Diversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)

dc.contributor.advisorBonilla Gómez, Maria Argenisspa
dc.contributor.advisorMoreno Ortega, Claudia Elizabethspa
dc.contributor.authorGarcia Atencia, Sandy Paolaspa
dc.contributor.orcidGarcía Atencia, Sandy [https://orcid.org/0000-0002-5782-4049]spa
dc.contributor.researchgroupBiología de Organismos Tropicales (Biotun)spa
dc.coverage.countryColombiaspa
dc.coverage.regionCesarspa
dc.coverage.spatialSerranía del Perijáspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1109474
dc.date.accessioned2024-07-05T20:49:15Z
dc.date.available2024-07-05T20:49:15Z
dc.date.issued2023-07-03
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn la Serranía del Perijá, Norte de Colombia, el cambio constante del paisaje, bien sea por implementación de estrategias de manejo o por desarrollo de las comunidades para el aprovechamiento del territorio, generan diferencias en la organización de los mismos. Esta investigación, tuvo como objetivo evaluar los cambios de la estructura funcional de escarabajos fitófagos (Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá. Teniendo en cuenta que los escarabajos fitófagos explotan variedad de recursos alimenticios, y están relacionados a procesos como la degradación de la materia orgánica, polinización y control biológico, se anticipó que la estructuración funcional de sus comunidades, reflejada en la variación de sus rasgos funcionales y en las métricas de la diversidad funcional, cambiaría en función a los cambios en las características de los ecosistemas y su entorno. Se ubicaron cuatro ventanas de 4 km2 cada una, y se realizó la recolecta de escarabajos en las coberturas de bosque, cultivo, y regeneración. Para cada cobertura se obtuvieron datos de altitud, cobertura del dosel, porcentaje del área de cada cobertura (PLAND), distancia entre fragmentos de la misma cobertura y forma de los fragmentos. Se estimó la variación de los rasgos funcionales mediante el cálculo de CWM para cada rasgo funcional y se evaluó su relación con las variables del paisaje por medio de modelos aditivos generalizados (GAMM). Además, se analizaron las variaciones multiescalares de las métricas de diversidad taxonómica (0D, 1D y 2D) y de diversidad funcional (FRicSES, FEveSES y FDisSES), así como también la diversidad beta taxonómica y funcional con sus componentes de recambio y anidamiento. Para analizar la influencia de las variables del paisaje sobre las diversidades alfa taxonómica y funcional, se construyeron GAMMs. Para analizar esa misma influencia en la diversidad beta, se realizaron análisis de redundancia con matrices de distancia (dbRDA). Como resultados se recolectaron 3713 escarabajos fitófagos de 50 especies agrupadas en las subfamilias Melolonthinae, Dynastinae, Rutelinae y Cetoniinae. Los rasgos funcionales responden a las variables del paisaje con asociaciones significativas. Se evidenciaron relaciones entre rasgos relacionados a la complejidad de los ambientes con el porcentaje de área de los bosques; los cultivos con mayor altitud y distancia estuvieron representados por rasgos vinculados con la capacidad de dispersión; y la longitud de las patas posteriores; en las coberturas de regeneraciones dependían de la cobertura del dosel, la forma y la distancia. En cuanto a la diversidad taxonómica y funcional, no presentaron diferencias entre coberturas a nivel regional, pero si dentro de algunas ventanas. La diversidad beta taxonómica se debe principalmente al recambio, mientras que la diversidad beta funcional se debe al anidamiento. Tanto la altitud como la distancia entre fragmentos se relacionaron con la riqueza en las tres coberturas; así como 1D, 2D y FRicSES en cultivos. Por su parte la altitud y la forma de los fragmentos explicaron la variación de 0D en regeneración, 1D y 2D en bosques y FEveSES y FDisSES en las tres coberturas. La altitud, la cobertura del dosel y la forma, fueron las variables que mayormente influenciaron la diversidad beta taxonómica y funcional, y en sus componentes de recambio y anidamiento. En general, estos resultados muestran que la estructura del paisaje juega un papel importante para el mantenimiento de diferentes dimensiones de la diversidad. Por lo tanto, garantizar un arreglo espacial que garantice la composición y la conectividad, favorecerá la persistencia de comunidades con especies vinculadas a variadas funciones ecosistémicas. (Texto tomado de la fuente).spa
dc.description.abstractIn the Serranía del Perijá, Northern of Colombia, landscape changes, whether due to the implementation of management strategies or community development for territorial utilization, generate differences in their organization. This research aimed to assess changes in the functional structure of phytophagous scarab beetles (Scarabaeidae) in agroforestry landscapes of the Serranía del Perijá. Considering that phytophagous scarab beetles exploit a variety of food resources and are related to ecological processes as organic matter degradation, pollination, and biological control, it is predicted that the functional structuring of their communities, reflected in the variation of their functional traits and functional diversity metrics, will be sensitive to changes in ecosystems characteristics and their surroundings. Four windows of 4 Km2 each were selected, and scarab beetles were collected in forest, crops, and regeneration coverages. For each coverage data on altitude, canopy cover and class level metrics PLAND, Shape and Euclidean distance, were obtained. The variation of functional traits was estimated by calculating Community Weighted Mean index (CWM) for each functional trait and its relationship with landscapes variables was evaluated using Generalized Additive Mixed Models (GAMMs). Aditionally, multiscale variations of taxonomic (0D, 1D and 2D) and functional diversity (FRicSES, FEveSES and FDisSES), as well as taxonomic and functional beta diversity with their turnover and nestedness components were analyzed. To assess the influence of landscape variables on alpha taxonomic and functional diversities, GAMMs were constructed, and redundancy analysis with distance matrices (dbRDA) were c to analyze the same influence on beta diversity. The results included the collections of 3713 phytophagous beetles from 50 species grouped in the subfamilies Melolonthidae, Dynastinae, Rutelinae and Cetoniinae. Functional traits responded to landscape variables with significant associations. Relationships were evident between traits related to environmental complexity and the percentage of forest area; crops at higher altitude and distances were represented by traits linked to dispersal capability, and the length of hind legs in regenerations depended on canopy cover, shape, and distance. Regarding taxonomic and functional diversity there were no differences between coverages at regional level but were observed within some windows. Taxonomic beta diversity was mainly due to turnover, while functional beta diversity was attributed to nestedness. Both altitude and distances between fragments were related to richness in all three coverages, as well as to 1D, 2D and FRicSES in crops. Altitude and fragment shape explained the variation 0D in regeneration, 1D and 2D in forests, and FEveSES and FDisSES in all three coverages. Altitude, canopy cover and shape were the variables that most influenced taxonomic and functional beta diversity and their turnover and nestedness components. Overall, these results demonstrate that landscape structure plays a crucial role in maintaining different dimensions of diversity. Therefore, ensuring a spatial arrangement that promotes composition and connectivity will favor the persistence of communities with species linked to various ecosystems functions.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Biologíaspa
dc.description.researchareaEcologíaspa
dc.description.sponsorshipMINCIENCIASspa
dc.format.extentxix, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86411
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAguilera, M. (2016). Serranía del Perijá: Geografía, capital humano, economía y medio ambiente. Banco de La República, 249, 1–134.spa
dc.relation.referencesArnold, P. A., Cassey, P., & White, C. R. (2017). Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Functional Ecology, 31(3), 653–661.spa
dc.relation.referencesArroyo-Rodríguez, V., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S. J., Galán-Acevedo, C., Hernández-Ruedas, M. A., Rito, K. F., & San-José, M. (2019). Determinantes de la biodiversidad en paisajes antrópicos : Una revisión teórica. In La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. (pp. 65–112).spa
dc.relation.referencesArroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., … Tscharntke, T. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420.spa
dc.relation.referencesArroyo-Rodríguez, V., Moreno, C. E., & Galán-Acedo, C. (2017). La ecología del paisaje en México: logros, desafíos y oportunidades en las ciencias biológicas. Revista Mexicana de Biodiversidad, 88, 42–51.spa
dc.relation.referencesArroyo-Rodríguez, V., Rös, M., Escobar, F., Melo, F. P. L., Santos, B. A., Tabarelli, M., & Chazdon, R. (2013). Plant β-diversity in fragmented rain forests: Testing floristic homogenization and differentiation hypotheses. Journal of Ecology, 101(6), 1449–1458.spa
dc.relation.referencesAuber, A., Waldock, C., Maire, A., Goberville, E., Albouy, C., Algar, A. C., McLean, M., Brind’Amour, A., Green, A. L., Tupper, M., Vigliola, L., Kaschner, K., Kesner-Reyes, K., Beger, M., Tjiputra, J., Toussaint, A., Violle, C., Mouquet, N., Thuiller, W., & Mouillot, D. (2022). A functional vulnerability framework for biodiversity conservation. Nature Communications, 13(1), 1–13.spa
dc.relation.referencesAudino, L. D., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation, 169, 248–257.spa
dc.relation.referencesAudino, L., Murphy, S., Zambaldi, L., Louzada, J., & Comita, L. (2017). Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape and space. Ecological Applications, 27(6), 1731–1745.spa
dc.relation.referencesÁvila, F., Quintero, J., Gusmán, A., Ulian, T., Doria, G., & Diazgranados, M. (2022). Guía de plantas útiles de la Serranía del Perijá, Corregimientos de La Victoria de San Isidro y Estados Unidos, Cesar (Vol. 1). Royal Botanic Gardens, Kew; E3- Ecología, Economía y Ética, Rutas Turísticas por los Bosques y la Paz.spa
dc.relation.referencesBai, M., Beutel, R. G., Song, K. Q., Liu, W. G., Malqin, H., Li, S., Hu, X. Y., & Yang, X. K. (2012). Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Structure and Development, 41(5), 505–513.spa
dc.relation.referencesBarragán, F., Moreno, C. E., Escobar, F., Halffter, G., & Navarrete, D. (2011). Negative impacts of human land use on dung beetle functional diversity. PLoS ONE, 6(3), e17976.spa
dc.relation.referencesBarton, P. S., Gibb, H., Manning, A. D., Lindenmayer, D. B., & Cunningham, S. A. (2011). Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 102(2), 301–310.spa
dc.relation.referencesBaselga, A., Orme, D., Villéger, S., De Bortoli, J., Leprieur, F., Logez, M., Martinez-Santalla, S., Martin-Devasa, R., Gomez-Rodriguez, C., & Crujeiras, R. (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.6. https://cran.r-project.org/package=betapartspa
dc.relation.referencesBaselga, Andrés. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143.spa
dc.relation.referencesBasset, Y., Blažek, P., Souto-Vilarós, D., Vargas, G., Ramírez Silva, J. A., Barrios, H., Perez, F., Bobadilla, R., Lopez, Y., Ctvrtecka, R., Šípek, P., Solís, A., Segar, S. T., & Lamarre, G. P. A. (2023). Towards a functional classification of poorly known tropical insects: The case of rhinoceros beetles (Coleoptera, Dynastinae) in Panama. Insect Conservation and Diversity, 16(1), 147–163.spa
dc.relation.referencesBegon, M., Towsend, C., & Harper, J. (2006). Ecology from Individuals to Ecosystems (4th ed.). Blackwell publishing.spa
dc.relation.referencesBeiroz, W., Sayer, E., Slade, E. M., Audino, L., Braga, R. F., Louzada, J., & Barlow, J. (2018). Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecological Indicators, 95(May), 518–526.spa
dc.relation.referencesBlondel, J. (2003). Guilds or functional groups: does it matter? Oikos, 100(2), 223–231.spa
dc.relation.referencesBrown, J., Gillooly, J., Allen, A., Savage, V., & West, G. (2004). Toward a Metabolic Theory of Ecology. Ecology, 85(7), 1771–1789spa
dc.relation.referencesCadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087.spa
dc.relation.referencesCarvalho, R. L., Andresen, E., Arroyo-Rodríguez, V., Anjos, D. V, Resende, A. F., de Mello, F., & Vasconcelos, H. L. (2023). Biodiversity in landscape mosaics: The roles of local land use and the surrounding landscape on dung beetle assemblages. Journal of Applied Ecology, 60(8), 1647–1658.spa
dc.relation.referencesChao, A., Hsieh, T. C., & Colwell, R. K. (2014). Rarefaction and extrapolation with Hill numbers : A framework for sampling and estimation in species diversity studies Rarefaction and extrapolation with Hill numbers : a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67.spa
dc.relation.referencesCook, R. N., Ramirez-Parada, T., Browne, L., Ellis, M., & Karubian, J. (2020). Environmental correlates of richness, community composition, and functional traits of terrestrial birds and mammals in a fragmented tropical landscape. Landscape Ecology, 35(12), 2825–2841.spa
dc.relation.referencesCórdova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78–87.spa
dc.relation.referencesCorrea, C. M. A., Braga, R. F., Puker, A., & Korasaki, V. (2019). Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. Journal of Insect Conservation, 23(1), 89–99.spa
dc.relation.referencesCosta, M. S., Silva, R. J., Paulino-Neto, H. F., & Pereira, M. J. B. (2017). Beetle pollination and flowering rhythm of Annona coriacea Mart. (Annonaceae) in Brazilian cerrado: Behavioral features of its principal pollinators. PLoS ONE, 12(2), 1–14.spa
dc.relation.referencesCreighton, J. C. (2005). Population density, body size, and phenotypic plasticity of brood size in a burying beetle. Behavioral Ecology, 16(6), 1031–1036.spa
dc.relation.referencesDavies, R. W., Edwards, D. P., & Edwards, F. A. (2020). Secondary tropical forests recover dung beetle functional diversity and trait composition. Animal Conservation.spa
dc.relation.referencesde Bello, F., Carmona, C. P., Dias, A. T. C., Götzenberger, L., Moretti, M., & Berg, M. P. (2021). Handbook of Trait-Based Ecology. Handbook of Trait-Based Ecology, March, 2021–2023.spa
dc.relation.referencesde Lima Filho, J. A., Vieira, R. J. A. G., de Souza, C. A. M., Ferreira, F. F., & de Oliveira, V. M. (2021). Effects of habitat fragmentation on biodiversity patterns of ecosystems with resource competition. Physica A: Statistical Mechanics and Its Applications, 564, 125497.spa
dc.relation.referencesdeCastro-Arrazola, I., Andrew, N. R., Berg, M. P., Curtsdotter, A., Lumaret, J. P., Menéndez, R., Moretti, M., Nervo, B., Nichols, E. S., Sánchez-Piñero, F., Santos, A. M. C., Sheldon, K. S., Slade, E. M., & Hortal, J. (2023). A trait-based framework for dung beetle functional ecology. Journal of Animal Ecology, 92(1), 44–65.spa
dc.relation.referencesDeloya, C. (1998). Cyclocephala lunulata Burmeister, 1847 (Coleoptera: Melolonthidae, Dynastinae) asociada al cultivo de maíz (Zea mays) en Pueblo Nuevo, Morelos, México. In M.A Morón & A. Aragón (Eds.), Avances en el Estudio de la Diversidad, Importancia y Manejo de los Coleópteros Edafícolas Americanos (pp. 121–130). Publicación especial de la Benemérita Universidad Autónoma de Puebla y la Sociedad Mexicana de Entomología, A. C.spa
dc.relation.referencesDeloya, C., & Gasca-Álvarez, H. (2018). Escarabajos del neotrópico (Insecta: Coleoptera) (S. y G. Editores (ed.); Primera Ed, Issue December).spa
dc.relation.referencesDeloya, C., Morón, M. ., & Lobo, J. M. (1995). Coleoptera Lamellicornia (Mcleay, 18919) del sur del Estado de Morelos, México. Acta Zoológica Mexicana (Nueva Serie), 65, 1–42.spa
dc.relation.referencesDeppe, F., & Fischer, K. (2023). Landscape type affects the functional diversity of carabid beetles in agricultural landscapes. Insect Conservation and Diversity, 16(4), 441–450.spa
dc.relation.referencesDi Iorio, O. (2014). A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries. Zootaxa, 3790(2), 281–318.spa
dc.relation.referencesDias, T. C., Bello, F. De, Altermatt, F., Moretti, M., Bell, J. R., Fournier, B., Chown, S. L., Azc, F. M., Sousa, P., Ellers, J., & Berg, M. P. (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. 558–567.spa
dc.relation.referencesDíaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4(8), 1300–1305.spa
dc.relation.referencesDuflot, R., Georges, R., Ernoult, A., Aviron, S., & Burel, F. (2014). Landscape heterogeneity as an ecological filter of species traits. Acta Oecologica, 56, 19–26.spa
dc.relation.referencesEberle, J., Myburgh, R., & Ahrens, D. (2014). The evolution of morphospace in phytophagous scarab chafers: No competition - No divergence? PLoS ONE, 9(5).spa
dc.relation.referencesEndrödi, S. (1985). Dynastinae of the world. Dr W. Junk Publishers.spa
dc.relation.referencesEstupiñan-Mojica, A., Portela-Salomão, R., Liberal, C. N., Santos, B. A., Machado, C. C. C., de Araujo, H. F. P., Von Thaden, J., & Alvarado, F. (2022). Landscape attributes shape dung beetle diversity at multiple spatial scales in agricultural drylands. Basic and Applied Ecology, 63, 139–151.spa
dc.relation.referencesFahrig, L. (1998). When does fragmentation of breeding habitat affect population survival? Ecological Modelling, 105(2–3), 273–292.spa
dc.relation.referencesFahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.spa
dc.relation.referencesFahrig, L. (2003a). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.spa
dc.relation.referencesFahrig, L. (2003b). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515.spa
dc.relation.referencesFahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112.spa
dc.relation.referencesFAO. (2017). Carbono orgánico del suelo: el potencial oculto (L. Wiese, V. Alcantara, R. Baritz, & R. Vargas (eds.)).spa
dc.relation.referencesFeng, L., Arvidsson, F., Smith, H. G., & Birkhofer, K. (2021). Fallows and permanent grasslands conserve the species composition and functional diversity of carabid beetles and linyphiid spiders in agricultural landscapes. Insect Conservation and Diversity, 14(6), 825–836.spa
dc.relation.referencesFilgueiras, B. K. C., Melo, D. H. A., Andersen, A. N., Tabarelli, M., & Leal, I. R. (2019). Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98(November 2018), 523–530.spa
dc.relation.referencesFountain-Jones, N. M., Baker, S. C., & Jordan, G. J. (2015). Moving beyond the guild concept: Developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40(1), 1–13.spa
dc.relation.referencesGallé, R., Geppert, C., Földesi, R., Tscharntke, T., & Batáry, P. (2020). Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 48, 102–111.spa
dc.relation.referencesGarcía-Atencia, S., & Amat-García, G. (2021). Variación espacio-temporal de los gremios alimenticios de escarabajos fitófagos (Coleoptera : Scarabaeidae) en el Caribe colombiano. Sociedad Colombiana de Entomología, 47(2), 1–11.spa
dc.relation.referencesGarcía-Atencia, Sandy, Bonilla-Gómez, M. A., & Moreno, C. E. (2024). Ecosystem functions and functional traits for the study of phytophagous scarab beetles (Coleoptera: Scarabaeidae). Ecological Entomology, 1–13.spa
dc.relation.referencesGarcía-Robledo, C., Kattan, G., Murcia, C., & Quintero-Marín, P. (2004). Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology, 20(4), 459–469.spa
dc.relation.referencesGasca-Álvarez, H. J. (2013). New Records of Cyclocephala Dejean (Coleoptera : Scarabaeidae: Dynastinae) Associated with Caladium bicolor (Aiton) Vent. (Araceae). The Coleopterists Bulletin, 67(4), 416–418.spa
dc.relation.referencesGiménez, V. (2019). Efecto del cambio de uso del suelo en la diversidad funcional de coleópteros copro-necrófagos del Bosque Atlántico: patrones y mecanismos propuestos. Universidad Nacional de Cuyo.spa
dc.relation.referencesGonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H. Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 9–14.spa
dc.relation.referencesGottsberger, G., & Webber, A. C. (2018). Nutritious tissue in petals of annonaceae and its function in pollination by scarab beetles. Acta Botanica Brasilica, 32(2), 279–286.spa
dc.relation.referencesGranados-Sánchez, D., Ruíz-Puga, P., & Barrera-Escorcia, H. (2008). Ecología de la herbivoria. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 14(1), 51–63.spa
dc.relation.referencesGriffiths, H. M., Louzada, J., Bardgett, R. D., Beiroz, W., FrançA, F., Tregidgo, D., & Barlow, J. (2015). Biodiversity and environmental context predict dung beetle-mediated seed dispersal in a tropical forest field experiment. Ecology, 96(6), 1607–1619.spa
dc.relation.referencesHarvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M., Martínez-Ramos, M., Morales, H., Nigh, R., Soto-Pinto, L., Van Breugel, M., & Wishnie, M. (2008). Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology, 22(1), 8–15.spa
dc.relation.referencesHesselbarth, M., Sciaini, M., Nowosad, J., & Hanss, S. (2020). Package ‘ landscapemetrics ’ R topics documented : Ecography, 42, 1648–1657.spa
dc.relation.referencesHodecek, J., Kuras, T., Sipos, J., & Dolny, A. (2015). Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640.spa
dc.relation.referencesHsieh, T. C., Ma, K. H., & Chao, A. (2022). iNEXT: iNterpolation and extrapolation for species diversity. R package version 3.0.0. http://chao.stat.nthu.edu.tw/wordpress/software-download/spa
dc.relation.referencesHubbell, S. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press. http://www.jstor.org/stable/j.ctt7rj8w.spa
dc.relation.referencesIbarra, M., & Damborsky, M. (2017). Changes in the structure of Melolonthidae (Coleoptera: Scarabaeoidea) assemblages along a temporal gradient in a natural reserve in Chaco, Argentina. Austral Entomology.spa
dc.relation.referencesIDEAM. (2010). Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. Instituto de Hidrología, Metereología y Estudios Ambientales. http://siatac.co/c/document_library/get_file?uuid=a64629ad-2dbe-4e1e-a561-fc16b8037522&groupId=762.spa
dc.relation.referencesJeanneret, P., Aviron, S., Alignier, A., Lavigne, C., Helfenstein, J., Herzog, F., Kay, S., & Petit, S. (2021). Agroecology landscapes. Landscape Ecology, 36(8), 2235–2257.spa
dc.relation.referencesJost, L. (2006). Entropy and diversity. Oikos, 2(113), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.xspa
dc.relation.referencesKędzior, R., & Kosewska, A. (2022). Landscape Heterogeneity Determines the Diversity and Life History Traits of Ground Beetles (Coleoptera: Carabidae). Sustainability (Switzerland), 14(21).spa
dc.relation.referencesLaliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(January), 299–305.spa
dc.relation.referencesLeandro, C., Jones, M., Perrin, W., Jay-Robert, P., & Ovaskainen, O. (2023). Dung beetle community patterns in Western Europe: responses of Scarabaeinae to landscape and environmental filtering. Landscape Ecology, 38(9), 2323–2338.spa
dc.relation.referencesLegendre, P., & Legendre, L. (1998). Numerical Ecology (Second Edi). Elsevier Science B.V.spa
dc.relation.referencesLindenmayer, D. (2019). Small patches make critical contributions to biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 116(3), 717–719.spa
dc.relation.referencesLovell, S. T., Bentrup, G., & Stanek, E. (2022). Agroforestry at the Landscape Level. North American Agroforestry: Third Edition, 417–435.spa
dc.relation.referencesLovett, G. ., Jones, C. ., Turner, M. ., & Weathers, K. . (2005). Ecosystem Function in Heterogeneous Landscapes. Springer-Verlag.spa
dc.relation.referencesLugo-Garcia, A., Morón, M. ., Aragón-Sánchez, M., Reyes-Olivas, A., Sánchez-Soto, H., & Sauceda-Acosta, P. (2017). Especies de “gallina ciega” (Coleoptera: Melolonthidae) en el cultivo de ajonjolí (Sesamum indicum L.) en Sinaola, México. Agrociencia, 51(7), 799–811.spa
dc.relation.referencesMacarthur, R., & Levins, R. (1967). The limiting similarity, convergence and divergence of coexisting species. Source: The American Naturalist, 101(921), 377–385.spa
dc.relation.referencesMaia, A. C. D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., do Amaral Ferraz Navarro, D. M., Schlindwein, C., & Gottsberger, G. (2012). The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: A Unique Olfactory Floral Signal Shared by Annonaceae and Araceae. Journal of Chemical Ecology, 38(9), 1072–1080.spa
dc.relation.referencesMarquez-Peña, J., & Domínguez-Haydar, Y. (2023). Riqueza y diversidad de hormigas (Hymenoptera: Formicidae) según uso de suelo en dos paisajes agroforestales de Colombia. Revista de Biología Tropical, 71(1), e52087.spa
dc.relation.referencesMatsuki, Y., Tateno, R., Shibata, M., & Isagi, Y. (2008). Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. American Journal of Botany, 95(8), 925–930.spa
dc.relation.referencesMayfield, M. ., Bonser, P., Morgan, J. ., Aubin, I., McNamar, S., & Vesk, P. . (2010). What does species richness tell us about functional trait diversity ? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography, 19, 423–431.spa
dc.relation.referencesMcCleve, S. (2007). Killer Phileurini -or- How come some diplos are hairy? Scarabs, 20, 1–20.spa
dc.relation.referencesMcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. 21(4).spa
dc.relation.referencesMcintyre, S., & Hobbs, R. (1999). A Framework for Conceptualizing Human Effectson Landscapes an its relevance to Management and Research models. Conservation Biology, 13(6), 1282–1292.spa
dc.relation.referencesMicó, E., Juárez, M., Sánchez, A., & Galante, E. (2011). Action of the saproxylic scarab larva cetonia aurataeformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. Journal of Natural History, 45(41–42), 2527–2542.spa
dc.relation.referencesMicó, Estefanía, Ramilo, P., Thorn, S., Müller, J., Galante, E., & Carmona, C. P. (2020). Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 10(1), 1–11.spa
dc.relation.referencesMilet-Pinheiro, P., Gomes Gonçalves, E., do Amaral Ferraz Navarro, D. M., Nuñez-Avellaneda, L. A., & Maia, A. C. D. (2017). Floral scent chemistry and pollination in the Neotropical aroid genus Xanthosoma (Araceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 231, 1–10.spa
dc.relation.referencesMoore, M. R., & Jameson, M. L. (2013). Floral associations of cyclocephaline scarab beetles. Journal of Insect Science, 13.spa
dc.relation.referencesMoreno, C. . (2019). La Biodiversidad en un mundo cambiante (C. . Moreno (ed.)). Universidad Autónoma del Estado de Hidalgo/Libermex.spa
dc.relation.referencesMoretti, M., De Cáceres, M., Pradella, C., Obrist, M. K., Wermelinger, B., Legendre, P., & Duelli, P. (2010). Fire-induced taxonomic and functional changes in saproxylic beetle communities in fire sensitive regions. Ecography, 33(4), 760–771.spa
dc.relation.referencesMoretti, M., Dias, T. C., Bello, F. De, Altermatt, F., Bell, J. R., Fournier, B., Chown, S. L., Azcárate, F. M., Bell, J., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J. ., Eller, J., & Berg, M. . (2017). Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology, 31, 558–567.spa
dc.relation.referencesMorón, M. (1985). Los insectos degradadores, un factor poco estudiado en los bosques de México. Folia Entomológica Mexicana, 65(January 1985), 131–137. https://biblat.unam.mx/es/revista/folia-entomologica-mexicana/25spa
dc.relation.referencesMorón, M.A., Ratcliffe, B., & Deloya, C. (1997). Atlas de los escarabajos de México. Coleoptera Lamellicornia. Vol I Familia Melolonthidae. Subfamilias Rutelinae, Dynastinae, Cetoniinae, Trichiinae, Valginae y Melolonthinae. (1st ed.). Sociedad mexicana de entomología, A.C.spa
dc.relation.referencesMorón, Miguel Angel, & Deloya, C. (2002). Observaciones Sobre El Ciclo De Vida De Pelidnota (Pelidnota) Virescens Burmeister, 1844 (Coleoptera: Melolonthidae; Rutelinae). Acta Zoológica Mexicana (N.S.), 1844(85), 109–118.spa
dc.relation.referencesMouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867–876.spa
dc.relation.referencesMouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., & Thuiller, W. (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLOS Biology, 11(5), 1–11.spa
dc.relation.referencesMurcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, 10(2), 58–62.spa
dc.relation.referencesNanni, A. S., Krug, P., Cicchino, A. C., & Quintana, R. D. (2021). Effects of intensive human management on the taxonomic and functional diversity of ground beetles in a planted forest landscape. Biodiversity and Conservation, 30(12), 3717–3735.spa
dc.relation.referencesNavarrete-Heredia, J. L. (2001). Beetles associated with Atta and Acromyrmex Ants (Hymenoptera: Formicidae: Attini). Transaction of the American Entomological Society, 127(3), 381–429. http://www.jstor.org/stable/25078753spa
dc.relation.referencesNeita-Moreno, J. C., Orozco, J., & Ratcliffe, B. (2006). Escarabajos (Scarabaeidae:Pleurosticti) de la selva baja del Bosque Pluvial Tropical “BP-T”, Chocó, Colombia. Acta Zoológica Mexicana (Nueva Serie), 22, 1–32.spa
dc.relation.referencesNichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., & Favila, M. E. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461–1474.spa
dc.relation.referencesNichols, Elizabeth, Uriarte, M., Bunker, D. E., Favila, M. E., Slade, E. M., Vulinec, K., Larsen, T., Vaz-De-Mello, F. Z., Louzada, J., Naeem, S., & Spector, S. H. (2013). Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, 94(1), 180–189.spa
dc.relation.referencesO’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E., & Duncan, R. P. (2016). Landscape Effects on the Spread of Invasive Species. Current Landscape Ecology Reports, 1(3), 107–114.spa
dc.relation.referencesOrozco, J. (2012). Monographic Revision of the American Genus Euphoria Burmeister , 1842 ( Coleoptera : Scarabaeidae : Cetoniinae ) Author ( s ): Jesús Orozco. BioOne, 1842(11), 1–182.spa
dc.relation.referencesOrtega-Martínez, I. J., Moreno, C. E., Rios-Díaz, C. L., Arellano, L., Rosas, F., & Castellanos, I. (2020). Assembly mechanisms of dung beetles in temperate forests and grazing pastures. Scientific Reports, 10(1), 1–10.spa
dc.relation.referencesOspina-Garcés, S. M., Escobar, F., Baena, M. L., Davis, A. L. V., & Scholtz, C. H. (2018). Do dung beetles show interrelated evolutionary trends in wing morphology, flight biomechanics and habitat preference? Evolutionary Ecology, 32(6), 663–682.spa
dc.relation.referencesPardo-Locarno, L. C., Montoya-Lerma, J., Bellotti, A. C., & Van Schoonhoven, A. (2005). Structure and composition of the white grub complex (Coleoptera: Scarabaeidae) in agroecological systems of northern Cauca, Colombia. Florida Entomologist, 88(4), 355–363.spa
dc.relation.referencesPardo-Locarno, L., González, J., Rafael Pérez, C., Yepes, F., & Fernández, C. (2012). Escarabajos de importancia agrícola (Coleoptera: Melolonthidae) en la Región Caribe colombiana: Registros y propuestas de manejo. Boletin Del Museo Entomológico Francisco Luis Gallego, 4(2), 7–24.spa
dc.relation.referencesPerović, D., Gámez-Virués, S., Börschig, C., Klein, A. M., Krauss, J., Steckel, J., Rothenwöhrer, C., Erasmi, S., Tscharntke, T., & Westphal, C. (2015). Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 52(2), 505–513.spa
dc.relation.referencesPetchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9(6), 741–758.spa
dc.relation.referencesPeter, C. I., & Johnson, S. D. (2009). Pollination by flower chafer beetles in Eulophia ensata and Eulophia welwitschii (Orchidaceae). South African Journal of Botany, 75(4), 762–770.spa
dc.relation.referencesPeter, Craig I., & Johnson, S. D. (2014). A pollinator shift explains floral divergence in an orchid species complex in South Africa. Annals of Botany, 113(2), 277–288.spa
dc.relation.referencesPortela Salomão, R., González-Tokman, D., Dáttilo, W., López-Acosta, J. C., & Favila, M. E. (2018). Landscape structure and composition define the body condition of dung beetles (Coleoptera: Scarabaeinae) in a fragmented tropical rainforest. Ecological Indicators, 88(August 2017), 144–151.spa
dc.relation.referencesPuker, A., Lopes-Andrade, C., Rosa, C. S., & Grossi, P. C. (2012). New records of termite hosts for two species of hoplopyga, with notes on the life cycle of hoplopyga brasiliensis (Coleoptera: Scarabaeidae: Cetoniinae). Annals of the Entomological Society of America, 105(6), 872–878.spa
dc.relation.referencesRaine, E. H., Gray, C. L., Mann, D. J., & Slade, E. M. (2018). Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecology and Evolution, 8(17), 8686–8696.spa
dc.relation.referencesRatcliffe, B. (2003). The Dynastine Scarab beetles of Costa Rica and Panama. Bulletin of the University of Nebraska State Museum, 16, 506.spa
dc.relation.referencesRatcliffe, B. ., & Cave, R. D. (2006). The Dynastine Scarab beetles of Honduras, Nicaragua and El Salvador Bulletin of the University of Nebraska State Museum. University of Nebraska State Museum.spa
dc.relation.referencesRatcliffe, B. C., Cave, R. D., & Paucar-Cabrera, A. (2020). The Dynastine Scarab Beetles of Ecuador: (Coleoptera: Scarabaeidae: Dynastinae). University of Nebraska State Museum.spa
dc.relation.referencesRatoni, B., Ahuatzin, D., Corro, E. J., Salomão, R. P., Escobar, F., López-Acosta, J. C., & Dáttilo, W. (2023). Landscape composition shapes biomass, taxonomic and functional diversity of dung beetles within human-modified tropical rainforests. Journal of Insect Conservation, 27(5), 717–728.spa
dc.relation.referencesRibera, I., Doledec, S., Downie, I. S., Foster, G. N., & Apr, N. (2001). Effect of Land Disturbance and Stress on Species Traits of Ground Beetle Assemblages. Society, 82(4), 1112–1129.spa
dc.relation.referencesRibera, I., McCracken, D. I., Foster, G. N., Downie, I. S., & Abernethy, V. J. (1999). Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land. Journal of Zoology, 247(1), 1–18.spa
dc.relation.referencesRiva, F., & Fahrig, L. (2022). The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 15(3), 1–7.spa
dc.relation.referencesRivera, J. D., da Silva, P. G., & Favila, M. E. (2021). Landscape effects on taxonomic and functional diversity of dung beetle assemblages in a highly fragmented tropical forest. Forest Ecology and Management, 496(May).spa
dc.relation.referencesRivera, J. D., de los Monteros, A., da Silva, P. G., & Favila, M. E. (2022). Dung beetles maintain phylogenetic divergence but functional convergence across a highly fragmented tropical landscape. Journal of Applied Ecology, 59(7), 1781–1791.spa
dc.relation.referencesRomero-López, A. A., Morón, M. A., Aragón, A., & Villalobos, F. J. (2010). La “gallina Ciega” (Coleoptera: Scarabaeoidea: Melolonthidae) vista Como Un “ingeniero del Suelo.” Southwestern Entomologist, 35(3), 331–343.spa
dc.relation.referencesSalgado-Negret, B. (2016). La Ecología Funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesSalomão, R. P., Favila, M. E., & González-Tokman, D. (2020). Spatial and temporal changes in the dung beetle diversity of a protected, but fragmented, landscape of the northernmost Neotropical rainforest. Ecological Indicators, 111(June 2019), 105968.spa
dc.relation.referencesSánchez-de-Jesús, H. A., Arroyo-Rodríguez, V., Andresen, E., & Escobar, F. (2016). Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology, 31(4), 843–854.spa
dc.relation.referencesSaravy, F. P., Marques, M. I., & Schuchmann, K. L. (2022). Life history patterns of coleopteran pollinators of Annona crassiflora Mart. in the Brazilian Cerrado. Journal of Natural History, 56(9–12), 743–767.spa
dc.relation.referencesSipos, J., Hodecek, J., Kuras, T., & Dolny, A. (2017). Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites. Bulletin of Entomological Research, 107(04), 466–477.spa
dc.relation.referencesSoula, M. (2010). Les Coléoptères du Nouveau Monde. Bulletin de Liaison de l’Association Entomologique Pour La Connaissance de La Faune Tropicale, 4.spa
dc.relation.referencesStokland, J. N., Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). The saproxylic food web. In Biodiversity in Dead Wood (pp. 29–57). Cambridge University Press.spa
dc.relation.referencesSuárez, G., & Amat-García, G. (2007). Lista de especies de los escarabajos fruteros (Melolonthidae: Cetoniinae) de Colombia. Biota Colombiana, 8((1)), 69–76. https://www.redalyc.org/articulo.oa?id=491/49180104spa
dc.relation.referencesSugiura, N., Matsumura, S., & Yokota, M. (2021). Beetle pollination of Luisia teres (Orchidaceae) and implications of a geographic divergence in the pollination system. Plant Species Biology, 36(1), 52–59.spa
dc.relation.referencesSwenson, N. G. (2014). Functional and Phylogenetic Ecology in R. In Functional and Phylogenetic Ecology in R. Springer.spa
dc.relation.referencesTapia-Rojas, A., Aragón G, A., & López-Olguín, J. . (2013). Importancia escarabajos Puebla. In M.A Morón, A. Aragón, & H. Carrillo (Eds.), Fauna de Escarabajos del estado de Puebla. (pp. 365–408). Fauna de Escarabajos del estado de Puebla. Publicación de Escarabajos Mesoamericanos.spa
dc.relation.referencesTscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews, 87(3), 661–685.spa
dc.relation.referencesÚtima, O., & Vallejo, L. F. (2008). Escarabajos Melolonthidae (Scarabaeidae-Pleurosticti) de La Montaña Cafetera, departamento de Risaralda, Colombia. Agronómica, 16(2), 31–44.spa
dc.relation.referencesValencia Arias, C., Martínez Osorio, A., Morales Osorio, J. G., & Ramírez-Gil, J. G. (2019). Spatial Analysis of Presence, Injury, and Economic Impact of the Melolonthidae (Coleoptera: Scarabaeoidea) Complex in Avocado Crops. Neotropical Entomology, 48(4), 583–593.spa
dc.relation.referencesVanbergen, A. J., Aizen, M. A., Cordeau, S., Garibaldi, L. A., Garratt, M. P. D., Kovács-Hostyánszki, A., Lecuyer, L., Ngo, H. T., Potts, S. G., Settele, J., Skrimizea, E., & Young, J. C. (2020). Transformation of agricultural landscapes in the Anthropocene: Nature’s contributions to people, agriculture and food security. In Advances in Ecological Research (1st ed., Vol. 63). Elsevier Ltd.spa
dc.relation.referencesVillalobos-Moreno, A., Pardo-Locarno, L. C., & Cabrero-Sañudo, F. J. (2018). Estacionalidad de escarabajos fitófagos (Coleoptera: Melolonthidae) en un Robledal del Nororiente de los Andes colombianos. Bol. Cient. Mus. Hist. Nat., 22(1), 163–178.spa
dc.relation.referencesVilléger, S., Grenouillet, G., & Brosse, S. (2013). Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22(6), 671–681.spa
dc.relation.referencesVilléger, S., Novack-Gottshall, P. M., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14(6), 561–568.spa
dc.relation.referencesVilléger, S., Ramos Miranda, J., Flores Hernández, D., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522.spa
dc.relation.referencesViolle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007a). Let the concept of trait be functional! Oikos, 116(5), 882–892.spa
dc.relation.referencesWeiher, E., & Keddy, P. (1995). Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos, 74(1), 159–164.spa
dc.relation.referencesWood, S. N. (2017). Generalized Additive Models: An Introduction with R (2 ed.). CRC Press.spa
dc.relation.referencesZambrano, J., Garzon-Lopez, C. X., Yeager, L., Fortunel, C., Cordeiro, N. J., & Beckman, N. G. (2019). The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia, 191(3), 505–518.spa
dc.relation.referencesZhang, M., Ruan, Y., Wan, X., Tong, Y., Yang, X., & Bai, M. (2019). Geometric morphometric analysis of the pronotum and elytron in stag beetles: Insight into its diversity and evolution. ZooKeys, 2019(833), 21–40.spa
dc.relation.referencesZobel, M. (1997). The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology & Evolution, 12(7), 266–269.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocDiversidad funcionalspa
dc.subject.agrovocfunctional diversityeng
dc.subject.agrovocScarabaeidaespa
dc.subject.agrovocScarabaeidaeeng
dc.subject.agrovocSistema agroforestalspa
dc.subject.agrovocsistema agroflorestaleng
dc.subject.ddc590 - Animales::595 - Artrópodosspa
dc.subject.proposalRasgos funcionalesspa
dc.subject.proposalDiversidad taxonómicaspa
dc.subject.proposalDiversidad funcionalspa
dc.subject.proposalColeopteraspa
dc.subject.proposalPaisajes agroforestalesspa
dc.subject.proposalFunctional traitseng
dc.subject.proposalAssembly mechanismseng
dc.subject.proposalTaxonomic diversityeng
dc.subject.proposalFunctional diversityeng
dc.subject.proposalColeopteraeng
dc.subject.proposalAgroforestry landscapeseng
dc.titleDiversidad funcional de escarabajos fitófagos (Coleoptera: Scarabaeidae) en paisajes agroforestales de la Serranía del Perijá (Cesar, Colombia)spa
dc.title.translatedFunctional diversity of phytophagous scarab beetles (Coleoptera: Scarabaeidae) in agroforestry landscapes of Serrania del Perija (Cesar, Colombia)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluacion de servicios ecosistemicos y su relacion con perfiles socioeconomicos de las fincas incluidas en un programa de compensacion forestal en la cuenca Tucuy, departamento del Cesar, Colombiaspa
oaire.fundernameMINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1140831312.2024.pdf
Tamaño:
4.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: