Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10

dc.contributor.advisorMoreno Pérez, Darwin Andrés
dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonso
dc.contributor.authorRicaurte Contreras, Laura Alejandra
dc.contributor.researchgroupBiología Molecular de virusspa
dc.date.accessioned2021-06-24T17:53:27Z
dc.date.available2021-06-24T17:53:27Z
dc.date.issued2020
dc.descriptionilustracionesspa
dc.description.abstractPlasmodium vivax es una de las especies que causa malaria en humanos con mayor importancia epidemiológica en el mundo dada su amplia distribución geográfica. Esta especie es difícil de propagar in vitro dada su preferencia por invadir reticulocitos humanos y por ende su estudio biológico es complicado. Durante la invasión de estos parásitos a sus células diana se presenta un contacto inicial mediado principalmente por moléculas de superficie las cuales establecen diferentes interacciones proteína-proteína. Sin embargo, en P. vivax únicamente se conocen dos proteínas de superficie de merozoitos relacionadas con la adhesión específica a los reticulocitos humanos: MSP1 y RBSA. Dada la importancia de saber qué otras proteínas del parásito participan en el contacto inicial con el hospedero, en este estudio se evaluó, por primera vez, la capacidad de unión de la proteína de superficie de merozoito 10 (PvMSP10) a reticulocitos de humanos adultos. De particular interés, se encontró que PvMSP10 se une a reticulocitos humanos a través de la región C-terminal, cuyo polimorfismo es muy bajo. Además, mediante un ensayo de competición proteína-célula, se determinó que dicha interacción se encuentra gobernada por dos regiones de 20 residuos de longitud (388DKEECRCRANYMPDDSVDYF407 y 415KDCSKENGNCDVNAECSIDK434), que hacen parte de los dominios similares a EGF de esta proteína. Estos hallazgos destacan la importancia de dichos fragmentos para estudiar su utilidad en una futura vacuna contra la malaria causada por P. vivax. (Texto tomado de la fuente)spa
dc.description.abstractPlasmodium vivax is one of the species that causes malaria in humans with the greatest epidemiological importance in the world given its wide geographical distribution. This species is difficult to propagate in vitro given its preference for invading human reticulocytes and therefore its biological study is complicated. During the invasion of these parasites to their target cells, an initial contact occurs mainly mediated by surface molecules which establish different protein-protein interactions. However, only two merozoite surface proteins related to specific adhesion to human reticulocytes are known in P. vivax: MSP1 and RBSA. Given the importance of knowing which other parasite proteins are involved in the initial contact with the host, this study evaluated for the first time, the binding activity of merozoite surface protein 10 (PvMSP10) to adult human reticulocytes. It was found that PvMSP10 binds to human reticulocytes through the C-terminal region, whose polymorphism is low. Furthermore, by a protein-cell competition assay, it was determined that such interaction is governed by two regions of 20 residues in length (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434), which are part of the EGF-like domains. These findings highlight the importance of these fragments to study their usefulness in a future vaccine against malaria caused by P. vivax. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiología Molecular de Agentes Infecciososspa
dc.format.extent82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79710
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnología (IBUN)spa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAikawa, M., Miller, L. H., Johnson, J., & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol, 77(1), 72-82. doi:10.1083/jcb.77.1.72spa
dc.relation.referencesArevalo-Herrera, M., Lopez-Perez, M., Dotsey, E., Jain, A., Rubiano, K., Felgner, P. L., . . . Herrera, S. (2016). Antibody Profiling in Naive and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis, 10(3), e0004563. doi:10.1371/journal.pntd.0004563spa
dc.relation.referencesArevalo-Pinzon, G., Bermudez, M., Curtidor, H., & Patarroyo, M. A. (2015). The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J, 14, 106. doi:10.1186/s12936-015-0619-1spa
dc.relation.referencesArevalo-Pinzon, G., Bermudez, M., Hernandez, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6spa
dc.relation.referencesArévalo-Pinzón, G., Bermúdez, M., Hernández, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6spa
dc.relation.referencesAurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., . . . Wang, H. (2009). PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res, 37(Database issue), D539-543. doi:10.1093/nar/gkn814spa
dc.relation.referencesBaird, J. K., Valecha, N., Duparc, S., White, N. J., & Price, R. N. (2016). Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg, 95(6 Suppl), 35-51. doi:10.4269/ajtmh.16-0171spa
dc.relation.referencesBaldwin, M. R., Li, X., Hanada, T., Liu, S. C., & Chishti, A. H. (2015). Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood, 125(17), 2704-2711. doi:10.1182/blood-2014-11-611707spa
dc.relation.referencesBaquero, L. A., Moreno-Perez, D. A., Garzon-Ospina, D., Forero-Rodriguez, J., Ortiz-Suarez, H. D., & Patarroyo, M. A. (2017). PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors, 10(1), 251. doi:10.1186/s13071-017-2183-8spa
dc.relation.referencesBargieri, D., Lagal, V., Andenmatten, N., Tardieux, I., Meissner, M., & Menard, R. (2014). Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog, 10(9), e1004273. doi:10.1371/journal.ppat.1004273spa
dc.relation.referencesBarry, A. E., & Arnott, A. (2014). Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol, 5, 359. doi:10.3389/fimmu.2014.00359spa
dc.relation.referencesBaum, E., Sattabongkot, J., Sirichaisinthop, J., Kiattibutr, K., Davies, D. H., Jain, A., . . . Yan, G. (2015). Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J, 14, 95. doi:10.1186/s12936-015-0611-9spa
dc.relation.referencesBeeson, J. G., Drew, D. R., Boyle, M. J., Feng, G., Fowkes, F. J., & Richards, J. S. (2016). Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev, 40(3), 343-372. doi:10.1093/femsre/fuw001spa
dc.relation.referencesBermudez, M., Arevalo-Pinzon, G., Rubio, L., Chaloin, O., Muller, S., Curtidor, H., & Patarroyo, M. A. (2018). Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol, 20(7), e12835. doi:10.1111/cmi.12835spa
dc.relation.referencesBermudez, M., Moreno-Perez, D. A., Arevalo-Pinzon, G., Curtidor, H., & Patarroyo, M. A. (2018). Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J, 17(1), 301. doi:10.1186/s12936-018-2456-5spa
dc.relation.referencesBesteiro, S., Dubremetz, J. F., & Lebrun, M. (2011). The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol, 13(6), 797-805. doi:10.1111/j.1462-5822.2011.01597.xspa
dc.relation.referencesBlack, C. G., Barnwell, J. W., Huber, C. S., Galinski, M. R., & Coppel, R. L. (2002). The Plasmodium vivax homologues of merozoite surface proteins 4 and 5 from Plasmodium falciparum are expressed at different locations in the merozoite. Mol Biochem Parasitol, 120(2), 215-224. doi:10.1016/s0166-6851(01)00458-3spa
dc.relation.referencesBlack, C. G., Wang, L., Wu, T., & Coppel, R. L. (2003). Apical location of a novel EGF-like domain-containing protein of Plasmodium falciparum. Mol Biochem Parasitol, 127(1), 59-68. doi:10.1016/s0166-6851(02)00308-0spa
dc.relation.referencesBoyd, M. F., & Kitchen, S. F. (1937). On the Infeetiousness of Patients infected with Plasmodium vivax and Plasmodium falciparum. American Journal of Tropical Medicine, 17(2), 253-262 pp.spa
dc.relation.referencesBoyle, M. J., Wilson, D. W., Richards, J. S., Riglar, D. T., Tetteh, K. K., Conway, D. J., . . . Beeson, J. G. (2010). Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A, 107(32), 14378-14383. doi:10.1073/pnas.1009198107spa
dc.relation.referencesBuitrago, S. P., Garzon-Ospina, D., & Patarroyo, M. A. (2016). Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J, 15(1), 501. doi:10.1186/s12936-016-1563-4spa
dc.relation.referencesCamargo-Ayala, P. A., Garzon-Ospina, D., Moreno-Perez, D. A., Ricaurte-Contreras, L. A., Noya, O., & Patarroyo, M. A. (2018). On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet, 9, 372. doi:10.3389/fgene.2018.00372spa
dc.relation.referencesCowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 198(6), 961-971. doi:10.1083/jcb.201206112spa
dc.relation.referencesCowman, A. F., & Crabb, B. S. (2006). Invasion of red blood cells by malaria parasites. Cell, 124(4), 755-766. doi:10.1016/j.cell.2006.02.006spa
dc.relation.referencesCheng, Y., Wang, B., Sattabongkot, J., Lim, C. S., Tsuboi, T., & Han, E. T. (2014). Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitol Res, 113(7), 2559-2568. doi:10.1007/s00436-014-3907-8spa
dc.relation.referencesChim-Ong, A., Surit, T., Chainarin, S., Roobsoong, W., Sattabongkot, J., Cui, L., & Nguitragool, W. (2020). The Blood Stage Antigen RBP2-P1 of Plasmodium vivax Binds Reticulocytes and Is a Target of Naturally Acquired Immunity. Infect Immun, 88(4). doi:10.1128/IAI.00616-19spa
dc.relation.referencesChitnis, C. E., & Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med, 180(2), 497-506. doi:10.1084/jem.180.2.497spa
dc.relation.referencesChu, T., Sinha, A., Malleret, B., Suwanarusk, R., Park, J., Naidu, R., . . . Chandramohanadas, R. (2017). Quantitative mass spectrometry of human reticulocytes reveal proteome‐wide modifications during maturation. British Journal of Haematology, 180. doi:10.1111/bjh.14976spa
dc.relation.referencesde Lacerda, M. V., Zackiewicz, C., Alecrim, W. D., & Alecrim, M. (2007). The neglected Plasmodium vivax: are researchers from endemic areas really concerned about new treatment options? Rev Soc Bras Med Trop, 40(4), 489-490. doi:10.1590/s0037-86822007000400026spa
dc.relation.referencesDrew, D. R., O'Donnell, R. A., Smith, B. J., & Crabb, B. S. (2004). A common cross-species function for the double epidermal growth factor-like modules of the highly divergent plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem, 279(19), 20147-20153. doi:10.1074/jbc.M401114200spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340spa
dc.relation.referencesFerreira, M. U., da Silva Nunes, M., & Wunderlich, G. (2004). Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol, 11(6), 987-995. doi:10.1128/cdli.11.6.987-995.2004spa
dc.relation.referencesGarzon-Ospina, D., Forero-Rodriguez, J., & Patarroyo, M. A. (2015). Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infect Genet Evol, 33, 182-188. doi:10.1016/j.meegid.2015.05.001spa
dc.relation.referencesGarzón-Ospina, D. E. (2019). Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica. Universidad del Rosario. Retrieved from https://repository.urosario.edu.co/flexpaper/handle/10336/19876/GarzonOspina-DiegoEdison-2019.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesGilson, P. R., Nebl, T., Vukcevic, D., Moritz, R. L., Sargeant, T., Speed, T. P., . . . Crabb, B. S. (2006). Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics, 5(7), 1286-1299. doi:10.1074/mcp.M600035-MCP200spa
dc.relation.referencesGoh, S. H., Josleyn, M., Lee, Y. T., Danner, R. L., Gherman, R. B., Cam, M. C., & Miller, J. L. (2007). The human reticulocyte transcriptome. Physiol Genomics, 30(2), 172-178. doi:10.1152/physiolgenomics.00247.2006spa
dc.relation.referencesGonçalves, L. A., Cravo, P., & Ferreira, M. U. (2014). Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz, 109(5), 534-539. doi:10.1590/0074-0276130579spa
dc.relation.referencesGruszczyk, J., Kanjee, U., Chan, L. J., Menant, S., Malleret, B., Lim, N. T. Y., . . . Tham, W. H. (2018). Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science, 359(6371), 48-55. doi:10.1126/science.aan1078spa
dc.relation.referencesGupta, S., Singh, S., Popovici, J., Roesch, C., Shakri, A. R., Guillotte-Blisnick, M., . . . Chitnis, C. E. (2018). Targeting a Reticulocyte Binding Protein and Duffy Binding Protein to Inhibit Reticulocyte Invasion by Plasmodium vivax. Sci Rep, 8(1), 10511. doi:10.1038/s41598-018-28757-4spa
dc.relation.referencesHan, H. J., Park, S. G., Kim, S. H., Hwang, S. Y., Han, J., Traicoff, J., . . . Chung, J. Y. (2004). Epidermal growth factor-like motifs 1 and 2 of Plasmodium vivax merozoite surface protein 1 are critical domains in erythrocyte invasion. Biochem Biophys Res Commun, 320(2), 563-570. doi:10.1016/j.bbrc.2004.06.008spa
dc.relation.referencesHan, J. H., Cho, J. S., Cheng, Y., Muh, F., Yoo, W. G., Russell, B., . . . Han, E. T. (2018). Plasmodium vivax Merozoite Surface Protein 1 Paralog as a Mediator of Parasite Adherence to Reticulocytes. Infect Immun, 86(9). doi:10.1128/IAI.00239-18spa
dc.relation.referencesHan, J. H., Lee, S. K., Wang, B., Muh, F., Nyunt, M. H., Na, S., . . . Han, E. T. (2016). Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep, 6, 26993. doi:10.1038/srep26993spa
dc.relation.referencesHoffman, S. L., Vekemans, J., Richie, T. L., & Duffy, P. E. (2015). The March Toward Malaria Vaccines. Am J Prev Med, 49(6 Suppl 4), S319-333. doi:10.1016/j.amepre.2015.09.011spa
dc.relation.referencesHoughten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A, 82(15), 5131-5135. doi:10.1073/pnas.82.15.5131spa
dc.relation.referencesHulden, L., & Hulden, L. (2011). Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malar J, 10, 90. doi:10.1186/1475-2875-10-90spa
dc.relation.referencesJiang, J., Barnwell, J. W., Meyer, E. V., & Galinski, M. R. (2013). Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One, 8(5), e63888. doi:10.1371/journal.pone.0063888spa
dc.relation.referencesKanjee, U., Rangel, G. W., Clark, M. A., & Duraisingh, M. T. (2018). Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol, 46, 109-115. doi:10.1016/j.mib.2018.10.002spa
dc.relation.referencesKoch, M., & Baum, J. (2016). The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution. Cell Microbiol, 18(3), 319-329. doi:10.1111/cmi.12557spa
dc.relation.referencesKumar, A. A., Lim, C., Moreno, Y., Mace, C. R., Syed, A., Van Tyne, D., . . . Whitesides, G. M. (2015). Enrichment of reticulocytes from whole blood using aqueous multiphase systems of polymers. Am J Hematol, 90(1), 31-36. doi:10.1002/ajh.23860spa
dc.relation.referencesLin, C. S., Uboldi, A. D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P. E., & Cowman, A. F. (2016). Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem, 291(14), 7703-7715. doi:10.1074/jbc.M115.698282spa
dc.relation.referencesLin, C. S., Uboldi, A. D., Marapana, D., Czabotar, P. E., Epp, C., Bujard, H., . . . Cowman, A. F. (2014). The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem, 289(37), 25655-25669. doi:10.1074/jbc.M114.586495spa
dc.relation.referencesLingelbach, K., & Joiner, K. A. (1998). The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J Cell Sci, 111 ( Pt 11), 1467-1475spa
dc.relation.referencesMilner, D. A., Jr. (2018). Malaria Pathogenesis. Cold Spring Harb Perspect Med, 8(1). doi:10.1101/cshperspect.a025569spa
dc.relation.referencesMongui, A., Perez-Leal, O., Soto, S. C., Cortes, J., & Patarroyo, M. A. (2006). Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein. Biochem Biophys Res Commun, 351(3), 639-644. doi:10.1016/j.bbrc.2006.10.082spa
dc.relation.referencesMoreno-Pérez, D. A., Areiza-Rojas, R., Flórez-Buitrago, X., Silva, Y., Patarroyo, M. E., & Patarroyo, M. A. (2013). The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist, 164(1), 37-48. doi:10.1016/j.protis.2012.03.001spa
dc.relation.referencesMoreno-Perez, D. A., Baquero, L. A., Chitiva-Ardila, D. M., & Patarroyo, M. A. (2017). Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes. Parasit Vectors, 10(1), 243. doi:10.1186/s13071-017-2185-6spa
dc.relation.referencesMoreno-Pérez, D. A., Dégano, R., Ibarrola, N., Muro, A., & Patarroyo, M. A. (2015). Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics, 113, 268-280. doi:10.1016/j.jprot.2014.10.003spa
dc.relation.referencesMoreno-Pérez, D. A., Ruíz, J. A., & Patarroyo, M. A. (2013). Reticulocytes: Plasmodium vivax target cells. Biol Cell, 105(6), 251-260. doi:10.1111/boc.201200093spa
dc.relation.referencesMueller, I., Galinski, M. R., Baird, J. K., Carlton, J. M., Kochar, D. K., Alonso, P. L., & del Portillo, H. A. (2009). Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis, 9(9), 555-566. doi:10.1016/s1473-3099(09)70177-xspa
dc.relation.referencesNagaoka, H., Kanoi, B. N., Jinoka, K., Morita, M., Arumugam, T. U., Palacpac, N. M. Q., . . . Takashima, E. (2019). The N-Terminal Region of Plasmodium falciparum MSP10 Is a Target of Protective Antibodies in Malaria and Is Important for PfGAMA/PfMSP10 Interaction. Front Immunol, 10, 2669. doi:10.3389/fimmu.2019.02669spa
dc.relation.referencesNdiath, M. O., Mazenot, C., Sokhna, C., & Trape, J. F. (2016). Retraction: How the Malaria Vector Anopheles gambiae Adapts to the Use of Insecticide-Treated Nets by African Populations. PLoS One, 11(5), e0156196. doi:10.1371/journal.pone.0156196spa
dc.relation.referencesNielsen, R. (2005). Molecular signatures of natural selection. Annu Rev Genet, 39, 197-218. doi:10.1146/annurev.genet.39.073003.112420spa
dc.relation.referencesNogueira, P. A., Alves, F. P., Fernandez-Becerra, C., Pein, O., Santos, N. R., Pereira da Silva, L. H., . . . del Portillo, H. A. (2006). A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun, 74(5), 2726-2733. doi:10.1128/iai.74.5.2726-2733.2006spa
dc.relation.referencesO'Donnell, R. A., & Blackman, M. J. (2005). The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol, 8(4), 422-427. doi:10.1016/j.mib.2005.06.018spa
dc.relation.referencesOPS/OMS, O. P. d. l. S. (2010). Guía para atención clínica integral del paciente con malaria. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia-atencion-clinica-malaria-2011.pdfspa
dc.relation.referencesPatarroyo, M. A., Arevalo-Pinzon, G., & Moreno-Perez, D. A. (2020). From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. doi:10.1080/14760584.2020.1733421spa
dc.relation.referencesPatarroyo, M. A., Calderón, D., & Moreno-Pérez, D. A. (2012). Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines, 11(10), 1249-1260. doi:10.1586/erv.12.91spa
dc.relation.referencesPatarroyo, M. E., Arevalo-Pinzon, G., Reyes, C., Moreno-Vranich, A., & Patarroyo, M. A. (2016). Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol, 18, 57-78spa
dc.relation.referencesPaul, A. S., Egan, E. S., & Duraisingh, M. T. (2015). Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr Opin Hematol, 22(3), 220-226. doi:10.1097/moh.0000000000000135spa
dc.relation.referencesPerez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2005). Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun, 331(4), 1178-1184. doi:10.1016/j.bbrc.2005.04.031spa
dc.relation.referencesPerez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2004). Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun, 324(4), 1393-1399. doi:10.1016/j.bbrc.2004.09.202spa
dc.relation.referencesPolley, S. D., Tetteh, K. K., Lloyd, J. M., Akpogheneta, O. J., Greenwood, B. M., Bojang, K. A., & Conway, D. J. (2007). Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection. J Infect Dis, 195(2), 279-287. doi:10.1086/509806spa
dc.relation.referencesPrajapati, S., & Singh, O. (2013). Insights into the invasion biology of Plasmodium vivax. Frontiers in Cellular and Infection Microbiology, 3(8). doi:10.3389/fcimb.2013.00008spa
dc.relation.referencesPuentes, A., Ocampo, M., Rodriguez, L. E., Vera, R., Valbuena, J., Curtidor, H., . . . Patarroyo, M. E. (2005). Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie, 87(5), 461-472. doi:10.1016/j.biochi.2005.01.001spa
dc.relation.referencesRath, A., Glibowicka, M., Nadeau, V. G., Chen, G., & Deber, C. M. (2009). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 106(6), 1760-1765. doi:10.1073/pnas.0813167106spa
dc.relation.referencesRecht, J., Siqueira, A. M., Monteiro, W. M., Herrera, S. M., Herrera, S., & Lacerda, M. V. G. (2017). Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J, 16(1), 273. doi:10.1186/s12936-017-1925-6spa
dc.relation.referencesRichards, J. S., & Beeson, J. G. (2009). The future for blood-stage vaccines against malaria. Immunol Cell Biol, 87(5), 377-390. doi:10.1038/icb.2009.27spa
dc.relation.referencesRodriguez, L. E., Urquiza, M., Ocampo, M., Curtidor, H., Suarez, J., Garcia, J., . . . Patarroyo, M. E. (2002). Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine, 20(9-10), 1331-1339. doi:10.1016/s0264-410x(01)00472-8spa
dc.relation.referencesSelander-Sunnerhagen, M., Ullner, M., Persson, E., Teleman, O., Stenflo, J., & Drakenberg, T. (1992). How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem, 267(27), 19642-19649. doi:10.2210/pdb1ccf/pdbspa
dc.relation.referencesSingh, S., Pandey, K., Chattopadhayay, R., Yazdani, S. S., Lynn, A., Bharadwaj, A., . . . Chitnis, C. (2001). Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding protein. J Biol Chem, 276(20), 17111-17116. doi:10.1074/jbc.M101531200spa
dc.relation.referencesSkulski, M., Bartoszewski, R., Majkowski, M., Machnicka, B., Kuliczkowski, K., Sikorski, A. F., & Bogusławska, D. M. (2019). Efficient method for isolation of reticulocyte RNA from healthy individuals and hemolytic anaemia patients. J Cell Mol Med, 23(1), 487-496. doi:10.1111/jcmm.13951spa
dc.relation.referencesSriprawat, K., Kaewpongsri, S., Suwanarusk, R., Leimanis, M. L., Lek-Uthai, U., Phyo, A. P., . . . Nosten, F. (2009). Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar J, 8, 115. doi:10.1186/1475-2875-8-115spa
dc.relation.referencesSturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., . . . Heussler, V. T. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313(5791), 1287-1290. doi:10.1126/science.1129720spa
dc.relation.referencesSuzuki, Y. (2006). Natural selection on the influenza virus genome. Mol Biol Evol, 23(10), 1902-1911. doi:10.1093/molbev/msl050spa
dc.relation.referencesTuteja, R. (2007). Malaria - an overview. FEBS J, 274(18), 4670-4679. doi:10.1111/j.1742-4658.2007.05997.xspa
dc.relation.referencesUrbina, A., & Palomino, F. (2018). In vitro kinetics of reticulocyte subtypes: maturation after red blood cell storage in additive solution-1 (AS-1). Hematology, Transfusion and Cell Therapy, 40(2), 143-150. doi:10.1016/j.htct.2017.12.002spa
dc.relation.referencesValderrama-Aguirre, A., Quintero, G., Gomez, A., Castellanos, A., Perez, Y., Mendez, F., . . . Herrera, S. (2005). Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am J Trop Med Hyg, 73(5 Suppl), 16-24. doi:10.4269/ajtmh.2005.73.16spa
dc.relation.referencesVargas-Serrato, E., Barnwell, J. W., Ingravallo, P., Perler, F. B., & Galinski, M. R. (2002). Merozoite surface protein-9 of Plasmodium vivax and related simian malaria parasites is orthologous to p101/ABRA of P. falciparum. Mol Biochem Parasitol, 120(1), 41-52. doi:10.1016/s0166-6851(01)00433-9spa
dc.relation.referencesVitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annu Rev Genet, 47, 97-120. doi:10.1146/annurev-genet-111212-133526spa
dc.relation.referencesWARN. (2012). Plasmodium vivax and drug resistance | Worldwide Antimalarial Resistance Networkspa
dc.relation.referencesWertheimer, S. P., & Barnwell, J. W. (1989). Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol, 69(4), 340-350spa
dc.relation.referencesWHO. (2016). Control y eliminación del paludismo por plasmodium vivax: informe técnico. Retrieved fromspa
dc.relation.referencesWHO. (2018a). Malaria 2018spa
dc.relation.referencesWHO. (2018b). World malaria report 2018spa
dc.relation.referencesWHO. (2019). World malaria report 2019spa
dc.relation.referencesWilson, D. W., Goodman, C. D., Sleebs, B. E., Weiss, G. E., de Jong, N. W., Angrisano, F., . . . Beeson, J. G. (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biol, 13, 52. doi:10.1186/s12915-015-0162-0spa
dc.relation.referencesWouters, M. A., Rigoutsos, I., Chu, C. K., Feng, L. L., Sparrow, D. B., & Dunwoodie, S. L. (2005). Evolution of distinct EGF domains with specific functions. Protein Sci, 14(4), 1091-1103. doi:10.1110/ps.041207005spa
dc.relation.referencesWright, G. J., & Rayner, J. C. (2014). Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog, 10(3), e1003943. doi:10.1371/journal.ppat.1003943spa
dc.relation.referencesZeeshan, M., Tyagi, R. K., Tyagi, K., Alam, M. S., & Sharma, Y. D. (2015). Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. J Infect Dis, 211(7), 1111-1120. doi:10.1093/infdis/jiu558spa
dc.rightsDerechos Reservados al Autor, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.decsInmunología
dc.subject.decsImmunology
dc.subject.decsPlasmodium vivax
dc.subject.decsMalaria
dc.subject.proposalPlasmodium vivaxspa
dc.subject.proposalInvasiónspa
dc.subject.proposalInteracciones proteína-proteínaspa
dc.subject.proposalPvMSP10spa
dc.subject.proposalReticulocitos humanosspa
dc.subject.proposalPlasmodium vivaxeng
dc.subject.proposalInvasioneng
dc.subject.proposalProtein-protein interactionseng
dc.subject.proposalPvMSP10eng
dc.subject.proposalHuman reticulocyteseng
dc.titleActividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10spa
dc.title.translatedReticulocyte binding activity humans from the preserved fragment of the PvMSP10 proteineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación Instituto Inmunología de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030657558.2020.pdf
Tamaño:
5.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: