Development of a new integrated assessment methodology to design and select the best emission reduction strategies for urban passenger transport

dc.contributor.advisorBelalcázar Cerón, Luis Carlos
dc.contributor.advisorClappier, Alain
dc.contributor.authorCuéllar Álvarez, Yohén
dc.contributor.researchgroupCalidad del Airespa
dc.date.accessioned2023-03-10T14:42:34Z
dc.date.available2023-03-10T14:42:34Z
dc.date.issued2023-03-09
dc.descriptionilustracionesspa
dc.description.abstractIn cities in emerging countries, the demand for passenger transport has proliferated, creating socially and environmentally unsustainable transport systems. Finding the best transport options for these communities poses substantial challenges to transport policymakers. Therefore, the main objective of this thesis was to develop a new Integrated Assessment Methodology (IAM) to design and select the best emission reduction strategies for urban passenger transportation. This MEI considers direct emissions inventory, indirect emissions inventory, total ownership cost, and emission reduction strategies. First, the estimation of the inventory of direct emissions of air pollutants (PM2.5, NOx, SO2, CO) and greenhouse gases (CO2-Eq), including emissions from the exhaust and Wear and Resuspension (W&R). The latter is not usually included in existing MEIs. In this work, the COPERT model was adapted to local conditions to estimate direct emissions from combustion and the EMEP and EPA methodologies to estimate W&R emissions. Second, the indirect emissions inventory is estimated from the Well-to-Wheel (WTW) life cycle assessment approach. This study highlights the importance of including emission sources other than vehicle combustion in emission inventories. Third, the Total Ownership Cost (TOC) is calculated from the capital, operating, maintenance and technology replacement costs over the vehicle's lifetime. Traditional MEI focuses only on the cost of introducing new vehicles with updated technologies, not the TOC. This research shows that using electric vehicles is the most economical technical strategy to minimize emissions. Fourth, the analysis of reduction strategies evaluates the change generated by scenarios designed for technology substitution and mode shift. Replacement of the current fleet with modern combustion technologies results in relatively small reductions in total emissions, while replacement with electric vehicles powered by electricity from renewable energy is the most efficient scenario. In addition, to incorporate the system context and the variables that determine the adoption of various modes of urban passenger transport, the advantages and disadvantages of these modes were analyzed using a set of criteria related to the environment, risk, and social welfare (i.e., CO2-Eq and PM2.5 emissions, energy consumption, traffic mortality and injuries, vehicle congestion, travel time and discomfort). For the case of Bogotá, trends in mode share were compared according to the socioeconomic stratification of households. The results indicate that the disadvantages of passenger cars and taxis are high environmental impacts and vehicular congestion; high levels of discomfort and travel times characterize buses, and high risk characterizes motorcycles. Finally, the main contribution of this research is the development of a more effective MEI for policymakers to address solutions around the different modes of transport in environmental and economic terms. It is expected to be improved and applied in other cities in Latin America and worldwide. (Texto tomado de la fuente)eng
dc.description.abstractEn las ciudades de los países emergentes, la demanda de transporte de pasajeros ha proliferado, creando sistemas de transporte social y ambientalmente insostenibles. Encontrar las mejores opciones de transporte para estas comunidades plantea problemas sustanciales a los responsables de las políticas del transporte. Por ello, el objetivo principal de esta tesis fue desarrollar una nueva metodología de evaluación integrada (MEI) para diseñar y seleccionar las mejores estrategias de reducción de emisiones para el transporte urbano de pasajeros. Esta MEI considera el inventario de emisiones directas, el inventario de emisiones indirectas, el costo total de la propiedad y las estrategias para la reducción de emisiones. En primer lugar, la estimación del inventario de emisiones directas de contaminantes del aire (PM2.5, NOx, SO2, CO) y gases efecto invernadero (CO2-Eq), contempla las emisiones del exosto, y de la abrasión y resuspensión o Wear and Resuspension (W&R). Esta última no suele incluirse en las MEI existentes. En este trabajo se adaptó el modelo COPERT a las condiciones locales para estimar las emisiones directas de la combustión y las metodologías EMEP y EPA para estimar las emisiones de W&R. En segundo lugar, el inventario de emisiones indirectas se estima a partir del enfoque de evaluación del ciclo de vida del pozo a la rueda o análisis Well-to-Wheel (WTW). Este estudio pone de manifiesto la importancia de incluir en los inventarios de emisiones otras fuentes de emisión distintas de la combustión de los vehículos. En tercer lugar, el costo total de la propiedad o Total Ownership Cost (TOC) es calculado a partir de los costes de capital, funcionamiento, mantenimiento y sustitución de la tecnología durante la vida útil del vehículo. La MEI tradicional se centra solo en el coste de introducir nuevos vehículos con tecnologías actualizadas, más no el TOC. Esta investigación muestra que el uso de vehículos eléctricos es la estrategia técnica más económica para minimizar las emisiones. En cuarto lugar, el análisis de estrategias de reducción evalúa el cambio generado por los escenarios diseñados para la sustitución tecnológica y el cambio en los modos de transporte. La sustitución de la flota actual por tecnologías de combustión modernas da lugar a reducciones relativamente pequeñas de las emisiones totales, mientras que la sustitución por vehículos eléctricos alimentados con electricidad procedente de energías renovables es el escenario más eficiente. Además, para incorporar el contexto del sistema y las variables que determinan la adopción de diversos modos de transporte urbano de pasajeros, se analizaron las ventajas, y desventajas de estos utilizando un conjunto de criterios relacionados con el ambiente, el riesgo y el bienestar social (i. e. emisiones de CO2-Eq y PM2.5, consumo de energía, mortalidad y lesiones causadas por el tráfico, congestión vehicular, tiempo de viaje e incomodidad). Para el caso de Bogotá, se compararon las tendencias en la participación de los modos de viaje según la estratificación socioeconómica de los hogares. Los resultados indican que las desventajas de los automóviles de pasajeros y los taxis son los altos impactos ambientales y la congestión vehicular; los altos niveles de incomodidad y los tiempos de viaje caracterizan a los buses, y el alto riesgo caracteriza a las motocicletas. Finalmente, la principal contribución de esta investigación es el desarrollo de una MEI más eficaz para que los responsables políticos aborden soluciones en torno a los diferentes modos de transporte en términos medioambientales y económicos. Se espera que esta sea mejorada y aplicada en otras ciudades de Latinoamérica y el mundo.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaEnvironmental processspa
dc.format.extent250 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83608
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdullah, M. a., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects. Renewable Energy, 78, 165–172. https://doi.org/10.1016/j.renene.2014.12.044spa
dc.relation.referencesAlcaldía Mayor de Bogotá. (2021). Encuesta de movilidad 2019. Sistema Integrado de Información Sobre Movilidad Urnaba Regional (SIMUR). https://www.simur.gov.co/encuestas-de-movilidadspa
dc.relation.referencesAlcaldía Mayor de Bogotá. (2022a). Distrito no está haciendo cambios en metodología de la estratificación.spa
dc.relation.referencesAlcaldía Mayor de Bogotá. (2022b). Manzana Estratificación. Bogotá D.C. Datos Abiertos Bogotá. https://datosabiertos.bogota.gov.co/dataset/manzana-estratificacion-bogota-d-cspa
dc.relation.referencesAmann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., & Winiwarter, W. (2011). Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 26(12), 1489–1501. https://doi.org/10.1016/j.envsoft.2011.07.012spa
dc.relation.referencesAmato, F. (Ed.). (2018). Non-Exhaust Emissions: An Urban Air Quality Problem for Public Health. Academic Press.spa
dc.relation.referencesAmato, F., Cassee, F. R., Denier van der Gon, H. A. C., Gehrig, R., Gustafsson, M., Hafner, W., Harrison, R. M., Jozwicka, M., Kelly, F. J., Moreno, T., Prevot, A. S. H., Schaap, M., Sunyer, J., & Querol, X. (2014). Urban air quality: The challenge of traffic non-exhaust emissions. Journal of Hazardous Materials, 275, 31–36. https://doi.org/10.1016/j.jhazmat.2014.04.053spa
dc.relation.referencesAutoridad Nacional de Licencias Ambientales -ANLA-. (2016). Guía para el trámite de solicitud y evaluación de los certificados de emisiones por prueba dinámica y visto bueno por Protocolo de Montreal.spa
dc.relation.referencesBaklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059spa
dc.relation.referencesBanco de la República de Colombia. (2021a). Tasa Representativa del Mercado (TRM - Peso por dólar). Tasas de Cambio. https://www.banrep.gov.co/es/estadisticas/trmspa
dc.relation.referencesBanco de la República de Colombia. (2021b). Tasa Representativa del Mercado (TRM - Peso por dólar). Tasas de Cambio. https://www.banrep.gov.co/es/estadisticas/trmspa
dc.relation.referencesBanister, D. (2011). Cities, mobility and climate change. Journal of Transport Geography, 19(6), 1538–1546. https://doi.org/10.1016/j.jtrangeo.2011.03.009spa
dc.relation.referencesBBVA-Research. (2018). Situación Automotriz en Colombia 2018. https://www.bbvaresearch.com/wp-content/uploads/2018/03/SituacionAutomotriz2018.pdfspa
dc.relation.referencesBednar-Friedl, B., Wolkinger, B., König, M., Bachner, G., Formayer, H., Offenthaler, I., & Leitner, M. (2015). Transport. Springer Climate, 279–300. https://doi.org/10.1007/978-3-319-12457-5_15spa
dc.relation.referencesBelis, C., Baldasano, J., Blond, N., Bouland, C., Buekers, J., Carnevale, C., Cherubini, A., Clappier, A., De Saeger, E., Douros, J., Finzi, G., Fragkou, E., Gama, C., Graff, A., Guariso, G., Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., … White, L. (2017). Current European AQ planning at regional and local scale. In Current European AQ planning at regional and local scale (Issue 9783319333489, pp. 37–68). https://doi.org/10.1007/978-3-319-33349-6_3spa
dc.relation.referencesBeltrán, D., Belalcázar, L. C., & Rojas, N. Y. (2012). Emisiones vehiculares de material particulado (PM2.5 y PM10 ) por resuspensión de polvo y abrasión en Bogotá. Revista Asociación Colombiana de Ingeniería Sanitaria y Ambiental (ACODAL), 231, 25–32.spa
dc.relation.referencesBlond, N., Carnevale, C., Douros, J., Finzi, G., Guariso, G., & Janssen, S. (2017). A Framework for Integrated Assessment Modelling. In G. Guariso & M. Volta (Eds.), Air Quality Integrated Assessment (p. 116). Springer Open. https://doi.org/10.1007/978-3-319-33349-6spa
dc.relation.referencesBnamericas. (2019, October 23). Precios de la electricidad en Latinoamérica: Comparación de países.spa
dc.relation.referencesBogotá cómo vamos. (2022). Encuestas de Percepción Ciudadana. https://bogotacomovamos.org/encuestas-de-percepcion-ciudadana/spa
dc.relation.referencesBoulter, P. G., & Mccrae, I. S. (2007). ARTEMIS: Assessment and Reliability of Transport Emission Models and Inventory Systems – final report.spa
dc.relation.referencesBreithaupt, M. (2015). Environmentally Sustainable Transport - Main Principles and Impacts The adverse impacts of growth in motorization. https://www.uncrd.or.jp/content/documents/5594Presentation 3 - Module 1 - Mr. Breithaupt.pdfspa
dc.relation.referencesBubeck, S., Tomaschek, J., & Fahl, U. (2016). Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany. Transport Policy, 50(2016), 63–77. https://doi.org/10.1016/j.tranpol.2016.05.012spa
dc.relation.referencesCantillo-García, V., Guzman, L. A., & Arellana, J. (2019). Estrato socioeconómico como variable sustituta del ingreso del hogar en la investigación de transporte. Evaluación para Bogotá, Medellín, Cali y Barranquilla. DYNA; Vol. 86, Núm. 211 (2019)DO - 10.15446/Dyna.V86n211.81821 , August.spa
dc.relation.referencesCardekho Gaadistore. (2020). Find your right car. https://www.cardekho.com/spa
dc.relation.referencesCarmona Aparicio, L. G., Rincón Pérez, M. A., Castillo Robles, A. M., Galvis Remolina, B. R., Sáenz Pulido, H. E., Manrique Forero, R. A., & Pachón Quinche, J. E. (2016). Conciliación de inventarios top-down y bottom-up de emisiones de fuentes móviles en Bogotá, Colombia. Revista Tecnura, 20(49), 59. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a04spa
dc.relation.referencesCarnevale, C., Finzi, G., Pisoni, E., Volta, M., Guariso, G., Gianfreda, R., Maffeis, G., Thunis, P., White, L., & Triacchini, G. (2012). An integrated assessment tool to define effective air quality policies at regional scale. Environmental Modelling and Software, 38, 306–315. https://doi.org/10.1016/j.envsoft.2012.07.004spa
dc.relation.referencesAuteco. (2020). Motos eléctricas sport. Motos Eléctricas. https://www.auteco.com.co/motos-electricas/tipos-de-motos-electricas/motos-electricas-sport?O=OrderByPriceASC&PS=16spa
dc.relation.referencesAutolarte S.A.S. (2019). Busetón Chevrolet NQR. https://www.autolarte.com.co/buses-chevrolet-buseton-nqr-euro-ivspa
dc.relation.referencesBocarejo, J. P., Portilla, I. J., Virgüez, E. A., & Pardo, M. A. (2016). Conveniencia del Gas natural vehícular en Colombia. Caso de estudio para el sector de transporte público. https://www.epm.com.co/site/Portals/2/ESTUDIOS GNV/201603 Conveniencia del GNV en Colombia.pdf?ver=2018-05-08-161935-333spa
dc.relation.referencesCarroya.com. (2019). 5 mitos sobre el gas natural vehicular. Guía Para Conductores. https://www.carroya.com/noticias/guia-para-conductores/5-mitos-sobre-el-gas-natural-vehicular-2192spa
dc.relation.referencesCarroya.com. (2020). Buses y colectivos nuevos en Bogotá. https://www.carroya.com/buscar/vehiculos/pasajeros/t4v5e2d5c1.do?spa
dc.relation.referencesCarsGuide Autotrader Media Solutions. (2020). 2020 Kia Sportage Pricing and Specs. Pricing and Specs. https://www.carsguide.com.au/kia/sportage/price/2020spa
dc.relation.referencesChae, Y., & Park, J. (2011). Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area. Energy Policy, 39(9), 5296–5308. https://doi.org/10.1016/j.enpol.2011.05.034spa
dc.relation.referencesChambliss, S., Miller, J., Façanha, C., Minjares, R., Blumberg, K., Authors, M., Bandivadekar, A., Wagner, V., Posada, F., German, J., Lutsey, N., Lloyd, A., Kodjak, D., Kamakaté, F., Rutherford, D., Olivares, E., Schultz, J., Muncrief, R., & Shao, Z. (2013). The Impact of Stringent Fuel and Vehicle Standards on Premature Mortality and Emission. In Icct’s Global Transportation Health and Climate Roadmap Series. www.theicct.orgspa
dc.relation.referencesCiucci, A., D’Elia, I., Wagner, F., Sander, R., Ciancarella, L., Zanini, G., & Schöpp, W. (2016). Cost-effective reductions of PM2.5 concentrations and exposure in Italy. Atmospheric Environment, 140, 84–93. https://doi.org/10.1016/j.atmosenv.2016.05.049spa
dc.relation.referencesConsejo Nacional de Política Económica y Social. (2022). Política de Transición Energética - Conpes 4075. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdfspa
dc.relation.referencesContraloría de Bogotá. (2012). Informe de la visita fiscal Contrato 559 de 2012. In PLAN DE AUDITORÍA DISTRITAL.spa
dc.relation.referencesContraloría de Bogotá. (2019). Informe final de auditoría de regularidad. Empresa de Transporte del Tercer Milenio S.A. - TransMilenio S.A. In Página Institucional.spa
dc.relation.referencesCuadros Tejeda, H. D., Cuellar, Y., Chiriví Salomón, J. S., & Guevara, M. (2019). GHG diffuse emissions estimation, and energy security to ENSO using MERRA- 2 for largely hydroelectricity-based system. Revista Facultad de Ingeniería –Redin-, 91, 42. https://doi.org/https://doi.org/10.17533/10.17533/udea.redin.n91a07spa
dc.relation.referencesCUE. (2012). “Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia”. Capitulo II : Estudio ACV – Impacto Ambiental. In Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia (p. 203). BID, Banco Interamericano de Desarrollo Mmec, Ministerio de Minas y Energia República de Colombia.spa
dc.relation.referencesCuéllar Álvarez, Y. (2016). Análisis de Ciclo de Vida para diferentes fuentes energéticas usadas en los vehículos de transporte de pasajeros de la ciudad de Bogotá [Tesis Maestría, Universidad Nacional de Colombia – Sede Bogotá.]. http://www.bdigital.unal.edu.co/cgi/users/home?screen=EPrint::View&eprintid=52211spa
dc.relation.referencesCuéllar, Y., Buitrago-Tello, R., & Belálcazar-Cerón, L. C. (2016). Life cycle emissions from a Bus Rapid Transit system and comparison with other modes of passenger transportation. Ct&F-Ciencia Tecnologia Y Futuro, 6(3), 25–36. https://doi.org/10.29047/01225383.13spa
dc.relation.referencesCuéllar-Álvarez, Y., Clappier, A., Osses, M., Thunis, P., & Belalcázar-Cerón, L. C. (2022). Well-to-wheel emissions and abatement strategies for passenger vehicles in two Latin American cities. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-20885-9spa
dc.relation.referencesCuéllar-Álvarez, Y., Guevara-Luna, M. A., Belalcázar-Cerón, L. C., & Clappier, A. (2023). Well-to-Wheels emission inventory for the passenger vehicles of Bogotá, Colombia. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-023-04805-zspa
dc.relation.referencesCycling Embassy of Great Britain. (2019). Capacity. https://www.cycling-embassy.org.uk/dictionary/capacityspa
dc.relation.referencesDaellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., el Haddad, I., … Prévôt, A. S. H. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), 414–419. https://doi.org/10.1038/s41586-020-2902-8spa
dc.relation.referencesde Souza, L. L. P., Silva Lora, E. E., Escobar Palacio, J. C., Rocha, M. H., Grillo Renó, M. L., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options , plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production, 203, 444–468. https://doi.org/10.1016/j.jclepro.2018.08.236spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2019). Encuesta mensual de comercio al por menor y comercio de vehículos (EMCM). Encuesta Mensual de Comercio (EMC). https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-interno/encuesta-emcmspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2020). Índice de costos del transporte intermunicipal de pasajeros (ICTIP). https://www.dane.gov.co/index.php/estadisticas-por-tema/transporte/indice-de-costos-del-transporte-intermunicipal-de-pasajeros-ictipspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2022). Estratificación Socioeconómica - Preguntas Frecuentes. https://www.dane.gov.co/index.php/servicios-al-ciudadano/116-espanol/informacion-georreferenciada/2421-estratificacion-socioeconomica-preguntas-frecuentesspa
dc.relation.referencesDhillon, B. S. (2010). Life Cycle Costing for Engineers. Taylor & Francis Group.spa
dc.relation.referencesDing, D., Zhu, Y., Jang, C., Lin, C. J., Wang, S., Fu, J., Gao, J., Deng, S., Xie, J., & Qiu, X. (2016). Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. Journal of Environmental Sciences (China), 42, 9–18. https://doi.org/10.1016/j.jes.2015.06.003spa
dc.relation.referencesDNP. (2015). Información Departamental, Bogotá, D.C. Población 2015, Censo 2015 – DANE (Vol. 2015).spa
dc.relation.referencesEast, J., Montealegre, J. S., Pachon, J. E., & Garcia-Menendez, F. (2021). Air quality modeling to inform pollution mitigation strategies in a Latin American megacity. Science of the Total Environment, 776, 145894. https://doi.org/10.1016/j.scitotenv.2021.145894spa
dc.relation.referencesEcoinvent Association. (2018). The ecoinvent Database. Ecoinvent Centre. http://www.ecoinvent.org/database/spa
dc.relation.referencesEcopetrol S. A. (2013). Reporte integrado de gestión sostenible.spa
dc.relation.referencesEdelenbosch, O. Y., McCollum, D. L., van Vuuren, D. P., Bertram, C., Carrara, S., Daly, H., Fujimori, S., Kitous, A., Kyle, P., Ó Broin, E., Karkatsoulis, P., & Sano, F. (2016). Decomposing passenger transport futures: Comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment, 55, 281–293. https://doi.org/10.1016/j.trd.2016.07.003spa
dc.relation.referencesEdelenbosch, O. Y., van Vuuren, D. P., Bertram, C., Carrara, S., Emmerling, J., Daly, H., Kitous, A., McCollum, D. L., & Saadi Failali, N. (2017). Transport fuel demand responses to fuel price and income projections: Comparison of integrated assessment models. Transportation Research Part D: Transport and Environment, 55, 310–321. https://doi.org/10.1016/j.trd.2017.03.005spa
dc.relation.referencesEditorial La República S.A.S. (2018). El mantenimiento de un carro usado puede costar casi $6 millones cada año. Transporte.spa
dc.relation.referencesEditorial La República S.A.S. (2019, August 26). ¿Qué tan costo le puede resultar a su bolsillo tener un vehículo 100% eléctrico? Automotor.spa
dc.relation.referencesEl Espectador. (2018). Transporte público vs motos. Especiales El Espectador. https://www.elespectador.com/static_specials/319/motos/index.htmlspa
dc.relation.referencesEl Espectador - Redacción Bogotá. (2019, December 19). Así va el mercado de las motos en Colombia.spa
dc.relation.referencesEL TIEMPO Casa Editorial. (2018, February 6). El desafío de incorporar los buses eléctricos en TransMilenio.spa
dc.relation.referencesEL TIEMPO Casa Editorial. (2019, July 29). Llegó a Medellín el primero de los 64 buses eléctricos para la ciudad. https://www.eltiempo.com/colombia/medellin/llego-a-medellin-el-primero-de-los-64-buses-electricos-que-tendra-394430spa
dc.relation.referencesElgowainy, A., Rousseau, A., Wang, M., Ruth, M., Andress, D., Ward, J., Joseck, F., Nguyen, T., & Das, S. (2013). Cost of ownership and well-to-wheels carbon emissions/oil use of alternative fuels and advanced light-duty vehicle technologies. Energy for Sustainable Development, 17(6), 626–641. https://doi.org/10.1016/j.esd.2013.09.001spa
dc.relation.referencesEriksson, M., & Ahlgren, S. (2013). LCAs of petrol and diesel a literature review.spa
dc.relation.referencesFalaguerra, T., & Rodriguez, C. R. (2017). Performance comparison of conventional , hybrid , hydrogen and electric urban buses using well to wheel analysis. Energy, 141, 537–549. https://doi.org/10.1016/j.energy.2017.09.066spa
