Caracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburrá

dc.contributor.advisorMesa Sánchez, Oscar Joséspa
dc.contributor.advisorHoyos Ortíz, Carlos Davidspa
dc.contributor.authorCorrea Sánchez, Nathaliaspa
dc.coverage.regionValle de Aburrá, Antioquia, Colombiaspa
dc.date.accessioned2020-09-02T14:34:42Zspa
dc.date.available2020-09-02T14:34:42Zspa
dc.date.issued2020-07-30spa
dc.descriptionilustraciones, diagramas, figuras, mapas, tablasspa
dc.description.abstractEste trabajo tiene por propósito el estudio de las caracterı́sticas meteorológicas, energéticas, técnicas y morfológicas, relevantes de los municipios del Área Metropolitana del Valle de Aburrá (AMVA), para generar energı́a solar fotovoltaica a pequeña escala en el área urbana de esta región. Lo cual es importante, para promover la diversificación de la matriz energética y mejorar el acceso a la energı́a de los ciudadanos, de manera que la planificación energética de los municipios del AMVA pueda ser más sostenible y resiliente. Para alcanzar este objetivo, se usan herramientas de información geográfica, satelital y meteorológica en tierra, en conjunto con mediciones de potencia de tres paneles solares experimentales, que se ubican en zonas contrastantes del Valle de Aburrá. Los resultados obtenidos involucran el análisis del papel de las nubes sobre radiación solar superficial; también, el comportamiento de diferentes indicadores de rendimiento de sistemas fotovoltaicos bajo las condiciones regionales, que se complementan con una predicción estadı́stica de potencia en el corto plazo y un análisis de prefactibilidad para una instalación fotovoltaica hipotética. Adicional a los anteriores, el fruto más relevante en este trabajo, es la estimación del potencial de generación de energı́a fotovoltaica aprovechando la morfologı́a urbana de zonas urbanas representativas. (Texto tomado de la fuente)spa
dc.description.abstractThe purpose of this work is to study the relevant meteorological, energetic, technical, and morphological characteristics of the municipalities of the Metropolitan Area of the Aburrá Valley (AMVA), in order to generate photovoltaic solar energy on a small scale in the urban area of this region. This is important, to promote the diversification of the energy matrix and improve the access to energy for citizens so that the energy planning of AMVA municipalities can be more sustainable and resilient. To achieve this objective, geographic, satellite, and meteorological information tools are used on the ground, in conjunction with power measurements from three experimental solar panels, which are located in contrasting areas of the Aburrá Valley. The results obtained involve the analysis of the role of clouds on surface solar radiation; also, the behavior of different performance indicators of photovoltaic systems under regional conditions, which are complemented with a statistical power prediction in the short term and a pre-feasibility analysis for a hypothetical photovoltaic installation. In addition to the above, the most relevant result of this work is the estimation of the photovoltaic energy generation potential by taking advantage of the urban morphology of representative urban areas.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaMeteorología Energéticaspa
dc.format.extent124spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCorrea, N. (2020). Caracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburra. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín.spa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78359
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAdaramola, M. S. & Vågnes, E. E. (2015). Preliminary assessment of a small-scale rooftop pv-grid tied in Norwegian climatic conditions. Energy Conversion and Management, 90, 458–465.spa
dc.relation.referencesAguirre-Mendoza, A. M., Dı́az-Mendoza, C., & Pasqualino, J. (2019). Renewable energy potential analysis in non-interconnected islands. case study: Isla Grande, Corales del Rosario archipelago, Colombia. Ecological Engineering, 130, 252–262.spa
dc.relation.referencesAngel, S., Carmona, M., Villegas, R., et al. (2001). Gestión ambiental en proyectos de desarrollo. Number Doc. 21580) CO-BAC, Bogotá.spa
dc.relation.referencesBarragán-Escandón, E. A., Zalamea-León, E. F., Terrados-Cepeda, J., & Parra-González, A. (2019). Las energı́as renovables a escala urbana. aspectos determinantes y selección tecnológica. Revista Bitácora Urbano Territorial, 29 (2), 39–48.spa
dc.relation.referencesBeyer, H.-G. (1997). An alternative explanation for the manner in which genetic algorithms operate. BioSystems, 41 (1), 1–15.spa
dc.relation.referencesBitar, S., Susana, M., Chamas, B., et al. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energı́a en el sector industrial de Colombia.spa
dc.relation.referencesBorja, T. C. & Moreno, G. R. (2009). Evaluación interdimensional de impactos ambientales sobre la dimensión fı́sica ocasionados por cultivos de palma aceitera y la ganaderı́a extensiva en la selva húmeda tropical del bajo Atrato, chocó, Colombia. Gestión y Ambiente, 12 (3), 37–47.spa
dc.relation.referencesCadena Dı́az, J. D., Becerra Gona, Á. C., et al. (2016). Prefactibilidad de la implementación de sistemas de generación fotovoltaica en empresas de la zona industrial de Puente Aranda en la ciudad de Bogotá.spa
dc.relation.referencesCastaneda, M., Zapata, S., & Aristizabal, A. (2018). Assessing the effect of incentive policies on residential PV investments in Colombia. Energies, 11 (10), 2614.spa
dc.relation.referencesCepeda, J. & Sierra, A. (2017). Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales soluciones. Cepedajuan2017. pdf.spa
dc.relation.referencesCollins, K., Powell, B., & Anctil, A. (2015). Life cycle assessment of silicon solar panels manufacturing in the united states. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), (pp. 1–4). IEEE.spa
dc.relation.referencesCompagnon, R. (2004). Solar and daylight availability in the urban fabric. Energy and Buildings, 36 (4), 321–328spa
dc.relation.referencesCREG (2018). Resolución no. 030 de 2018. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191? OpenDocument, Último acceso el 2020-01-09.spa
dc.relation.referencesCruz Carmona, J. (2014). Actualidad de materiales para la captación de energı́a solar térmica y fotovoltaica.spa
dc.relation.referencesCurry, J. A. & Webster, P. J. (1998). Thermodynamics of atmospheres and oceans. Elsevier.spa
dc.relation.referencesDAP (2011). Perfil socio económico-medellı́n total. https://www.medellin.gov.co/irj/go/km/docs/wpccontent/Sites, Último acceso el 2020-02-20.spa
dc.relation.referencesDierauf, T., Growitz, A., Kurtz, S., Cruz, J. L. B., Riley, E., & Hansen, C. (2013). Weather-corrected performance ratio. Technical report, National Renewable Energy Lab.(NREL), Gol- den, CO (United States).spa
dc.relation.referencesDogniaux, R. & Lemoine, M. (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. In Solar Radiation Data (pp. 94–107). Springer.spa
dc.relation.referencesDubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world–a review. Energy Procedia, 33, 311–321.spa
dc.relation.referencesDuffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar Engineering of Thermal Processes, Photovoltaics and Wind. John Wiley & Sons.spa
dc.relation.referencesEcheverri, A. & Orsini, F. M. (2011). Informalidad y urbanismo social en medellı́n. Sostenible?, (12), 11–24.spa
dc.relation.referencesEicker, U. & Dalibard, A. (2011). Photovoltaic–thermal collectors for night radiative cooling of buildings. Solar Energy, 85 (7), 1322–1335.spa
dc.relation.referencesEngerer, N. & Mills, F. (2014). Kpv: A clear-sky index for photovoltaics. Solar energy, 105, 679–693.spa
dc.relation.referencesFahrenbruch, A. & Bube, R. (2012). Fundamentals of solar cells: photovoltaic solar energy conversion. Elsevier.spa
dc.relation.referencesFernández, E. F., Pérez-Higueras, P., Garcia Loureiro, A. J., & Vidal, P. G. (2013). Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Progress in Photovoltaics: Research and Applications, 21 (4), 693–701.spa
dc.relation.referencesFlórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana y vegetal en el balance de energı́a superficial del valle de aburrá. Lı́nea de Investigación: Hidrometeorologı́a ? Meteorologı́a urbana.spa
dc.relation.referencesFormación, E. (2007). Energı́a solar fotovoltaica. FC Editorial.spa
dc.relation.referencesFu, P. & Rich, P. M. (1999). Design and implementation of the solar analyst: an ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the nineteenth annual ESRI user conference, volume 1, (pp. 1–31). San Diego USA.spa
dc.relation.referencesFu, P. & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and electronics in agriculture, 37 (1-3), 25–35.spa
dc.relation.referencesGau, S., Volltrauer, H., Faras, F., Delahoy, A., Eser, E., & Kiss, Z. (1985). Manufacturing process for interconnected submodules of hydrogenated amorphous silicon photovoltaic panels. Applied physics letters, 47 (12), 1317–1319.spa
dc.relation.referencesGhazi, S. & Ip, K. (2014). The effect of weather conditions on the efficiency of pv panels in the southeast of uk. Renewable energy, 69, 50–59.spa
dc.relation.referencesGrätzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic chemistry, 44 (20), 6841–6851.spa
dc.relation.referencesGuzmán, G. (2018). Análisis de la influencia del diseño urbano en la meteorologı́a del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.spa
dc.relation.referencesHerrera, L., Miranda, A., Arango-Zuluaga, E. I., Ramos-Paja, C. A., & González-Montoya, D. (2013). Dimensionamiento de sistemas de generación fotovoltaicos localizados en la ciudad de medellı́n. TecnoLógicas, 289–301.spa
dc.relation.referencesInman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in energy and combustion science, 39 (6), 535–576.spa
dc.relation.referencesIqbal, M. (1983). Solar radiation.spa
dc.relation.referencesIqbal, M. (2012). An introduction to solar radiation. Elsevier.spa
dc.relation.referencesIzquierdo, S., Rodrigues, M., & Fueyo, N. (2008). A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, 82 (10), 929–939.spa
dc.relation.referencesJoseph, J. H. & Kagan, V. (1988). The reflection of solar radiation from bar cloud arrays. Journal of Geophysical Research: Atmospheres, 93 (D3), 2405–2416.spa
dc.relation.referencesKafarov, V. V., Rosso Ceron, A. M., Blanco Patino, F. G., & Araque Duarte, J. A. (2017). Potential assessment of renewable energy sources in non-interconnected zones of Colombia using geographic information system-ArcGIS study of cases. Chemical Engineering Transactions.spa
dc.relation.referencesKouhestani, F. M., Byrne, J., Johnson, D., Spencer, L., Hazendonk, P., & Brown, B. (2019). Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada. International Journal of Energy and Environmental Engineering, 10 (1), 13–32.spa
dc.relation.referencesKumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a gis environment. International Journal of Geographical Information Science, 11 (5), 475–497.spa
dc.relation.referencesKumar, R. & Umanand, L. (2005). Estimation of global radiation using clearness index model for sizing photovoltaic system. Renewable energy, 30 (15), 2221–2233.spa
dc.relation.referencesLau, K. K.-L., Lindberg, F., Johansson, E., Rasmussen, M. I., & Thorsson, S. (2017). Investigating solar energy potential in tropical urban environment: A case study of dar es salaam, Tanzania. Sustainable cities and Society, 30, 118–127.spa
dc.relation.referencesLeduc, W. R. & Van Kann, F. M. (2013). Spatial planning based on urban energy harvesting toward productive urban regions. Journal of Cleaner Production, 39, 180–190.spa
dc.relation.referencesLeón-Vargas, F., Garcı́a-Jaramillo, M., & Krejci, E. (2019). Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: implication of new incentives included in law 1715. Renewable energy, 130, 1082–1091.spa
dc.relation.referencesLi, D. H., Cheung, G. H., & Lam, J. C. (2005). Analysis of the operational performance and efficiency characteristic for photovoltaic system in hong kong. Energy conversion and management, 46 (7-8), 1107–1118.spa
dc.relation.referencesLiou, K.-N. (2002). An introduction to atmospheric radiation. Elsevier.spa
dc.relation.referencesMarrugo, N. F., Amaya, D., & Ramos, O. (2017). Analysis of the effects of el niño in photovoltaic systems in Colombia. International Journal of Renewable Energy Research (IJRER), 7 (2), 622-628.spa
dc.relation.referencesMartı́nez, A. (2017). Islas de calor en el área urbana del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia -Sede Medellı́n. Lı́nea de Investigación: Meteorologı́a Urbana.spa
dc.relation.referencesMartinez, R. & Forero, E. (2018). Estimation of energy efficiency in solar photovoltaic panels considering environmental variables. In IOP Conference Series: Materials Science and Engineering, volume 437, (pp. 012008). IOP Publishing.spa
dc.relation.referencesMarty, C. & Philipona, R. (2000). The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophysical Research Letters, 27 (17), 2649–2652.spa
dc.relation.referencesMattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline pv module temperature using a simple method of energy balance. Renewable energy, 31 (4), 553–567.spa
dc.relation.referencesMcCorkel, J., Efremova, B., Hair, J., Andrade, M., & Holben, B. (2020). Goes-16 abi solar reflective channel validation for earth science application. Remote Sensing of Environment, 237, 111438.spa
dc.relation.referencesMcQueen, G. & Thorley, S. (1991). Are stock returns predictable? a test using markov chains. The Journal of Finance, 46 (1), 239–263.spa
dc.relation.referencesMellit, A., Benghanem, M., Arab, A. H., & Guessoum, A. (2005). A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of markov transition matrices approach. Solar energy, 79 (5), 469–482.spa
dc.relation.referencesMuñoz, E. (2019). Soil moisture dynamics in water- and energy-limited ecosystems. Application to slope stability. PhD thesis, Universidad Nacional de Colombia - Sede Medellı́n.spa
dc.relation.referencesMurcia, H. R. (2008). Desarrollo de la energía solar en Colombia y sus perspectivas. Revista de ingeniería, (28), 83–89.spa
dc.relation.referencesNOAA (2020). National weather service. climate prediction center. cold & warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ ensostuff/ONI_v5.php, Último acceso el 2020-01-06.spa
dc.relation.referencesPacheco, R., Ordóñez, J., & Martı́nez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16 (6), 3559–3573.spa
dc.relation.referencesPaoli, C., Voyant, C., Muselli, M., & Nivet, M.-L. (2010). Forecasting of preprocessed daily solar radiation time series using neural networks. Solar Energy, 84 (12), 2146–2160.spa
dc.relation.referencesParera, R. G. (2008). Diseño y cálculo de una instalación fotovoltaica de 1, 1 mw. Tarragona: Universitat Rovira i Virgili. Dep. Enginyeria Electrònica i Automàtica.spa
dc.relation.referencesPeterson, J. T. & Flowers, E. C. (1977). Interactions between air pollution and solar radiation. Solar Energy, 19 (1), 23–32.spa
dc.relation.referencesPoveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in enso related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water resources research, 37 (8), 2169–2178.spa
dc.relation.referencesPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133 (1), 228–240.spa
dc.relation.referencesRedweik, P., Catita, C., & Brito, M. (2013). Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97, 332–341.spa
dc.relation.referencesReich, N. H., Mueller, B., Armbruster, A., Van Sark, W. G., Kiefer, K., & Reise, C. (2012). Performance ratio revisited: is pr¿90 % realistic? Progress in Photovoltaics: Research and Applications, 20 (6), 717–726.spa
dc.relation.referencesRodrı́guez-Urrego, D. & Rodrı́guez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92, 160–170.spa
dc.relation.referencesRosas-Flores, J. A., Zenón-Olvera, E., & Gálvez, D. M. (2019). Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renewable and Sustainable Energy Reviews, 116, 109412.spa
dc.relation.referencesRossow, W. B. & Garder, L. C. (1993). Cloud detection using satellite measurements of infrared and visible radiances for isccp. Journal of climate, 6 (12), 2341–2369.spa
dc.relation.referencesSalamanca-Ávila, S. (2017). Propuesta de diseño de un sistema de energı́a solar fotovoltaica. caso de aplicación en la ciudad de bogotá. Revista cientı́fica, (30), 263–277.spa
dc.relation.referencesSchmit, T. J., Lindstrom, S. S., Gerth, J. J., & Gunshor, M. M. (2018). Applications of the 16 spectral bands on the advanced baseline imager (abi).spa
dc.relation.referencesSIATA (2020). Sistema de alerta temprana de medellı́n y el valle de aburrá. https://siata.gov.co/siata_nuevo/, Último acceso el 2020-02-15.spa
dc.relation.referencesSolargis (2020). Global solar atlas 2.0. https://globalsolaratlas.info/map?c=11.523088, 8.173828,3, Último acceso el 2020-01-15.spa
dc.relation.referencesSpencer, J. (1971). Fourier series reprensentation of the position of the sun. Search, 2 (5), 172.spa
dc.relation.referencesStein, J., Hansen, C., & Reno, M. J. (2012). The variability index: A new and novel metric for quantifying irradiance and pv output variability. Technical report, Sandia National Laboratories.spa
dc.relation.referencesThomas, R. W. (1984). Solar reflection from interacting and shadowing cloud elements. Journal of Geophysical Research: Atmospheres, 89 (D5), 7179–7185.spa
dc.relation.referencesToro, C. A. (2019). Aplicaciones de la visión artificial como herramienta de gestión de riesgo aplicadas al monitoreo hidrometeorológico en el valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.spa
dc.relation.referencesTzoumanikas, P., Nikitidou, E., Bais, A., & Kazantzidis, A. (2016). The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system. Renewable Energy, 95, 314–322.spa
dc.relation.referencesUPME (2012). Caracterización energética del sector residencial urbano y rural en colombia. https://bdigital.upme.gov.co/bitstream/001/1111/2/v.2.pdf, Último acceso el 2020-02-20.spa
dc.relation.referencesUPME, I. et al. (2018). Atlas de Radiación solar de Colombia.spa
dc.relation.referencesUrrego-Ortiz, J., Martı́nez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and day-ahead forecasting of hourly solar radiation in medellı́n, Colombia. Energies, 12 (22), 4402.spa
dc.relation.referencesWallace, J. M. & Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.spa
dc.relation.referencesWinkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A., & Concha, M. (2017). Gps receiver on-orbit performance for the goes-r spacecraft.spa
dc.relation.referencesWulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., Van Baelen, J., & Zus, F. (2015). A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics, 53 (3), 819–895.spa
dc.relation.referencesXM (2020). Reporte de capacidad efectiva por tipo de generación. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad, Último acceso el 2020-02-15.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.proposalSolar radiationeng
dc.subject.proposalRadiación solarspa
dc.subject.proposalFuente de energía renovablespa
dc.subject.proposalRenewable energy sourceeng
dc.subject.proposalSosteniblespa
dc.subject.proposalSustainableeng
dc.subject.proposalClimate changeeng
dc.subject.proposalCambio climáticospa
dc.subject.proposalSolar panelseng
dc.subject.proposalPaneles solaresspa
dc.subject.proposalPlanificación urbanaspa
dc.subject.proposalUrban planningeng
dc.titleCaracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburráspa
dc.title.translatedCharacterization of solar radiation for the estimation of photovoltaic energy potential in urban environments, case study: Aburra Valleyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037625080.2020.pdf
Tamaño:
14.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: