Aproximación comportamental y glutamatérgica de un modelo de roedor del trastorno del espectro autista por exposición prenatal a ácido valproico

dc.contributor.advisorDueñas Gómez, Zulma Janeth
dc.contributor.advisorCárdenas Parra, Luis Fernando
dc.contributor.authorMoreno Avendaño, Johana Andrea
dc.contributor.researchgroupNeurofisiologia Celularspa
dc.date.accessioned2022-09-05T13:47:27Z
dc.date.available2022-09-05T13:47:27Z
dc.date.issued2022-05
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl trastorno del espectro autista (TEA) es considerado un desorden en el neurodesarrollo caracterizado por déficit en la interacción social, la comunicación y presencia de comportamientos repetitivos y estereotipados. Se estima que aproximadamente un 16 % de la población menor de 15 años en Colombia padece algún tipo de trastorno del desarrollo, entre ellos los TEA. Colombia no cuenta con cifras oficiales que establezcan la prevalencia en el país de este trastorno. Estudios post-mortem y de imagenología diagnóstica se han aproximado a la neurobiología subyacente del TEA, sin embargo, los modelos animales permiten la exploración en detalle y en un entorno controlado de los mediadores neuroanatómicos, neurofisiológicos y moleculares, relacionados con el fenotipo del trastorno. La evidencia sugiere que los factores ambientales y las interacciones genético-ambientales contribuyen a la etiología del autismo, por ejemplo, la exposición prenatal a ácido Valpróico (por sus siglas en inglés: VPA), se asocia con una alta incidencia de autismo en los nacidos; de hecho, la embriogénesis temprana como periodo crítico para el desarrollo de trastornos del neurodesarrollo sustenta el desarrollo de biomodelos que emulan la complejidad fenotípica de la enfermedad. Teniendo en cuenta el potencial uso del modelo inducido por exposición prenatal al VPA para dilucidar aspectos biológicos y conductuales de la enfermedad en humanos, esta investigación pretendió describir los patrones morfológicos, comportamentales y moleculares de las crías de ratas hembra Wistar tratadas con una única dosis de 500 mg/Kg de VPA en el día 12.5 de gestación en comparación con controles expuestos a solución salina. Nuestros resultados evidencian una alta tasa de reabsorción fetal de las hembras tratadas, sin embargo, los embriones expuestos a VPA que sobrevivieron mostraron cambios neuroanatómicos, morfológicos y alteraciones comportamentales significativas respecto al grupo control. Se halló aumento en el número de nacidos con malformaciones físicas, defectos en la formación falanges, longitud y forma de la cola y casos esporádicos de cromodacriorrea, mientras que las pruebas comportamentales revelan alteraciones en la sociabilidad y repetitividad, comportamientos típicos del fenotipo autista humano. Los resultados de esta investigación sustentan el uso experimental del biomodelo de autismo por exposición prenatal al VPA, demuestran la validez aparente y de constructo del modelo y su potencial utilidad para el desarrollo de futuras líneas de investigación que profundicen aspectos clave en la compresión de la neurobiología del TEA y el hallazgo de blancos terapéuticos para el tratamiento de la enfermedad. (Texto tomado de la fuente)spa
dc.description.abstractAutism Spectrum Disorder (ASD) is considered a neurodevelopmental disorder characterized by deficits in social interaction, communication, and the presence of repetitive and stereotyped behaviors. It is estimated that approximately 16% of the population under 15 years of age in Colombia will suffer from some type of developmental disorder, including ASD. Colombia does not have official figures that established the prevalence of this disorder in the country. On the other hand, post-mortem and diagnostic imaging studies have come closer to the underlying neurobiology of ASD, however, animal models allow the exploration in detail and in a controlled environment of the neuroanatomical, neurophysiological, and molecular mediators related to the phenotype of the disorder. Evidence suggests that environmental factors and gene-environment interactions contribute to the etiology of autism, for example, prenatal exposure to valproic acid (VPA) is associated with a high incidence of autism in newborns; in fact, early embryogenesis as a critical period for the development of neurodevelopmental disorders supports the development of biomodels that emulate the phenotypic complexity of the disease. Considering the potential use of the model induced by prenatal exposure to VPA to elucidate biological and behavioral factors of the disease in humans, this research aimed to describe the morphological, behavioral and molecular patterns of the offspring of female Wistar rats treated with a single dose of 500 mg/Kg VPA on day 12.5 of gestation compared to controls exposed to saline. Our results show a high rate of fetal resorption of the treated females, however, the embryos exposed to VPA that survived showed significant neuroanatomical, morphological, and behavioral changes compared to the control group. An increase in the number of babies born with physical malformations, defects in phalangeal formation, tail length and shape, and sporadic cases of chromodacryorrhea were found, while behavioral tests revealed alterations in sociability and repetitiveness, typical behaviors of the human autistic phenotype. The results of this research support the experimental use of the biomodel of autism due to prenatal exposure to VPA, demonstrate the apparent and construct validity of the model and its potential usefulness for the development of future lines of research that deepen key aspects in the understanding of neurobiology of ASD and the finding of therapeutic targets for the treatment of the disease.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Neurocienciasspa
dc.format.extent123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82248
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesArndt, T. L., Stodgell, C. J., & Rodier, P. M. (2005). The teratology of autism. International Journal of Developmental Neuroscience, 23(2–3), 189–199. https://doi.org/10.1016/j.ijdevneu.2004.11.001spa
dc.relation.referencesBaronio, D., Castro, K., Gonchoroski, T., de Melo, G., Nunes. GD, Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PloS One, 10(1). https://doi.org/10.1371/JOURNAL.PONE.0116363spa
dc.relation.referencesBennett, G., Wlodarczyk, B., Calvin, J., Craig, J., & Finnell, R. (2000). Valproic acid induced alterations in growth and neurotrophic factor. Reprod Toxicol, 14, 1–11.spa
dc.relation.referencesCheaha, D., Bumrungsri, S., Chatpun, S., & Kumarnsit, E. (2015). Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb. Neuroscience Research, 98, 28–34. https://doi.org/10.1016/j.neures.2015.04.006spa
dc.relation.referencesFujiki, R., Sato, A., Fujitani, M., & Yamashita, T. (2013). A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death and Disease, 4. https://doi.org/10.1038/cddis.2013.205spa
dc.relation.referencesGandhi, T., & Lee, C. C. (2020). Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.592710spa
dc.relation.referencesJensen, V., Rinholm, J. E., Johansen, T. J., Medin, T., Storm-Mathisen, J., Sagvolden, T., Hvalby, & Bergersen, L. H. (2009). N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 158(1), 353–364. https://doi.org/10.1016/j.neuroscience.2008.05.016spa
dc.relation.referencesMcFarlane, H., Kusek. GK, Yang, M., Phoenix, J., Bolivar, V., & Crawley, J. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7(2), 152–163. https://doi.org/10.1111/J.1601-183X.2007.00330.Xspa
dc.relation.referencesRuhela, R., Sarma, P., Soni, S., Prakash, A., & Medhi, B. (2017). Congenital malformation and autism spectrum disorder: Insight from a rat model of autism spectrum disorder. Indian Journal of Pharmacology, 49(3). https://doi.org/10.4103/ijp.IJP_183_17spa
dc.relation.referencesRinaldi, T., Kulangara, K., Antoniello, K., & Markram, H. (2007). Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proceedings of the National Academy of Sciences, 104(33), 13501–13506. https://doi.org/10.1073/pnas.0704391104spa
dc.relation.referencesArndt, T. L., Stodgell, C. J., & Rodier, P. M. (2005). The teratology of autism. International Journal of Developmental Neuroscience, 23(2–3), 189–199. https://doi.org/10.1016/j.ijdevneu.2004.11.001spa
dc.relation.referencesArtigas-Pallares, J., & Paula, I. (2012). El autismo 70 años después de Leo Kanner y Hans Asperger. Revista de La Asociación Española de Neuropsiquiatría, 32(115), 567–587. https://doi.org/10.4321/S021157352012000300008spa
dc.relation.referencesBanerjee, A., Garcia-Oscos, F., Roychowdhury, S., Galindo, L., Hall, S., & Kilgard, M. (2013a). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol, 16, 1309–18.spa
dc.relation.referencesBanerjee, A., Garcia-Oscos, F., Roychowdhury, S., Galindo, L., Hall, S., & Kilgard, M. (2013b). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol, 16, 1309–18.spa
dc.relation.referencesBaronio, D., Castro, K., Gonchoroski, T., de Melo, G. M., Nunes, G. D. F., Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. PLOS ONE, 10(1), e0116363. https://doi.org/10.1371/journal.pone.0116363spa
dc.relation.referencesBaronio, D., Castro, K., Gonchoroski, T., de Melo, G., Nunes. GD, Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PloS One, 10(1). https://doi.org/10.1371/JOURNAL.PONE.0116363spa
dc.relation.referencesBelzung, C., Leman, S., Vourc’h, P., & Andres, C. (2005). Rodent models for autism: A critical review. Drug Discovery Today: Disease Models, 2(2), 93–101. https://doi.org/10.1016/j.ddmod.2005.05.004spa
dc.relation.referencesBennett, G., Wlodarczyk, B., Calvin, J., Craig, J., & Finnell, R. (2000). Valproic acid induced alterations in growth and neurotrophic factor. Reprod Toxicol, 14, 1–11.spa
dc.relation.referencesBurrows, E. L., Laskaris, L., Koyama, L., Churilov, L., Bornstein, J. C., Hill-yardin, E. L., & Hannan, A. J. (2015). A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Molecular Autism, 6, 1–11. https://doi.org/10.1186/s13229-015-0055-7spa
dc.relation.referencesCheaha, D., Bumrungsri, S., Chatpun, S., & Kumarnsit, E. (2015). Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb. Neuroscience Research, 98, 28–34. https://doi.org/10.1016/j.neures.2015.04.006spa
dc.relation.referencesChoudhury, P. R., Lahiri, S., & Rajamma, U. (2012). Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacology Biochemistry and Behavior, 100(4), 841–849. https://doi.org/10.1016/j.pbb.2011.06.023spa
dc.relation.referencesDufour-Rainfray, D., Vourc’h, P., Le Guisquet, A.-M., Garreau, L., Ternant, D., Bodard, S., Jaumain, E., Gulhan, Z., Belzung, C., Andres, C. R., Chalon, S., & Guilloteau, D. (2010). Behavior and serotonergic disorders in rats exposed prenatally to valproate: A model for autism. Neuroscience Letters, 470(1), 55–59. https://doi.org/10.1016/j.neulet.2009.12.054spa
dc.relation.referencesFamitafreshi, H., & Karimian, M. (2018). Overview of the Recent Advances in Pathophysiology and Treatment for Autism. CNS & Neurological Disorders Drug Targets, 17(8), 590–594. https://doi.org/10.2174/1871527317666180706141654spa
dc.relation.referencesFatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H., & Thuras, P. D. (2010). mRNA and Protein levels for GABAA alpha 4, Alpha 5, Beta 1 and GABABR 1 receptors are altered in brains from subjects with autism. J. Autism Dev.Disord, 40, 743–750. https://doi.org/doi: 10.1007/s10803-0090924-zspa
dc.relation.referencesFavre, M. R., Barkat, T. R., Lamendola, D., Khazen, G., Markram, H., & Markram, K. (2013). General developmental health in the VPA-rat model of autism. Frontiers in Behavioral Neuroscience, 7, 88. https://doi.org/10.3389/fnbeh.2013.00088spa
dc.relation.referencesFujiki, R., Sato, A., Fujitani, M., & Yamashita, T. (2013). A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death and Disease, 4. https://doi.org/10.1038/cddis.2013.205spa
dc.relation.referencesFuller, L. C., Cornelius, S. K., Murphy, C. W., & Wiens, D. J. (2002). Neural crest cell motility in valproic acid. Reproductive Toxicology, 16(May), 825–839.spa
dc.relation.referencesGandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P. L., & Siegel, S. J. (2010). Validating γ Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biological Psychiatry, 68(12), 1100–1106. https://doi.org/10.1016/j.biopsych.2010.09.031spa
dc.relation.referencesGandhi, T., & Lee, C. C. (2020). Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.592710spa
dc.relation.referencesGo, H. S., Seo, J. E., Kim, K. C., Han, S. M., Kim, P., Kang, Y. S., Han, S. H., Shin, C. Y., & Ko, K. H. (2011). Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and upregulation of Bcl-XL. J Biomed Sci, 18(1), 48. https://doi.org/1423-0127-18-48 [pii] 10.1186/14230127-18-48spa
dc.relation.referencesGreer, P., Hanayama, R., Bloodgood, B., Mardinly, A., Lipton, D., Flavell, S., Kim, T., Griffith, E., Waldon, Z., & Maehr R, et al. (2010). The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell, 140, 704–716.spa
dc.relation.referencesGrzadzinski, R., Huerta, M., & Lord, C. (2013). DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Autism, 4.spa
dc.relation.referencesHarkness, J., & Ridgway, M. (1980). Chromodacryorrhea in laboratory rats (Rattus norvegicus): etiologic considerations. . Lab Anim Sci., 30(5), 841–844.spa
dc.relation.referencesIngram, J. L., Peckham, S. M., Tisdale, B., & Rodier, P. M. (2000). Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicology and Teratology, 22(3), 319–324. https://doi.org/10.1016/S0892-0362(99)00083-5spa
dc.relation.referencesJensen, V., Rinholm, J. E., Johansen, T. J., Medin, T., Storm-Mathisen, J., Sagvolden, T., Hvalby, & Bergersen, L. H. (2009). N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 158(1), 353–364. https://doi.org/10.1016/j.neuroscience.2008.05.016spa
dc.relation.referencesKim, D. G., Gonzales, E. L., Kim, S., Kim, Y., Adil, K. J., Jeon, S. J., Cho, K. S., Kwon, K. J., & Shin, and C. Y. (2019). Social Interaction Test in Home Cage as a Novel and Ethological Measure of Social Behavior in Mice. Experimental Neurobiology, 28(2), 247–260. https://doi.org/10.5607/EN.2019.28.2.247spa
dc.relation.referencesKim, J.-W., Seung, H., Kwon, K. J., Ko, M. J., Lee, E. J., Oh, H. A., Choi, C. S., Kim, K. C., Gonzales, E. L., You, J. S., Choi, D.-H., Lee, J., Han, S.-H., Yang, S. M., Cheong, J. H., Shin, C. Y., & Bahn, G. H. (2014). Subchronic Treatment of Donepezil Rescues Impaired Social, Hyperactive, and Stereotypic Behavior in Valproic Acid-Induced Animal Model of Autism. PLOS ONE, 9(8), e104927. https://doi.org/10.1371/JOURNAL.PONE.0104927spa
dc.relation.referencesKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/jnc.12147spa
dc.relation.referencesKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/jnc.12147spa
dc.relation.referencesKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Pena, I. C. dela, Han, S.-H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/JNC.12147spa
dc.relation.referencesKumar, H., & Sharma, B. (2016). Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Research Bulletin, 124, 27–39. https://doi.org/10.1016/J.BRAINRESBULL.2016.03.013spa
dc.relation.referencesLee, E.-J., Choi, S. Y., & Kim, E. (2015). NMDA receptor dysfunction in autism spectrum disorders. Current Opinion in Pharmacology, 20(JANUARY 2015), 8–13. https://doi.org/10.1016/j.coph.2014.10.007spa
dc.relation.referencesLöscher, W. (1999). Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Progress in Neurobiology, 58(1), 31–59. https://doi.org/10.1016/S0301-0082(98)00075-6spa
dc.relation.referencesMarkram, K., & Foster, J. A. (2013). General developmental health in the VPA-rat model of autism. 7(July), 1–11. https://doi.org/10.3389/fnbeh.2013.00088spa
dc.relation.referencesMarkram, K., Rinaldi, T., Mendola, D. La, Sandi, C., & Markram, H. (2008). Abnormal Fear Conditioning and Amygdala Processing in an Animal Model of Autism. Neuropsychopharmacology, 33(4), 901–912. https://doi.org/10.1038/sj.npp.1301453spa
dc.relation.referencesMcFarlane, H., Kusek. GK, Yang, M., Phoenix, J., Bolivar, V., & Crawley, J. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7(2), 152–163. https://doi.org/10.1111/J.1601-183X.2007.00330.Xspa
dc.relation.referencesMehta, M. V., Gandal, M. J., & Siegel, S. J. (2011). mGluR5-Antagonist Mediated Reversal of Elevated Stereotyped, Repetitive Behaviors in the VPA Model of Autism. PLoS ONE, 6(10), e26077. https://doi.org/10.1371/journal.pone.0026077spa
dc.relation.referencesMin de salud de Colombia. (2015). PROTOCOLO CLÍNICO PARA EL DIAGNÓSTICO, TRATAMIENTO Y RUTA DE ATENCIÓN INTEGRAL DE NIÑOS Y NIÑAS CON TRASTORNOS DEL ESPECTRO AUTISTA.spa
dc.relation.referencesModi, M. E., & Young, L. J. (2012). The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm. Behav, 61, 340–350. https://doi.org/10.1016/j.yhbeh. 2011.12.010spa
dc.relation.referencesMoore, S. J. (2000). A clinical study of 57 children with fetal anticonvulsant syndromes. Journal of Medical Genetics, 37(7), 489–497. https://doi.org/10.1136/jmg.37.7.489spa
dc.relation.referencesNazeer, A., & Ghaziuddin, M. (2012). Autism spectrum disorders: clinical features and diagnosis. Pediatr. Clin. North Am., 59(1), 19–25.spa
dc.relation.referencesNimmo-Smith, V., Heuvelman, H., Dalman, C., Lundberg, M., Idring, S., Carpenter. P, Magnusson. C, & Rai. D. (2020). Anxiety Disorders in Adults with Autism Spectrum Disorder: A Population-Based Study.spa
dc.relation.referencesPalermo, M. T., & Curatolo, P. (2004). Pharmacologic treatment of autism. J. Child Neurol, 19, 155–164.spa
dc.relation.referencesParadis, F.-H., & Hales, B. F. (2012). Exposure to Valproic Acid Inhibits Chondrogenesis and Osteogenesis in Mid-Organogenesis Mouse Limbs. https://doi.org/10.1093/toxsci/kfs292spa
dc.relation.referencesRichler, J., Bishop, S., Kleinke. JR, & Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 73–85. https://doi.org/10.1007/S10803-006-0332-6spa
dc.relation.referencesRinaldi. (2008). Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Frontiers in Neural Circuits, 2. https://doi.org/10.3389/neuro.04.004.2008spa
dc.relation.referencesRinaldi, T., Kulangara, K., Antoniello, K., & Markram, H. (2007). Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proceedings of the National Academy of Sciences, 104(33), 13501–13506. https://doi.org/10.1073/pnas.0704391104spa
dc.relation.referencesRodier, P. M. (2002). Converging evidence for brain stem injury in autism. Development and Psychopathology, 14(03). https://doi.org/10.1017/S0954579402003085spa
dc.relation.referencesRodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological Origin for Autism : Developmental Anomalies of the Cranial Nerve Motor Nuclei. The Journal of Comparative Neurology, 370, 2447–261.spa
dc.relation.referencesRonesi, J., Collins, K., Hays, S., Tsai, N., Guo, W., & Birnbaum, S. (2012). Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci, 15, 431–40.spa
dc.relation.referencesRoullet, F. I., Lai, J. K. Y., & Foster, J. A. (2013). In utero exposure to valproic acid and autism — A current review of clinical and animal studies. Neurotoxicology and Teratology, 36, 47–56. https://doi.org/10.1016/j.ntt.2013.01.004spa
dc.relation.referencesRuhela, R., Sarma, P., Soni, S., Prakash, A., & Medhi, B. (2017). Congenital malformation and autism spectrum disorder: Insight from a rat model of autism spectrum disorder. Indian Journal of Pharmacology, 49(3). https://doi.org/10.4103/ijp.IJP_183_17spa
dc.relation.referencesSailer, L., Duclot, F., Wang, Z., & Kabbaj, M. (2019). Consequences of prenatal exposure to valproic acid in the socially monogamous prairie voles. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-01939014-7spa
dc.relation.referencesSchneider, T., & Przewłocki, R. (2005). Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology, 30(1), 80–89. https://doi.org/10.1038/sj.npp.1300518spa
dc.relation.referencesSchneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., & Przewłocki, R. (2008). Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 33(6), 728–740. https://doi.org/10.1016/J.PSYNEUEN.2008.02.011spa
dc.relation.referencesSchneider, T., Ziòłkowska, B., Gieryk, A., Tyminska, A., & Przewłocki, R. (2007). Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology, 193(4), 547–555. https://doi.org/10.1007/s00213-007-0795-yspa
dc.relation.referencesSheng, M. & Kim, E. (2011). The postsynaptic organization of synapses. Cold Spring Harb. Perspect., 3(a005678).spa
dc.relation.referencesSilverman, J. L., Tolu, S. S., Barkan, C. L., & Crawley, J. N. (2010). Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP. Neuropsychopharmacology, 35(4), 976. https://doi.org/10.1038/NPP.2009.201spa
dc.relation.referencesSpooren, W., Lindemann, L., Ghosh, A., & Santarelli, L. (2012). Synapse dysfunction in autism : a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends in Pharmacological Sciences, 33(12), 669–684. https://doi.org/10.1016/j.tips.2012.09.004spa
dc.relation.referencesStromland, K., Nordin, V., Miller, M., Akerstrom, B., & Gillberg, C. (1994). Autism in thalidomide embryopathy: a population study. Developmental Medicine & Child Neurology, 36, 351–356.spa
dc.relation.referencesTang, S., Terzic, B., Wang, I.-T. J., Sarmiento, N., Sizov, K., Cui, Y., Takano, H., Marsh, E. D., Zhou, Z., & Coulter, D. A. (2019). Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nature Communications, 10(1). https://doi.org/10.1038/S41467-01910689-Wspa
dc.relation.referencesTashiro, Y., Oyabu, A., Imura, Y., Uchida, A., Narita, N., & Narita, M. (2011). Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies. International Journal of Developmental Neuroscience, 29(4), 359–364. https://doi.org/10.1016/j.ijdevneu.2011.03.008spa
dc.relation.referencesVanderschuren, L. J. M. J., Achterberg, E. J. M., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70. https://doi.org/10.1016/j.neubiorev.2016.07.025spa
dc.relation.referencesVasa, R., & Mazurek, M. (2015). An update on anxiety in youth with autism spectrum disorders. Current Opinion in Psychiatry, 28(2), 83–90. https://doi.org/10.1097/YCO.0000000000000133spa
dc.relation.referencesVorstman, J. A. S., Parr, J. R., Moreno-De-Luca, D., Anney, R. J. L., Nurnberger, J. I., & Hallmayer, J. F. (2017). Autism genetics: opportunities and challenges for clinical translation. Nature Reviews. Genetics, 18(6), 362–376. https://doi.org/10.1038/NRG.2017.4spa
dc.relation.referencesWhitehouse, C. M., & Lewis, M. H. (2015). Repetitive Behavior in Neurodevelopmental Disorders: Clinical and Translational Findings. The Behavior Analyst, 38(2), 163. https://doi.org/10.1007/S40614-0150029-2spa
dc.relation.referencesWilliams, P., & Hersh, J. (1997). A male with fetal valproate syndrome and autism. Developmental Medicine & Child Neurology, 39, 632–634.spa
dc.relation.referencesWu, L. J., Toyoda, H., Zhao, M. G., Lee, Y. S., Tang, J., Ko, S. W., Yong, H. J., Shum, F. W. F., Zerbinatti, C. v., Bu, G., Wei, F., Xu, T. le, Muglia, L. J., Chen, Z. F., Auberson, Y. P., Kaang, B. K., & Zhuo, M. (2005). Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation. Journal of Neuroscience, 25(48), 11107–11116. https://doi.org/10.1523/JNEUROSCI.1678-05.2005spa
dc.relation.referencesXu, J. Y., Xia, Q. Q., & Xia, J. (2012). A review on the current neuroligin mouse models. Sheng Li Xue Bao, 64, 550–562.spa
dc.relation.referencesYang, E. J., Ahn, S., Lee, K., Mahmood, U., & Kim, H. S. (2016). Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0153298spa
dc.relation.referencesYang, M., Silverman, J. L., & Crawley, J. N. (2011). Automated three-chambered social approach task for mice. Current Protocols in Neuroscience, SUPPL. 56. https://doi.org/10.1002/0471142301.NS0826S56spa
dc.relation.referencesYu, Y., Chaulagain, A., Pedersen, S., Lydersen, S., Leventhal, B., Szatmari, P., Aleksic, B., Ozaki, N., & Skokauskas, N. (2020). Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder:a systematic review and meta-analysis. BMC Psychiatry, 20(1). https://doi.org/10.1186/S12888-020-2477-9spa
dc.relation.referencesZoghbi, H., & Bear, M. (2012). Synaptic Dysfunction in Neurodevelopmental Intellectual Disabilities. Cold Spring Harb. Perspect. Biol., 4(3), 1–22. https://doi.org/10.1101/cshperspect.a009886spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.otherTrastorno del Espectro Autistaspa
dc.subject.otherAutism Spectrum Disordereng
dc.subject.otherIntercambio Materno-Fetalspa
dc.subject.otherMaternal-Fetal Exchangeeng
dc.subject.otherEfectos Colaterales y Reacciones Adversas Relacionados con Medicamentosspa
dc.subject.otherDrug-Related Side Effects and Adverse Reactionseng
dc.subject.proposalAutismospa
dc.subject.proposalAcido valproicospa
dc.subject.proposalModelo animalspa
dc.subject.proposalDeficit comportamentalspa
dc.subject.proposalGlutamato
dc.subject.proposalNMDA
dc.subject.proposalVPA
dc.subject.proposalTEA
dc.subject.proposalAutismeng
dc.subject.proposalValproic acideng
dc.subject.proposalAnimal Modeleng
dc.subject.proposalBehavioral deficiteng
dc.titleAproximación comportamental y glutamatérgica de un modelo de roedor del trastorno del espectro autista por exposición prenatal a ácido valproicospa
dc.title.translatedBehavioral and glutamatergic approach of a rodent model of autism spectrum disorder exposed to valproic acid prenataleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012400569.2022.pdf
Tamaño:
1.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: