H. Grenby y J. Colley, “Dental effects of xylitol compared with other carbohydrates and polyols in the diet of laboratory rats,” Arch Oral Biol, vol. 28, no. 8, pp. 745–758, 1983, doi: 10.1016/0003-9969(83)90111-5spa
dc.relation.referencesD. Tuncer, A. Onen, y A. R. Yazici, “Effect of chewing gums with xylitol, sorbitol and xylitol-sorbitol on the remineralization and hardness of initial enamel lesions in situ.,” Dent Res J (Isfahan), vol. 11, no. 5, pp. 537–43, Sep. 2014spa
dc.relation.referencesJ.-L. Zhang, J. Yao, J.-N. Zhuge, y Y.-J. Zhang, “[Antibacterial activity of erythritol on periodontal pathogen].,” Shanghai Kou Qiang Yi Xue, vol. 28, no. 4, pp. 362–367, Aug. 2019spa
dc.relation.referencesV. Loimaranta, D. Mazurel, D. Deng, y E. Söderling, “Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans,” BMC Microbiol, vol. 20, no. 1, p. 184, Dec. 2020, doi: 10.1186/s12866-020-01867-8spa
dc.relation.referencesT. O. Ajiboye, “Involvement of oxidative stress in protocatechuic acid‐mediated bacterial lethality,” Microbiologyopen, vol. 6, no. 4, Aug. 2017, doi: 10.1002/mbo3.472spa
dc.relation.referencesN. Silva, S. Alves, A. Gonçalves, J. S. Amaral, y P. Poeta, “Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria,” Food Science and Technology International, vol. 19, no. 6, pp. 503–510, Dec. 2013, doi: 10.1177/1082013212442198spa
dc.relation.referencesS. Kakkar y S. Bais, “A Review on Protocatechuic Acid and Its Pharmacological Potential,” ISRN Pharmacol, vol. 2014, pp. 1–9, Mar. 2014, doi: 10.1155/2014/952943spa
dc.relation.referencesM. Kępa, “Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains,” Biomed Res Int, vol. 2018, pp. 1–9, Jul. 2018, doi: 10.1155/2018/7413504.spa
dc.relation.referencesV. D. S. Bolzani, L. M. V. Trevisa, y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991spa
dc.relation.referencesN. C. C. Carvalho, O. S. Monteiro, C. Q. da Rocha, J. K. R. da Silva, y J. G. S. Maia, “Phenolic Compounds and Antioxidant Properties of Puruí (Alibertia edulis, Rubiaceae), an Edible Dark Purple Fruit from the Brazilian Amazon,” Nutraceuticals, vol. 3, no. 4, pp. 529–539, Nov. 2023, doi: 10.3390/nutraceuticals3040038spa
dc.relation.referencesP.-G. Li et al., “Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats,” Hypertension Research, vol. 28, no. 4, pp. 369–377, 2005, doi: 10.1291/hypres.28.369spa
dc.relation.referencesW. Londoño Jaramillo, “Manejo post-cosecha y comercialización de Borojó. Programa post-cosecha.” Convenio SENA - Reino Unido, 1999. Acceso: Jan. 22, 2024. [Online]. Disponible: https://hdl.handle.net/11404/7009spa
dc.relation.referencesC. Li, “Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing,” Food Chem, vol. 355, p. 129685, Sep. 2021, doi: 10.1016/j.foodchem.2021.129685.spa
dc.relation.referencesY. Wang, “Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS,” Food Chem, vol. 116, no. 1, pp. 356–364, Sep. 2009, doi: 10.1016/j.foodchem.2009.02.004spa
dc.relation.referencesH. Deng, “Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars,” Front Plant Sci, vol. 13, Dec. 2022, doi: 10.3389/fpls.2022.1050289spa
dc.relation.referencesH. Van Den Dool y D. J. Kratz, “A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography,” J Chromatogr A, vol. 11, pp. 463–471, 1963, doi: 10.1016/S0021-9673(01)80947-X.spa
dc.relation.referencesJ. Kreissl, V. Mall, P. Steinhaus, y M. Steinhaus, “Leibniz-LSB@TUM Odorant Database.spa
dc.relation.referencesN. Reyes-Garcés, “Advances in Solid Phase Microextraction and Perspective on Future Directions,” Anal Chem, vol. 90, no. 1, pp. 302–360, Jan. 2018, doi: 10.1021/acs.analchem.7b04502spa
dc.relation.referencesJ.-F. Cavalli, X. Fernandez, L. Lizzani-Cuvelier, y A.-M. Loiseau, “Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils,” J Agric Food Chem, vol. 51, no. 26, pp. 7709–7716, Dec. 2003, doi: 10.1021/jf034834nspa
dc.relation.referencesI. Eduardo, G. Chietera, D. Bassi, L. Rossini, y A. Vecchietti, “Identification of key odor volatile compounds in the essential oil of nine peach accessions,” J Sci Food Agric, vol. 90, no. 7, pp. 1146–1154, May 2010, doi: 10.1002/jsfa.3932spa
dc.relation.referencesR. R. Jetti, E. Yang, A. Kurnianta, C. Finn, y M. C. Qian, “Quantification of Selected Aroma‐Active Compounds in Strawberries by Headspace Solid‐Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis,” J Food Sci, vol. 72, no. 7, Sep. 2007, doi: 10.1111/j.1750-3841.2007.00445.x.spa
dc.relation.referencesK. Matsui, “Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism,” Curr Opin Plant Biol, vol. 9, no. 3, pp. 274–280, Jun. 2006, doi: 10.1016/j.pbi.2006.03.002spa
dc.relation.references. G. Defilippi, D. Manríquez, K. Luengwilai, y M. González-Agüero, “Chapter 1 Aroma Volatiles,” 2009, pp. 1–37. doi: 10.1016/S0065-2296(08)00801-Xspa
dc.relation.referencesD. Holland, “Developmental and Varietal Differences in Volatile Ester Formation and Acetyl-CoA: Alcohol Acetyl Transferase Activities in Apple (Malus domestica Borkh.) Fruit,” J Agric Food Chem, vol. 53, no. 18, pp. 7198–7203, Sep. 2005, doi: 10.1021/jf050519kspa
dc.relation.referencesH. Yao, “Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening,” Food Research International, vol. 143, p. 110330, May 2021, doi: 10.1016/j.foodres.2021.110330spa
dc.relation.referencesM. El Hadi, F.-J. Zhang, F.-F. Wu, C.-H. Zhou, y J. Tao, “Advances in Fruit Aroma Volatile Research,” Molecules, vol. 18, no. 7, pp. 8200–8229, Jul. 2013, doi: 10.3390/molecules18078200spa
dc.relation.referencesR. G. Berger, Flavours y Fragrances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-49339-6.spa
dc.relation.referencesS. A. Goff y H. J. Klee, “Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?,” Science (1979), vol. 311, no. 5762, pp. 815–819, Feb. 2006, doi: 10.1126/science.1112614spa
dc.relation.referencesS. K. Wendakoon, Y. Ueda, Y. Imahori, y M. Ishimaru, “Effect of short‐term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas,” J Sci Food Agric, vol. 86, no. 10, pp. 1475–1480, Aug. 2006, doi: 10.1002/jsfa.2518.spa
dc.relation.referencesJ. A. Pino y J. Mesa, “Contribution of volatile compounds to mango (Mangifera indica L.) aroma,” Flavour Fragr J, vol. 21, no. 2, pp. 207–213, Mar. 2006, doi: 10.1002/ffj.1703spa
dc.relation.referencesY. Tokitomo, M. Steinhaus, A. Buttner, y P. Schieberle, “Odor-Active Constituents in Fresh Pineapple (Ananas comosus [L.] Merr.) by Quantitative and Sensory Evaluation,” Biosci Biotechnol Biochem, vol. 69, no. 7, pp. 1323–1330, Jan. 2005, doi: 10.1271/bbb.69.1323.spa
dc.relation.referencesX. Song, “Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS,” LWT, vol. 184, p. 115011, Jul. 2023, doi: 10.1016/j.lwt.2023.115011spa
dc.relation.referencesQ. Wu et al., “Effect of solvent extraction on the key aroma components of Tamarindus indica L. pulp,” Journal of Food Composition and Analysis, vol. 123, p. 105613, Oct. 2023, doi: 10.1016/j.jfca.2023.105613spa
dc.relation.references. Oliveira, P. Guedes de Pinho, R. Malheiro, P. Baptista, y J. A. Pereira, “Volatile profile of Arbutus unedo L. fruits through ripening stage,” Food Chem, vol. 128, no. 3, pp. 667–673, Oct. 2011, doi: 10.1016/j.foodchem.2011.03.084spa
dc.relation.referencesM. Abd El-Mageed, “Development of volatile compounds of avocado and casimiroa during fruit maduration,” Arab Universities Journal of Agricultural Sciences, vol. 15, no. 1, pp. 89–100, Mar. 2007, doi: 10.21608/ajs.2007.14626spa
dc.relation.referencesP. Fuggate, C. Wongs-Aree, S. Noichinda, y S. Kanlayanarat, “Quality and volatile attributes of attached and detached ‘Pluk Mai Lie’ papaya during fruit ripening,” Sci Hortic, vol. 126, no. 2, pp. 120–129, Sep. 2010, doi: 10.1016/j.scienta.2010.06.019spa
dc.relation.referencesE. J. F. Souleyre, “Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit,” Plant Physiol, vol. 190, no. 2, pp. 1100–1116, Sep. 2022, doi: 10.1093/plphys/kiac316spa
dc.relation.referencesZ. Guler y Y. E. Sekerli, “Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages,” Academic Food Journal, vol. 11, no. 2, pp. 6–13, 2013.spa
dc.relation.referencesO. Nevo y K. Valenta, “The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal,” Int J Primatol, vol. 39, no. 3, pp. 338–355, Jun. 2018, doi: 10.1007/s10764-018-0021-2.spa
dc.relation.referencesO. Nevo, “Fruit defense syndromes: the independent evolution of mechanical and chemical defenses,” Evol Ecol, vol. 31, no. 6, pp. 913–923, Dec. 2017, doi: 10.1007/s10682-017-9919-y.spa
dc.relation.referencesO. Nevo y M. Ayasse, “Fruit Scent: Biochemistry, Ecological Function, and Evolution,” 2020, pp. 403–425. doi: 10.1007/978-3-319-96397-6_33.spa
dc.relation.referencesJ.-L. Wolfender, G. Marti, A. Thomas, y S. Bertrand, “Current approaches and challenges for the metabolite profiling of complex natural extracts,” J Chromatogr A, vol. 1382, pp. 136–164, Feb. 2015, doi: 10.1016/j.chroma.2014.10.091.spa
dc.relation.referencesC. Persson y P. G. Delprete, The Alibertia Group (Gardenieae–Rubiaceae), Part 1 (Agouticarpa, Alibertia, Cordiera, Melanopsidium, Riodocea, and Stenosepala). 2017. [Online]. Available: https://www.nhbs.com/flora-neotropica-volume-119-the-alibertia-group-gardenieae-rubiaceae-part-1-agouticarpa-alibertia-cordiera-melanopsidium-riodocea-and-stenosepala-bookspa
dc.relation.referencesA. C. Estupiñán-González y N. D. Jiménez-Escobar, “Uso de las plantas por grupos campesinos en la franja tropical del parque nacional natural Jaramillo (Córdoba, Colombia),” Caldasia, vol. 32, no. 1, pp. 21–38, 2010spa
dc.relation.referencesM. C. M. Young, M. R. Braga, S. M. C. Dietrich, H. E. Gottlieb, L. M. V. Trevisan, y V. D. S. Bolzani, “Fungitoxic non-glycosidic iridoids from Alibertia macrophylla,” Phytochemistry, vol. 31, no. 10, pp. 3433–3435, Oct. 1992, doi: 10.1016/0031-9422(92)83701-Yspa
dc.relation.referencesA. Nahrstedt, J. Rockenbach, y V. Wray, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the Rubiaceae,” Phytochemistry, vol. 29, pp. 375–378, Aug. 1995spa
dc.relation.referencesI. A. Neri-Numa et al., “Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids,” Food Research International, vol. 134, p. 109252, Aug. 2020, doi: 10.1016/j.foodres.2020.109252.spa
dc.relation.referencesS.-J. Kim, K.-M. Kim, J. Park, J.-H. Kwak, Y. S. Kim, y S.-M. Lee, “Geniposidic acid protects against d-galactosamine and lipopolysaccharide-induced hepatic failure in mice,” J Ethnopharmacol, vol. 146, no. 1, pp. 271–277, Mar. 2013, doi: 10.1016/j.jep.2012.12.042spa
dc.relation.referencesC. Wang et al., “Iridoids and sfingolipids from Hedyotis diffusa,” Fitoterapia, vol. 124, pp. 152–159, Jan. 2018, doi: 10.1016/j.fitote.2017.11.004spa
dc.relation.referencesY. Wang et al., “Systematic Separation and Purification of Iridoid Glycosides and Crocetin Derivatives from Gardenia jasminoides Ellis by High-speed Counter-current Chromatography,” Phytochemical Analysis, vol. 26, no. 3, pp. 202–208, May 2015, doi: 10.1002/pca.2553spa
dc.relation.referencesR. Buathong et al., “Uncommon fatty acids, Iridoids and other secondary metabolites from the medicinal plant species Ixora cibdela Craib (Rubiaceae),” Phytochem Lett, vol. 33, pp. 77–80, Oct. 2019, doi: 10.1016/j.phytol.2019.07.011spa
dc.relation.references. Takeda, H. Nishimura, y H. Inouye, “Two new iridoid glucosides from Ixora chinensis,” Phytochemistry, vol. 14, pp. 2647–2650, Feb. 1975spa
dc.relation.referencesL. J. El-Naggar y J. L. Beal, “Iridoids. A Review,” J Nat Prod, vol. 43, no. 6, pp. 649–707, Nov. 1980, doi: 10.1021/np50012a001spa
dc.relation.referencesY. Takeda, H. Nishimura, y H. Inouye, “Studies on monoterpene glucosides and related natural products. XXXII. Iridoid glucosides of Tarenna kotoensis var. gyokushinka.,” Chem Pharm Bull (Tokyo), vol. 24, no. 6, pp. 1216–1218, 1976, doi: 10.1248/cpb.24.1216spa
dc.relation.referencesD. F. de Santana Aquino et al., “Alibertia edulis (L.C. Rich.) A.C. Rich – A potent diuretic arising from Brazilian indigenous species,” J Ethnopharmacol, vol. 196, pp. 193–200, Jan. 2017, doi: 10.1016/j.jep.2016.12.024.spa
dc.relation.referencesW. M. Abdel-Mageed, E. Y. Backheet, A. A. Khalifa, Z. Z. Ibraheim, y S. A. Ross, “Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis,” Fitoterapia, vol. 83, no. 3, pp. 500–507, Apr. 2012, doi: 10.1016/j.fitote.2011.12.025spa
dc.relation.referencesM. Singh et al., “Isolation of phytochemicals from Dolichandrone atrovirens followed by semisynthetic modification of ixoside via azomethine ylide cycloaddition; computational approach towards chemo-selection,” Nat Prod Res, vol. 37, no. 13, pp. 2215–2224, Jul. 2023, doi: 10.1080/14786419.2022.2037084.spa
dc.relation.referencesD. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi: 10.3390/molecules200713422spa
dc.relation.references. Bano, T. A. Qadri, Mahnoor, y N. Khan, “Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress,” South African Journal of Botany, vol. 159, pp. 98–109, Aug. 2023, doi: 10.1016/j.sajb.2023.05.049.spa
dc.relation.referencesT. Wu, S. M. Kerbler, A. R. Fernie, y Y. Zhang, “Plant cell cultures as heterologous bio-factories for secondary metabolite production,” Plant Commun, vol. 2, no. 5, p. 100235, Sep. 2021, doi: 10.1016/j.xplc.2021.100235.spa
dc.relation.referencesS. S. Arya, J. E. Rookes, D. M. Cahill, y S. K. Lenka, “Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories,” Biotechnol Adv, vol. 45, p. 107635, Dec. 2020, doi: 10.1016/j.biotechadv.2020.107635.spa
dc.relation.referencesR. Eibl, P. Meier, I. Stutz, D. Schildberger, T. Hühn, y D. Eibl, “Plant cell culture technology in the cosmetics and food industries: current state and future trends,” Appl Microbiol Biotechnol, vol. 102, no. 20, pp. 8661–8675, Oct. 2018, doi: 10.1007/s00253-018-9279-8spa
dc.relation.referencesG. Guerriero et al., “Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists,” Genes (Basel), vol. 9, no. 6, p. 309, Jun. 2018, doi: 10.3390/genes9060309spa
dc.relation.referencesM. Davey, “Secondary Metabolism in Plant Cell Cultures,” in Encyclopedia of Applied Plant Sciences, Elsevier, 2017, pp. 462–467. doi: 10.1016/B978-0-12-394807-6.00146-5.spa
dc.relation.referencesY. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi: 10.1016/j.scitotenv.2021.151990spa
dc.relation.referencesS. Karuppusamy, “A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures,” Journal of medicinal plants research, vol. 3, no. 13, pp. 1222–1239, 2009spa
dc.relation.referencesH. N. Murthy, E.-J. Lee, y K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7spa
dc.relation.referencesE. A. Motolinía-Alcántara, C. O. Castillo-Araiza, M. Rodríguez-Monroy, A. Román-Guerrero, y F. Cruz-Sosa, “Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors,” Plants, vol. 10, no. 12, p. 2762, Dec. 2021, doi: 10.3390/plants10122762spa
dc.relation.referencesM. Takahashi y H. Aoyagi, “Effect of intermittent opening of breathable culture plugs and aeration of headspace on the structure of microbial communities in shake-flask culture,” J Biosci Bioeng, vol. 126, no. 1, pp. 96–101, Jul. 2018, doi: 10.1016/j.jbiosc.2018.01.009spa
dc.relation.referencesS. T. Häkkinen et al., “Plant cell cultures as food—aspects of sustainability and safety,” Plant Cell Rep, vol. 39, no. 12, pp. 1655–1668, Dec. 2020, doi: 10.1007/s00299-020-02592-2.spa
dc.relation.referencesA. C. Alvarez-Yela, L. N. Chiquiza-Montaño, R. Hoyos, y F. Orozco-Sánchez, “Rheology and mixing analysis of plant cell cultures (Azadirachta indica, Borojoa patinoi and Thevetia peruviana) in shake flasks,” Biochem Eng J, vol. 114, 2016, doi: 10.1016/j.bej.2016.06.019spa
dc.relation.referencesA. Scroccarello et al., “Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger,” Colloids Surf B Biointerfaces, vol. 199, p. 111533, Mar. 2021, doi: 10.1016/j.colsurfb.2020.111533spa
dc.relation.referencesD. Pan, Y. Luo, y M. Tanokura, “Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004,” Food Chem, vol. 91, no. 1, pp. 123–129, Jun. 2005, doi: 10.1016/j.foodchem.2004.05.055spa
dc.relation.referencesD. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi: 10.1016/j.fbio.2023.102808spa
dc.relation.referencesL.-F. Nothias et al., “Feature-based molecular networking in the GNPS analysis environment,” Nat Methods, vol. 17, no. 9, pp. 905–908, Sep. 2020, doi: 10.1038/s41592-020-0933-6.spa
dc.relation.referencesM. Wang et al., “Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.,” Nat Biotechnol, vol. 34, no. 8, pp. 828–837, Aug. 2016, doi: 10.1038/nbt.3597spa
dc.relation.referencesD. Petras et al., “GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser,” Nat Methods, vol. 19, no. 2, pp. 134–136, Feb. 2022, doi: 10.1038/s41592-021-01339-5spa
dc.relation.referencesT. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi: 10.1186/1471-2105-11-395spa
dc.relation.referencesH. Horai et al., “MassBank: a public repository for sharing mass spectral data for life sciences,” Journal of Mass Spectrometry, vol. 45, no. 7, pp. 703–714, Jul. 2010, doi: 10.1002/jms.1777.spa
dc.relation.referencesP. Shannon et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi: 10.1101/gr.1239303.spa
dc.relation.referencesC. W. T. Lee y M. L. Shuler, “The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells,” Biotechnol Bioeng, vol. 67, no. 1, pp. 61–71, Jan. 2000, doi: 10.1002/(SICI)1097spa
dc.relation.referencesK. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi: 10.1007/BF00269047.spa
dc.relation.referencesH. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7.spa
dc.relation.referencesS. Werner, R. W. Maschke, D. Eibl, and R. Eibl, “Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products,” 2018, pp. 413–432. doi: 10.1007/978-3-319-54600-1_6.spa
dc.relation.referencesM. I. Georgiev, J. Weber, and A. Maciuk, “Bioprocessing of plant cell cultures for mass production of targeted compounds,” Appl Microbiol Biotechnol, vol. 83, no. 5, pp. 809–823, Jul. 2009, doi: 10.1007/s00253-009-2049-x.spa
dc.relation.referencesP. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi: 10.1016/B978-0-12-812689-9.00009-1.spa
dc.relation.referencesF. Bourgaud, A. Gravot, S. Milesi, and E. Gontier, “Production of plant secondary metabolites: a historical perspective,” Plant Science, vol. 161, no. 5, pp. 839–851, Oct. 2001, doi: 10.1016/S0168-9452(01)00490-3spa
dc.relation.references. Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi: 10.1186/s40659-019-0246-3.spa
dc.relation.referencesS. Chung, V. Nguyen, Y. L. Lin, L. Kamen, and A. Song, “Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays,” J Immunol Methods, vol. 447, pp. 37–46, Aug. 2017, doi: 10.1016/j.jim.2017.04.005.spa
dc.relation.referencesM. Ghasemi, T. Turnbull, S. Sebastian, and I. Kempson, “The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis,” Int J Mol Sci, vol. 22, no. 23, p. 12827, Nov. 2021, doi: 10.3390/ijms222312827spa
dc.relation.referencesJ. C. Stockert, R. W. Horobin, L. L. Colombo, and A. Blázquez-Castro, “Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives,” Acta Histochem, vol. 120, no. 3, pp. 159–167, Apr. 2018, doi: 10.1016/j.acthis.2018.02.005.spa
dc.relation.referencesT. J. Mead and V. Lefebvre, “Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections,” 2014, pp. 233–243. doi: 10.1007/978-1-62703-989-5_17.spa
dc.relation.referencesC. Chaves-López, R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi, “Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk,” Int J Food Microbiol, vol. 159, no. 1, pp. 39–46, Sep. 2012, doi: 10.1016/j.ijfoodmicro.2012.07.028spa
dc.relation.referencesJ. Wu, W. Liao, and C. C. Udenigwe, “Revisiting the mechanisms of ACE inhibitory peptides from food proteins,” Trends Food Sci Technol, vol. 69, pp. 214–219, Nov. 2017, doi: 10.1016/j.tifs.2017.07.011.spa
dc.relation.referencesL. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules, vol. 24, no. 20, p. 3770, Oct. 2019, doi: 10.3390/molecules24203770spa
dc.relation.referencesH.-L. Alakomi, E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander, “Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane,” Appl Environ Microbiol, vol. 66, no. 5, pp. 2001–2005, May 2000, doi: 10.1128/AEM.66.5.2001-2005.2000spa
dc.relation.referencesQ.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi: 10.3390/foods12163011spa
dc.relation.referencesM. E. Terzioğlu and İ. Bakirci, “Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture,” Probiotics Antimicrob Proteins, Jul. 2023, doi: 10.1007/s12602-023-10123-0.spa
dc.relation.referencesH. Fan, H. Liu, Y. Zhang, S. Zhang, T. Liu, and D. Wang, “Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development,” Journal of Future Foods, vol. 2, no. 2, pp. 143–159, Jun. 2022, doi: 10.1016/j.jfutfo.2022.03.003spa
dc.relation.referencesA. Durak, B. Baraniak, A. Jakubczyk, and M. Świeca, “Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds,” Food Chem, vol. 141, no. 3, pp. 2177–2183, Dec. 2013, doi: 10.1016/j.foodchem.2013.05.012spa
dc.relation.referencesA. Kaur, B. A. Kehinde, P. Sharma, D. Sharma, and S. Kaur, “Recently isolated food-derived antihypertensive hydrolysates and peptides: A review,” Food Chem, vol. 346, p. 128719, Jun. 2021, doi: 10.1016/j.foodchem.2020.128719.spa
dc.relation.referencesN. Ciau-Solís, W. Rodríguez-Canto, L. Fernández-Martínez, M. Sandoval-Peraza, L. Chel-Guerrero, and D. Betancur-Ancona, “Inhibitory activity of Angiotensin-I converting enzyme (ACE-I) from partially purified Phaseolus lunatus peptide fractions,” Process Biochemistry, Feb. 2024, doi: 10.1016/j.procbio.2024.01.022.spa
dc.relation.referencesE. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi: 10.5586/asbp.3638.spa
dc.relation.referencesL. J. McGaw, A. K. Jäger, and J. van Staden, “Antibacterial effects of fatty acids and related compounds from plants,” South African Journal of Botany, vol. 68, no. 4, pp. 417–423, Dec. 2002, doi: 10.1016/S0254-6299(15)30367-7.spa
dc.relation.referencesG. Casillas-Vargas et al., “Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents,” Prog Lipid Res, vol. 82, p. 101093, Apr. 2021, doi: 10.1016/j.plipres.2021.101093spa
dc.relation.referencesB. H. Kallipolitis, “How can naturally occurring fatty acids neutralize Listeria ?,” Future Microbiol, vol. 12, no. 14, pp. 1239–1241, Nov. 2017, doi: 10.2217/fmb-2017-0176spa
dc.relation.referencesV. S. Thibane, J. L. F. Kock, R. Ells, P. W. J. van Wyk, and C. H. Pohl, “Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis,” Mar Drugs, vol. 8, no. 10, pp. 2597–2604, Oct. 2010, doi: 10.3390/md8102597.spa
dc.relation.referencesC. Borreby, E. M. S. Lillebæk, and B. H. Kallipolitis, “Anti-infective activities of long-chain fatty acids against foodborne pathogens,” FEMS Microbiol Rev, vol. 47, no. 4, Jul. 2023, doi: 10.1093/femsre/fuad037.spa
dc.relation.referencesC. Altieri, D. Cardillo, A. Bevilacqua, and M. Sinigaglia, “Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides,” J Food Prot, vol. 70, no. 5, pp. 1206–1212, May 2007, doi: 10.4315/0362-028X-70.5.1206spa
dc.relation.referencesU. N. Das, “Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules,” Lipids Health Dis, vol. 7, no. 1, p. 37, 2008, doi: 10.1186/1476-511X-7-37.spa
dc.relation.referencesX. Li, W. Zhang, D. Niu, and X. Liu, “Effects of abiotic stress on chlorophyll metabolism,” Plant Science, vol. 342, p. 112030, May 2024, doi: 10.1016/j.plantsci.2024.112030.spa
dc.relation.referencesJ. Kim, Y.-Y. Kim, J.-Y. Chang, and H.-S. Kho, “Candidacidal Activity of Xylitol and Sorbitol,” J Oral Med Pain, vol. 41, no. 4, pp. 155–160, Dec. 2016, doi: 10.14476/jomp.2016.41.4.155spa
dc.relation.referencesV. Lattanzio, A. Cardinali, and V. Linsalata, “Plant Phenolics: A Biochemical and Physiological Perspective,” in Recent Advances in Polyphenol Research, Wiley, 2012, pp. 1–39. doi: 10.1002/9781118299753.ch1spa
dc.relation.referencesN. Hounsome, B. Hounsome, D. Tomos, and G. Edwards‐Jones, “Plant Metabolites and Nutritional Quality of Vegetables,” J Food Sci, vol. 73, no. 4, May 2008, doi: 10.1111/j.1750-3841.2008.00716.x.spa
dc.relation.referencesElfahmi et al., “Lignans from Cell Suspension Cultures of Phyllanthus n iruri , an Indonesian Medicinal Plant,” J Nat Prod, vol. 69, no. 1, pp. 55–58, Jan. 2006, doi: 10.1021/np050288b.spa
dc.relation.referencesJ. N. Kabera, E. Semana, A. R. Mussa, and X. He, “Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties,” Journal of Pharmacy and Pharmacology, vol. 2, pp. 377–392, 2014.spa
dc.relation.referencesH. Haraguchi, S. Kataoka, S. Okamoto, M. Hanafi, and K. Shibata, “Antimicrobial triterpenes fromIlex integra and the mechanism of antifungal action,” Phytotherapy Research, vol. 13, no. 2, pp. 151–156, Mar. 1999, doi: 10.1002/(SICI)1099-1573(199903)13:2<151::AID-PTR391>3.0.CO;2-C.spa
dc.relation.referencesM. Modaressi et al., “Antibacterial iridoid glucosides from Eremostachys laciniata,” Phytotherapy Research, vol. 23, no. 1, pp. 99–103, Jan. 2009, doi: 10.1002/ptr.2568spa
dc.relation.referencesH. You, H.-E. Yoon, J.-H. Yoon, H. Ko, and Y.-C. Kim, “Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents,” Bioorg Med Chem, vol. 19, no. 18, pp. 5383–5391, Sep. 2011, doi: 10.1016/j.bmc.2011.07.058.spa
dc.relation.referencesP. Behera and S. Balaji, “The forgotten sugar: A review on multifarious applications of melezitose,” Carbohydr Res, vol. 500, p. 108248, Feb. 2021, doi: 10.1016/j.carres.2021.108248.spa
dc.relation.referencesJ. A. Mora Vargas, J. Orduña Ortega, G. Metzker, J. E. Larrahondo, and M. Boscolo, “Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds,” Phytochemistry, vol. 177, p. 112433, Sep. 2020, doi: 10.1016/j.phytochem.2020.112433.spa
dc.relation.referencesW. Kobayashi, T. Miyase, S. Suzuki, H. Noguchi, and X.-M. Chen, “Oligosaccharide Esters from the Roots of Polygala a rillata,” J Nat Prod, vol. 63, no. 8, pp. 1066–1069, Aug. 2000, doi: 10.1021/np0000567spa
dc.relation.referencesP. R. K. Reddy et al., “Plant secondary metabolites as feed additives in calves for antimicrobial stewardship,” Anim Feed Sci Technol, vol. 264, p. 114469, Jun. 2020, doi: 10.1016/j.anifeedsci.2020.114469.spa
dc.relation.referencesN. Selwal et al., “Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies,” J Agric Food Res, vol. 14, p. 100702, Dec. 2023, doi: 10.1016/j.jafr.2023.100702.spa
dc.relation.referencesY. Li, D. Kong, Y. Fu, M. R. Sussman, and H. Wu, “The effect of developmental and environmental factors on secondary metabolites in medicinal plants,” Plant Physiology and Biochemistry, vol. 148, pp. 80–89, Mar. 2020, doi: 10.1016/j.plaphy.2020.01.006.spa
dc.relation.referencesB. A. Rasool Hassan, “Medicinal Plants (Importance and Uses),” Pharm Anal Acta, vol. 03, no. 10, 2012, doi: 10.4172/2153-2435.1000e139.spa
dc.relation.referencesA. G. Atanasov et al., “Discovery and resupply of pharmacologically active plant-derived natural products: A review,” Biotechnol Adv, vol. 33, no. 8, pp. 1582–1614, Dec. 2015, doi: 10.1016/j.biotechadv.2015.08.001spa
dc.relation.referencesT. Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi: 10.1186/s40659-019-0246-3.spa
dc.relation.referencesH. Patel and R. Krishnamurthy, “Elicitors in plant tissue culture,” J Pharmacogn Phytochem, vol. 2, no. 2, pp. 60–65, 2013spa
dc.relation.referencesJ. M. Al Khayri and P. M. Naik, “Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review,” Journal of Advanced Research in Biotechnology, vol. 1, no. 2, pp. 1–7, Jan. 2016, doi: 10.15226/2475-4714/1/2/00102spa
dc.relation.referencesP. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi: 10.1016/B978-0-12-812689-9.00009-1.spa
dc.relation.referencesM. Onrubia, E. Moyano, M. Bonfill, O. Expósito, J. Palazón, and R. M. Cusidó, “An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: The role of txs and bapt gene expression,” Biochem Eng J, vol. 53, no. 1, pp. 104–111, Dec. 2010, doi: 10.1016/j.bej.2010.10.001.spa
dc.relation.referencesO. Exposito et al., “Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate,” Biotechnol Prog, vol. 26, no. 4, pp. 1145–1153, Jul. 2010, doi: 10.1002/btpr.424.spa
dc.relation.referencesM. Arias Zabala, M. Angarita, J. M. Restrepo, L. A. Caicedo, and M. Perea, “Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana,” In Vitro Cellular & Developmental Biology - Plant, vol. 46, no. 3, pp. 233–238, Jun. 2010, doi: 10.1007/s11627-009-9249-z.spa
dc.relation.referencesM. Yousefzadi, M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon, “Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis,” Biotechnol Lett, vol. 32, no. 11, pp. 1739–1743, Nov. 2010, doi: 10.1007/s10529-010-0343-4.spa
dc.relation.referencesE. Sousa and M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.spa
dc.relation.referencesT. Krumm, K. Bandemer, and W. Boland, “Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine‐ and isoleucine conjugates of 1‐oxo‐ and 1‐hydroxyindan‐4‐carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway,” FEBS Lett, vol. 377, no. 3, pp. 523–529, Dec. 1995, doi: 10.1016/0014-5793(95)01398-9.spa
dc.relation.referencesL. Botero, S. Vizcaíno, W. Quiñones, F. Echeverri, J. Gil, and D. Durango, “Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives,” Biotechnology Reports, vol. 29, p. e00601, Mar. 2021, doi: 10.1016/j.btre.2021.e00601spa
dc.relation.referencesY. Nakamura et al., “Synthesis of 6-Substituted 1-oxoindanoyl Isoleucine Conjugates and Modeling Studies with the COI1-JAZ Co-Receptor Complex of Lima Bean,” J Chem Ecol, vol. 40, no. 7, pp. 687–699, Jul. 2014, doi: 10.1007/s10886-014-0469-2.spa
dc.relation.referencesT. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiol Plant, vol. 15, no. 3, pp. 473–497, Jul. 1962, doi: 10.1111/j.1399-3054.1962.tb08052.x.spa
dc.relation.referencesJ. Garg, G. Ghoshal, S. K. Bhadada, and O. Katare, “Derivatisation Mechanistic-guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, p. 100601, Jun. 2024, doi: 10.1016/j.phyplu.2024.100601.spa
dc.relation.referencesK. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi: 10.1007/BF00269047spa
dc.relation.referencesH. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi: 10.1007/s11240-014-0467-7.spa
dc.relation.referencesD. Gabotti et al., “Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity,” Molecules, vol. 24, no. 22, p. 4056, Nov. 2019, doi: 10.3390/molecules24224056spa
dc.relation.referencesT.-T. Ho, H. N. Murthy, and S.-Y. Park, “Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures,” Int J Mol Sci, vol. 21, no. 3, p. 716, Jan. 2020, doi: 10.3390/ijms21030716spa
dc.relation.referencesJ. Dong, G. Wan, and Z. Liang, “Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture,” J Biotechnol, vol. 148, no. 2–3, pp. 99–104, Jul. 2010, doi: 10.1016/j.jbiotec.2010.05.009spa
dc.relation.referencesS. Chattopadhyay, S. Farkya, A. K. Srivastava, and V. S. Bisaria, “Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures,” Biotechnology and Bioprocess Engineering, vol. 7, no. 3, pp. 138–149, Jun. 2002, doi: 10.1007/BF02932911spa
dc.relation.referencesR. Jeyasri, P. Muthuramalingam, K. Karthick, H. Shin, S. H. Choi, and M. Ramesh, “Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 153, no. 3, pp. 447–458, Jun. 2023, doi: 10.1007/s11240-023-02485-8.spa
dc.relation.referencesA. Humbal and B. Pathak, “Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (‘VSI: secondary metabolites’),” Plant Stress, vol. 8, p. 100166, Jun. 2023, doi: 10.1016/j.stress.2023.100166.spa
dc.relation.referencesJ.-H. Kim et al., “Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors,” Plants, vol. 12, no. 6, p. 1390, Mar. 2023, doi: 10.3390/plants12061390.spa
dc.relation.referencesM. A. Farag, H. Mekky, and S. El-Masry, “Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation,” J Adv Res, vol. 7, no. 5, pp. 681–689, Sep. 2016, doi: 10.1016/j.jare.2016.07.002spa
dc.relation.referencesJ. Zhao, L. C. Davis, and R. Verpoorte, “Elicitor signal transduction leading to production of plant secondary metabolites,” Biotechnol Adv, vol. 23, no. 4, pp. 283–333, Jun. 2005, doi: 10.1016/j.biotechadv.2005.01.003spa
dc.relation.referencesE. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi: 10.5586/asbp.3638spa
dc.relation.referencesP. Ahmad et al., “Jasmonates: Multifunctional Roles in Stress Tolerance,” Front Plant Sci, vol. 7, Jun. 2016, doi: 10.3389/fpls.2016.00813spa
dc.relation.referencesN. De Geyter, A. Gholami, S. Goormachtig, and A. Goossens, “Transcriptional machineries in jasmonate-elicited plant secondary metabolism,” Trends Plant Sci, vol. 17, no. 6, pp. 349–359, Jun. 2012, doi: 10.1016/j.tplants.2012.03.001spa
dc.relation.referencesN. Verma and S. Shukla, “Impact of various factors responsible for fluctuation in plant secondary metabolites,” J Appl Res Med Aromat Plants, vol. 2, no. 4, pp. 105–113, Dec. 2015, doi: 10.1016/j.jarmap.2015.09.002.spa
dc.relation.referencesG. TopÇu, G. Herrmann, U. Kolak, C. Gören, A. Porzel, and T. M. Kutchan, “Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia,” Nat Prod Res, vol. 21, no. 2, pp. 100–105, Feb. 2007, doi: 10.1080/14786410500462884.spa
dc.relation.referencesK. Zalewski, S. Czaplicki, R. Rafałowski, R. Stryiński, A. Okorski, and B. Nitkiewicz, “The effect of exogenous methyl jasmonate on the fatty acid composition of germinating triticale kernels (x Triticosecale Wittmack, cv. Ugo),” Curr Plant Biol, vol. 28, p. 100225, Dec. 2021, doi: 10.1016/j.cpb.2021.100225spa
dc.relation.referencesO. Parra, A. M. Gallego, A. Urrea, L. F. Rojas, C. Correa, and L. Atehortúa, “Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.,” Plant Physiology and Biochemistry, vol. 111, pp. 59–66, Feb. 2017, doi: 10.1016/j.plaphy.2016.11.013spa
dc.relation.referencesB. Parthier, “Jasmonates, New Regulators of Plant Growth and Development: Many Facts and Few Hypotheses on their Actions,” Botanica Acta, vol. 104, no. 6, pp. 446–454, Dec. 1991, doi: 10.1111/j.1438-8677.1991.tb00257.x.spa
dc.relation.referencesS. Fonseca, J. M. Chico, and R. Solano, “The jasmonate pathway: the ligand, the receptor and the core signalling module,” Curr Opin Plant Biol, vol. 12, no. 5, pp. 539–547, Oct. 2009, doi: 10.1016/j.pbi.2009.07.013spa
dc.relation.referencesJ. Szczegielniak, “[Wound signal transduction pathways in plants].,” Postepy Biochem, vol. 53, no. 2, pp. 121–32, 2007spa
dc.relation.referencesY. Wang, S. Mostafa, W. Zeng, and B. Jin, “Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses,” Int J Mol Sci, vol. 22, no. 16, p. 8568, Aug. 2021, doi: 10.3390/ijms22168568.spa
dc.relation.referencesS. Gandi, K. Rao, B. Chodisetti, and A. Giri, “Elicitation of Andrographolide in the Suspension Cultures of Andrographis paniculata,” Appl Biochem Biotechnol, vol. 168, no. 7, pp. 1729–1738, Dec. 2012, doi: 10.1007/s12010-012-9892-4.spa
dc.relation.referencesS. S. Mian, M. I. Alam, N. A. Khan, and M. Shuaib, “Standardisation of different extracts of detoxified Nux-vomica seeds with its comparative study by TLC and HPTLC,” J Herb Med, vol. 42, p. 100792, Dec. 2023, doi: 10.1016/j.hermed.2023.100792spa
dc.relation.referencesE. Kaale, P. Risha, and T. Layloff, “TLC for pharmaceutical analysis in resource limited countries,” J Chromatogr A, vol. 1218, no. 19, pp. 2732–2736, May 2011, doi: 10.1016/j.chroma.2010.12.022spa
dc.relation.referencesW. Wen et al., “Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC–direct bioautography combined with comprehensive 2D GC × GC-TOFMS,” Journal of Chromatography B, vol. 1234, p. 124026, Feb. 2024, doi: 10.1016/j.jchromb.2024.124026spa
dc.relation.referencesL. Qi, C. Chen, and P. Li, “Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode‐array detection and time‐of‐flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 19, pp. 3227–3242, Oct. 2009, doi: 10.1002/rcm.4245spa
dc.relation.referencesS. Sang et al., “Citrifolinin A, a new unusual iridoid with inhibition of activator protein-1 (AP-1) from the leaves of noni (Morinda citrifolia L.) ,” Tetrahedron Lett, pp. 1823–1825, 2001.spa
dc.relation.referencesF. Xu, X. Huang, H. Wu, and X. Wang, “Beneficial health effects of lupenone triterpene: A review,” Biomedicine & Pharmacotherapy, vol. 103, pp. 198–203, Jul. 2018, doi: 10.1016/j.biopha.2018.04.019spa
dc.relation.referencesS.-S. Lee et al., “Tricin derivatives as anti-inflammatory and anti-allergic constituents from the aerial part of Zizania latifolia,” Biosci Biotechnol Biochem, vol. 79, no. 5, pp. 700–706, May 2015, doi: 10.1080/09168451.2014.997184.spa
dc.relation.referencesM. O. Agbo, D. Lai, F. B. C. Okoye, P. O. Osadebe, and P. Proksch, “Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis,” Fitoterapia, vol. 86, pp. 78–83, Apr. 2013, doi: 10.1016/j.fitote.2013.02.006spa
dc.relation.referencesY. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi: 10.1016/j.scitotenv.2021.151990spa
dc.relation.referencesS. Z. M. R. Jamil, E. R. Rohani, S. N. Baharum, and N. M. Noor, “Metabolite profiles of callus and cell suspension cultures of mangosteen,” 3 Biotech, vol. 8, no. 8, p. 322, Aug. 2018, doi: 10.1007/s13205-018-1336-6spa
dc.relation.referencesL. K. Rodríguez-Sánchez et al., “Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae),” Biotechnology Reports, vol. 28, p. e00559, Dec. 2020, doi: 10.1016/j.btre.2020.e00559spa
dc.relation.referencesD. Durango, N. Pulgarin, F. Echeverri, G. Escobar, and W. Quiñones, “Effect of Salicylic Acid and Structurally Related Compounds in the Accumulation of Phytoalexins in Cotyledons of Common Bean (Phaseolus vulgaris L.) Cultivars,” Molecules, vol. 18, no. 9, pp. 10609–10628, Sep. 2013, doi: 10.3390/molecules180910609spa
dc.relation.referencesA. Nahrstedt, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae,” Phytochemistry, vol. 39, no. 2, pp. 375–378, May 1995, doi: 10.1016/0031-9422(94)00906-A.spa
dc.relation.referencesL.-X. Wang et al., “Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications,” Phytochemistry, vol. 202, p. 113326, Oct. 2022, doi: 10.1016/j.phytochem.2022.113326spa
dc.relation.referencesD. Mendoza, O. Cuaspud, J. P. Arias, O. Ruiz, and M. Arias, “Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana,” Biotechnology Reports, vol. 19, p. e00273, Sep. 2018, doi: 10.1016/j.btre.2018.e00273spa
dc.relation.referencesD. Mendoza, J. P. Arias, O. Cuaspud, O. Ruiz, and M. Arias, “FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate,” Biotechnology Reports, vol. 27, p. e00519, Sep. 2020, doi: 10.1016/j.btre.2020.e00519.spa
dc.relation.referencesB. Chodisetti, K. Rao, S. Gandi, and A. Giri, “Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid,” In Vitro Cellular & Developmental Biology - Plant, vol. 51, no. 1, pp. 88–92, Feb. 2015, doi: 10.1007/s11627-014-9655-8.spa
dc.relation.referencesM. Taurino et al., “Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures,” Springerplus, vol. 4, no. 1, p. 49, Dec. 2015, doi: 10.1186/s40064-015-0831-zspa
dc.relation.referencesC. D’Onofrio, A. Cox, C. Davies, and P. K. Boss, “Induction of secondary metabolism in grape cell cultures by jasmonates,” Functional Plant Biology, vol. 36, no. 4, p. 323, 2009, doi: 10.1071/FP08280spa
dc.relation.referencesJ. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi: 10.1016/j.pbi.2009.05.011spa
dc.relation.referencesJ. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi: 10.1016/j.pbi.2009.05.011spa
dc.relation.referencesM. He and N.-Z. Ding, “Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response,” Front Plant Sci, vol. 11, Sep. 2020, doi: 10.3389/fpls.2020.562785spa
dc.relation.referencesK.-X. Zhang, Y.-J. Hao, M.-Y. Jin, M.-L. Lian, J. Jiang, and X.-C. Piao, “Cell culture of Euphorbia fischeriana and enhancement of terpenoid accumulation through MeJA elicitation,” Ind Crops Prod, vol. 207, p. 117781, Jan. 2024, doi: 10.1016/j.indcrop.2023.117781.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBioprospección
dc.subject.agrovocCultivo de tejidos
dc.subject.agrovocCultivo in vitro
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.lembBorojó - Propiedades medicinales
dc.subject.lembBiotecnología de alimentos
dc.subject.proposalAlibertia patinoi
dc.subject.proposalBioprospecciónspa
dc.subject.proposalCultivos de células vegetales en suspensiónspa
dc.subject.proposalBioactividadesspa
dc.subject.proposalFitoquímicaspa
dc.subject.proposalVolátilesspa
dc.subject.proposalBioprospectingeng
dc.subject.proposalPlant cell suspension cultureeng
dc.subject.proposalPhytochemistryeng
dc.subject.proposalantimicrobianaspa
dc.subject.proposalcomposición químicaspa
dc.subject.proposalelicitoresspa
dc.subject.proposalantimicrobialeng
dc.subject.proposalchemical compositioneng
dc.subject.proposalelicitorseng
dc.titleBioprospección de tejidos in vivo y cultivos de células in vitro de Alibertia patinoispa
dc.title.translatedBioprospecting of Alibertia patinoi in vivo tissues and in vitro cell cultureseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/draftspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBioprospección de borojóspa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075657057.2024.pdf
Tamaño:
7.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4 (4) (1).pdf
Tamaño:
256.4 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia tesis