dc.relation.referencesFENALCO. (2018). Informe de motocicletas a enero de 2018. http://www.andi.com.co/Uploads/INFORME DE MOTOCICLETAS A ENERO 2018.pdfspa
dc.relation.referencesGallardo, L., Escribano, J., Dawidowski, L., Rojas, N., de Fátima Andrade, M., & Osses, M. (2012). Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmospheric Environment, 47(x), 12–19. https://doi.org/10.1016/j.atmosenv.2011.11.051spa
dc.relation.referencesGao, L., & Winfield, Z. C. (2012). Life cycle assessment of environmental and economic impacts of advanced vehicles. Energies, 5(12), 605–620. https://doi.org/10.3390/en5030605spa
dc.relation.referencesGarcia, R., & Freire, F. (2017). A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles. Renewable and Sustainable Energy Reviews, 79(April), 935–945. https://doi.org/10.1016/j.rser.2017.05.145spa
dc.relation.referencesGeneradoras de Chile. (2020). Generación Eléctrica en Chile. Participación Relativa Por Fuente de Generación. http://generadoras.cl/generacion-electrica-en-chilespa
dc.relation.referencesGnansounou, E., Dauriat, a., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919–4930. https://doi.org/10.1016/j.biortech.2009.05.067spa
dc.relation.referencesGómez, C. D., González, C. M., Osses, M., & Aristizábal, B. H. (2018). Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies. Atmospheric Environment, 179(January), 142–155. https://doi.org/10.1016/j.atmosenv.2018.01.049spa
dc.relation.referencesGreendelta GmbH. (2021). OpenLCA Nexus - ecoinvent. https://nexus.openlca.org/databasesspa
dc.relation.referencesGulia, S., Goyal, P., Goyal, S. K., & Kumar, R. (2019). Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review. International Journal of Environmental Science and Technology, 16(3), 1717–1728. https://doi.org/10.1007/s13762-018-2001-7spa
dc.relation.referencesGunawan, T. A., & Monaghan, R. F. D. (2022). Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks. Applied Energy, 308(October 2021), 118327. https://doi.org/10.1016/j.apenergy.2021.118327spa
dc.relation.referencesGupta, P., Tong, D., Wang, J., Zhuge, W., Yan, C., Wu, Y., Luo, S., He, X., & Ma, F. (2020). Well-to-wheels total energy and GHG emissions of HCNG heavy-duty vehicles in China: Case of EEV qualified EURO 5 emissions scenario. International Journal of Hydrogen Energy, 45(15), 8002–8014. https://doi.org/10.1016/j.ijhydene.2020.01.025spa
dc.relation.referencesHauschild, M. Z., & Huijbregts, M. A. J. (2015). LCA Compendium – The Complete World of Life Cycle Assessment. Life cycle impact assessment. In W. Klöpffer & M. A. Curran (Eds.), The International Journal of Life Cycle Assessment (Vol. 2, Issue 2). Springer. https://doi.org/10.1007/BF02978760spa
dc.relation.referencesHenneman, L. R. F., Rafaj, P., Annegarn, H. J., & Klausbruckner, C. (2016). Assessing emissions levels and costs associated with climate and air pollution policies in South Africa. Energy Policy, 89, 160–170. https://doi.org/10.1016/j.enpol.2015.11.026spa
dc.relation.referencesHettelingh, J., Vries, B. J. M. De, & Hordijk, L. (2009). Integrated Assessment. In J. J. Boersema & L. Reijnders (Eds.), Principles of Environmental Sciences (p. 537). Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-1-4020-9158-2_19spa
dc.relation.referencesIEA. (2021). Net Zero by 2050 A Roadmap for the Global Energy Sector. https://iea.blob.core.windows.net/assets/ad0d4830-bd7e-47b6-838c-40d115733c13/NetZeroby2050-ARoadmapfortheGlobalEnergySector.pdfspa
dc.relation.referencesIEA - International Energy Agency -. (2020). Global EV Outlook 2020. In Global EV Outlook 2020. https://doi.org/10.1787/d394399e-enspa
dc.relation.referencesINE. (2020a). País y regiones - Población total e indicadores. In Proyecciones de población.spa
dc.relation.referencesINE. (2020b). Transporte y comunicaciones - Permisos de circulación año 2015. https://www.ine.cl/estadisticas/economia/transporte-y-comunicaciones/permiso-de-circulacionspa
dc.relation.referencesIQAir. (2018). 2018 World Air Quality Report. Region & City PM2.5 Ranking. https://www.airvisual.com/world-most-polluted-cities/world-air-quality-report-2018-en.pdfspa
dc.relation.referencesJadun, P., McMillan, C., Stenberg, D., Muratori, M., Vimmerstedt, L., & Mai, T. (2017). Electrification Futures Study : End-Use Electric Technology Cost. In National Renewable Energy Lab.spa
dc.relation.referencesKhreis, H., May, A. D., & Nieuwenhuijsen, M. J. (2017). Health impacts of urban transport policy measures: A guidance note for practice. Journal of Transport & Health, 6(November 2016), 209–227. https://doi.org/10.1016/j.jth.2017.06.003spa
dc.relation.referencesKIA MOTORS UK. (2020). KIA SPORTAGE PRICE GUIDE. Sportage Pricing. https://www.kia.com/uk/new-cars/sportage/pricing/spa
dc.relation.referencesKishimoto, P. N., Karplus, V. J., Zhong, M., Saikawa, E., Zhang, X., & Zhang, X. (2017). The impact of coordinated policies on air pollution emissions from road transportation in China. Transportation Research Part D: Transport and Environment, 54, 30–49. https://doi.org/10.1016/j.trd.2017.02.012spa
dc.relation.referencesKochhan, R., Fuchs, S., Reuter, B., Burda, P., Matz, S., & Lienkamp, M. (2017). An Overview of Costs for Vehicle Components, Fuels and Greenhouse Gas Emissions. Researchgate. https://doi.org/10.13140/RG.2.2.19963.21285spa
dc.relation.referencesKouridis, C., Samaras, C., Hassel, D., Mellios, G., Mccrae, I., Hickman, J., Zierock, H., Keller, M., Rexeis, M., Andre, M., Winther, M., Pastramas, N., Boulter, P., Katsis, P., Joumard, R., Rijkeboer, R., & Geivanidis, S. (2018). EMEP/EEA air pollutant emission inventory guidebook. Exhaust emissions from road transport. https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/viewspa
dc.relation.referencesKrapivin, V. F., Varotsos, C. a., & Soldatov, V. Yu. (2015). Ecoinformatics Problems of Global Climate Change. In New Ecoinformatics Tools in Environmental Science (pp. 430–431). https://doi.org/10.1007/978-3-319-13978-4spa
dc.relation.referencesLang, J., Cheng, S., Zhou, Y., Zhao, B., Wang, H., & Zhang, S. (2013). Energy and Environmental Implications of Hybrid and Electric Vehicles in China. Energies, 6(5), 2663–2685. https://doi.org/10.3390/en6052663spa
dc.relation.referencesLangshaw, L., Ainalis, D., Acha, S., Shah, N., & Stettler, M. E. J. (2020). Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation. Energy Policy, 137(October 2019), 111161. https://doi.org/10.1016/j.enpol.2019.111161spa
dc.relation.referencesLau, C. F., Rakowska, A., Townsend, T., Brimblecombe, P., Chan, T. L., Yam, Y. S., Močnik, G., & Ning, Z. (2015). Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles. Atmospheric Environment, 122, 171–182. https://doi.org/10.1016/j.atmosenv.2015.09.048spa
dc.relation.referencesLents, J., Walsh, M., He, K., Davis, N., Osses, M., Tolvett, S., & Liu, H. (2009). Handbook of Air Quality Management. http://www.aqbook.org/spa
dc.relation.referencesLi, H., Liu, H., Xu, Y. A., & Rodgers, M. O. (2016). Performance of multiple alternatives to reduce carbon emissions for transit fleets : a real-world perspective. Energy Procedia, 88, 908–914. https://doi.org/10.1016/j.egypro.2016.06.110spa
dc.relation.referencesLiu, X., Elgowainy, A., Vijayagopal, R., & Wang, M. (2021). Well-to-Wheels Analysis of Zero-Emission Plug-In Battery Electric Vehicle Technology for Medium- And Heavy-Duty Trucks. Environmental Science and Technology, 55(1), 538–546. https://doi.org/10.1021/acs.est.0c02931spa
dc.relation.referencesLiu, Y. H., Ma, J. L., Li, L., Lin, X. F., Xu, W. J., & Ding, H. (2018). A high temporal-spatial vehicle emission inventory based on detailed hourly traffic data in a medium-sized city of China. Environmental Pollution, 236, 324–333. https://doi.org/10.1016/j.envpol.2018.01.068spa
dc.relation.referencesLu, X., Yao, T., Fung, J. C. H., & Lin, C. (2016). Estimation of health and economic costs of air pollution over the Pearl River Delta region in China. Science of the Total Environment, 566–567, 134–143. https://doi.org/10.1016/j.scitotenv.2016.05.060spa
dc.relation.referencesLucas, A., Silva, C. A., & Costa Neto, R. (2012). Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. Energy Policy, 41, 537–547. https://doi.org/10.1016/j.enpol.2011.11.015spa
dc.relation.referencesLuderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M., & Edenhofer, O. (2013). Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environmental Research Letters, 8, 034033. https://doi.org/10.1088/1748-9326/8/3/034033spa
dc.relation.referencesLutsey, N., & Nicholas, M. (2019). Update on electric vehicle costs in the United States through 2030. In The International Council on Clean Transportation (Issue June). https://doi.org/10.13140/RG.2.2.25390.56646spa
dc.relation.referencesMangones, S. C., Jaramillo, P., Fischbeck, P., & Rojas, N. Y. (2019). Development of a high-resolution traffic emission model: Lessons and key insights from the case of Bogotá, Colombia. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.07.008spa
dc.relation.referencesMansour, C. J., & Haddad, M. G. (2017). Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon. Energy Policy, 107(April), 167–181. https://doi.org/10.1016/j.enpol.2017.04.031spa
dc.relation.referencesMao, F., Li, Z., & Zhang, K. (2020). Carbon dioxide emissions estimation of conventional diesel buses electrification: A well-to-well analysis in Shenzhen, China. Journal of Cleaner Production, 277, 123048. https://doi.org/10.1016/j.jclepro.2020.123048spa
dc.relation.referencesMcCubbin, D., & Sovacool, B. K. (2013). Quantifying the health and environmental benefits of wind power to natural gas. Energy Policy, 53, 429–441. https://doi.org/10.1016/j.enpol.2012.11.004spa
dc.relation.referencesMediavilla-Sahagún, A., & ApSimon, H. M. (2006). Urban scale integrated assessment for London: Which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environmental Modelling and Software, 21(4), 501–513. https://doi.org/10.1016/j.envsoft.2004.06.010spa
dc.relation.referencesMehrdad, E. (2013). Sustainable Transportation. In M. Ehsani, F.-Y. Wang, & G. L. Brosch (Eds.), Transportation Technologies for Sustainability (pp. 890–946). Springer New York. https://doi.org/10.1007/978-1-4614-5844-9spa
dc.relation.referencesMercadoLibre Colombia. (2020). Tucarro. https://www.tucarro.com.co/spa
dc.relation.referencesMessagie, M., Boureima, F.-S., Coosemans, T., Macharis, C., & Mierlo, J. (2014). A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels. Energies, 7(3), 1467–1482. https://doi.org/10.3390/en7031467spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible (MADS), Ministerio de Minas y Energía - MINMINAS-, Ministerio de Transporte, & Unidad de Planeación Minero Energética -UPME-. (2019). Estrategia Nacional de Movilidad Eléctrica.spa
dc.relation.referencesMinisterio de Minas y Energía - MINMINAS-. (2017). Calidad de combustibles en Colombia.spa
dc.relation.referencesMinisterio de Minas y Energía - MINMINAS-. (2020). Histórico de precios. Hidrocarburos. https://www.minenergia.gov.co/historico-de-preciosspa
dc.relation.referencesMolina, L. T. (2021). Introductory lecture: Air quality in megacities. Faraday Discussions, 226, 9–52. https://doi.org/10.1039/d0fd00123fspa
dc.relation.referencesNational Research Council. (2013). Transitions to Alternative Vehicles and Fuels. The National Academies Press. https://doi.org/https://doi.org/10.17226/18264spa
dc.relation.referencesNtziachristos, L., & Boulter, P. (2016). Road transport: Automobile tyre, brake wear and road abrasion. In EMEP/EEA air pollutant emission inventory guidebook. Technical guidance to prepare national emission inventories (p. 32). https://doi.org/10.2800/247535spa
dc.relation.referencesPachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., Meneses, S., Chaparro, R., Nedbor-Gross, R., & Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049spa
dc.relation.referencesPadoan, E., Ajmone-marsan, F., Querol, X., & Amato, F. (2018). An empirical model to predict road dust emissions based on pavement and traffic characteristics. Environmental Pollution, 237, 713–720. https://doi.org/10.1016/j.envpol.2017.10.115spa
dc.relation.referencesPatil, V., Shastry, V., Himabindu, M., & Ravikrishna, R. V. (2016). Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 - Well-to-wheels analysis. Energy, 96(2016), 699–712. https://doi.org/10.1016/j.energy.2015.11.076spa
dc.relation.referencesPereirinha, P. G., González, M., Carrilero, I., Anseán, D., Alonso, J., & Viera, J. C. (2018). Main Trends and Challenges in Road Transportation Electrification. Transportation Research Procedia, 33, 235–242. https://doi.org/10.1016/j.trpro.2018.10.096spa
dc.relation.referencesPiscitello, A., Bianco, C., Casasso, A., & Sethi, R. (2021). Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Science of the Total Environment, 766, 144440. https://doi.org/10.1016/j.scitotenv.2020.144440spa
dc.relation.referencesPisoni, E., Thunis, P., & Clappier, A. (2019). Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment: X, 4(April), 100047. https://doi.org/10.1016/j.aeaoa.2019.100047spa
dc.relation.referencesPolicarpo, N. A., Silva, C., Lopes, T. F. A., Araújo, R. dos S., Cavalcante, F. S. Á., Pitombo, C. S., & Oliveira, M. L. M. de. (2018). Road vehicle emission inventory of a Brazilian metropolitan area and insights for other emerging economies. Transportation Research Part D: Transport and Environment, 58(December 2017), 172–185. https://doi.org/10.1016/j.trd.2017.12.004spa
dc.relation.referencesPortafolio - EL TIEMPO Casa Editorial. (2020, February 6). BYD lidera el mercado de los buses eléctricos en Colombia. Economía. https://www.portafolio.co/economia/byd-lidera-el-mercado-de-los-buses-electricos-en-colombia-537874spa
dc.relation.referencesPromigas. (2018). Informe del sector gas natural 2018.spa
dc.relation.referencesPublicaciones Semana S.A. (2015, August 13). ¿Por qué es tan cara la energía eléctrica en Colombia?spa
dc.relation.referencesPuig-Samper Naranjo, G., Bolonio, D., Ortega, M. F., & García-Martínez, M. J. (2021). Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. Journal of Cleaner Production, 291, 125883. https://doi.org/10.1016/j.jclepro.2021.125883spa
dc.relation.referencesQiu, X., Zhu, Y., Jang, C., Lin, C.-J., Wang, S., Fu, J., Xie, J., Wang, J., Ding, D., & Long, S. (2015). Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Frontiers of Environmental Science {&} Engineering, 9(6), 1056–1065. https://doi.org/10.1007/s11783-015-0796-8spa
dc.relation.referencesQuoc Ho, B., & Clappier, A. (2011). Road traffic emission inventory for air quality modelling and to evaluate the abatement strategies: A case of Ho Chi Minh City, Vietnam. Atmospheric Environment, 45(21), 3584–3593. https://doi.org/10.1016/j.atmosenv.2011.03.073spa
dc.relation.referencesRamirez, J., Pachon, J. E., Casas, O. M., & González, S. F. (2019). A new database of on-road vehicle emission factors for Colombia: A case de study of Bogotá. CT&F - Ciencia, Tecnología y Futuro, 9(1), 73–82. https://doi.org/https://doi.org/10.29047/01225383.154spa
dc.relation.referencesRevista Motor. (2020a). Listado de precios de carros nuevos en Colombia para 2020. Consultar Precios Por Internet. https://www.motor.com.co/uploads/files/2020/04/02/Nuevos 744 final.pdfspa
dc.relation.referencesRevista Motor. (2020b). Listado de precios de motos en Colombia para 2020. Consultar Precios Por Internet. https://www.motor.com.co/uploads/files/2020/04/02/Motos 744 Final.pdfspa
dc.relation.referencesRevista VEC. (2017, June). Características técnicas del bus 100% eléctrico que rueda en Bogotá. Autos. https://www.vehiculoselectricos.co/caracteristicas-tecnicas-del-bus-100-electrico-que-rueda-en-bogota/spa
dc.relation.referencesRodríguez, P. A., & Behrentz, E. (2009). Actualización del inventario de emisiones de fuentes móviles para la ciudad de Bogotá a través de mediciones directas (p. 17). Universidad de los Andes.spa
dc.relation.referencesSantoyo-Castelazo, E., & Azapagic, A. (2014). Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. Journal of Cleaner Production, 80, 119–138. https://doi.org/10.1016/j.jclepro.2014.05.061spa
dc.relation.referencesScovronick, N. (2015). Reducing global health risks through mitigation of short-lived climate pollutants. In Reducing Global Health Risks. World Health Organization (WHO). https://www.who.int/phe/publications/climate-reducing-health-risks/en/spa
dc.relation.referencesSDA. (2010). Plan Decenal de Descontaminación del Aire para Bogotá (p. 324).spa
dc.relation.referencesSecretaria Distrital de Ambiente. (2010). Plan Decenal de Descontaminación del aire para Bogotá: 2010-2020.spa
dc.relation.referencesSecretaría Distrital de Ambiente (SDA). (2015a). “Actualización de inventarios de emisión a 2014” - Sección 3 Informe del Convenio marco N° 52243377 suscrito entre la SDA y la Universidad de La Salle (p. 156).spa
dc.relation.referencesSecretaría Distrital de Ambiente (SDA). (2015b). Composición de la flota vehicular en Bogotá año 2015.spa
dc.relation.referencesSecretaría Distrital de Movilidad (SDM). (2015). Registro distrital automotor (RDA).spa
dc.relation.referencesSecretaria Distrital de Movilidad (SDM). (2021). Anuario de siniestralidad. https://simur.gov.co/anuario-de-siniestralidadspa
dc.relation.referencesSharma, R., Manzie, C., Bessede, M., Brear, M. J., & Crawford, R. H. (2012). Conventional, hybrid and electric vehicles for Australian driving conditions - Part 1: Technical and financial analysis. Transportation Research Part C: Emerging Technologies, 25, 238–249. https://doi.org/10.1016/j.trc.2012.06.003spa
dc.relation.referencesShen, W., Han, W., Chock, D., Chai, Q., & Zhang, A. (2012). Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy, 49, 296–307. https://doi.org/10.1016/j.enpol.2012.06.038spa
dc.relation.referencesSocial Determinants of Health WHO TEAM. (2018). Global status report on road safety 2018 (World Health Organization (WHO), Ed.). World Health Organization (WHO).spa
dc.relation.referencesStrefler, J., Luderer, G., Aboumahboub, T., & Kriegler, E. (2014). Economic impacts of alternative greenhouse gas emission metrics: A model-based assessment. Climatic Change, 125, 319–331. https://doi.org/10.1007/s10584-014-1188-yspa
dc.relation.referencesSun, S., Sun, L., Liu, G., Zou, C., Wang, Y., Wu, L., & Mao, H. (2021). Developing a vehicle emission inventory with high temporal-spatial resolution in Tianjin, China. Science of the Total Environment, 776, 145873. https://doi.org/10.1016/j.scitotenv.2021.145873spa
dc.relation.referencesSwiss Agency for Development and Cooperation (SDC). (2011). The Santiago de Chile diesel particle filter program for buses of public urban transport (p. 24).spa
dc.relation.referencesTarricone, R. (2006). Cost of illness analysis. What room in health economics? Health Policy, 77(1), 51–63. https://doi.org/10.1016/j.healthpol.2005.07.016spa
dc.relation.referencesThomas, C. E. (2015). Sustainable Transportation Options for the 21st Century and Beyond. A Comprehensive Comparison of Alternatives to the Internal Combustion Engine. Springer. https://doi.org/10.1007/978-3-319-16832-6_6spa
dc.relation.referencesThouron, L., Seigneur, C., Kim, Y., Mahé, F., André, M., Lejri, D., Villegas, D., Bruge, B., & Chanut, H. (2018). Intercomparison of three modeling approaches for tra ffi c-related road dust resuspension using two experimental data sets. Transportation Research Part D, 58(November 2017), 108–121. https://doi.org/10.1016/j.trd.2017.11.003spa
dc.relation.referencesThunis, P., Miranda, A., Baldasano, J. M., Blond, N., Douros, J., Graff, A., & Janssen, S. (2016). Overview of current regional and local scale air quality modelling practices : Assessment and planning tools in the EU. Environmental Science and Policy, 65, 13–21. https://doi.org/10.1016/j.envsci.2016.03.013spa
dc.relation.referencesTimmers, V. R. J. H., & Achten, P. A. J. (2018). Chapter 12 - Non-Exhaust PM Emissions from Battery Electric Vehicles. In F. Amato (Ed.), Non-Exhaust Emissions (pp. 261–287). Academic Press. https://doi.org/10.1016/B978-0-12-811770-5.00012-1spa
dc.relation.referencesTran, M., Banister, D., Bishop, J. D. K., & McCulloch, M. D. (2012). Realizing the electric-vehicle revolution. Nature Climate Change, 2(5), 328–333. https://doi.org/10.1038/nclimate1429spa
dc.relation.referencesTransMilenio S. A. (2019). Acta Informe de Gestión 2016 - 2019. https://www.transmilenio.gov.co/publicaciones/151569/informe-de-empalme-2019/spa
dc.relation.referencesTransportPolicy.net. (2018). CHILE: HEAVY-DUTY: EMISSIONS. https://www.transportpolicy.net/standard/chile-heavy-duty-emissions/spa
dc.relation.referencesTUMI (Transformative Urban Mobility Initiative). (2018). Passenger Capacity of different Transport Modes. https://www.transformative-mobility.org/assets/publications/Passenger-Capacity-of-different-Transport-Modes_2021-09-08-071924_mmuh.pdfspa
dc.relation.referencesUnidad de Planeación Minero Energética (UPME). (2014). Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014. In Ministerio Minas y Energia.spa
dc.relation.referencesUniversidad Santiago de Chile (USACH). (2014). Actualización del inventario de emisiones de contaminantes atmosféricos en la región metropolitana 2014. Informe final. https://sustempo.com/website/wp-content/uploads/2015/07/Inventario-de-emisiones-RM_USACH_2014.pdfspa
dc.relation.referencesUPME. (2015). Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano – Diciembre de 2015. Subdirección de Energía Eléctrica – Grupo de Generación, 1–17.spa
dc.relation.referencesU.S. Energy Information Administration (U.S. EIA). (2019). Internaltional Energy Outlook 2019. In U.S. Energy Information Administration.spa
dc.relation.referencesUS Environmental Protection Agency (US EPA). (2001a). Air Emissions Factors and Quantification: Paved Roads. In AP 42, Fifth Edition, Volume I Chapter 13: Miscellaneous Sources (p. 15).spa
dc.relation.referencesUS Environmental Protection Agency (US EPA). (2001b). Air Emissions Factors and Quantification: Unpaved Roads. In AP 42, Fifth Edition, Volume I Chapter 13: Miscellaneous Sources (p. 20).spa
dc.relation.referencesVan Mierlo, J., Messagie, M., & Rangaraju, S. (2017). Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transportation Research Procedia, 25, 3439–3449. https://doi.org/10.1016/j.trpro.2017.05.244spa
dc.relation.referencesvan Vuuren, D. P., Edelenbosch, O. Y., McCollum, D. L., & Riahi, K. (2017). A special issue on model-based long-term transport scenarios: Model comparison and new methodological developments to improve energy and climate policy analysis. Transportation Research Part D: Transport and Environment, 55, 277–280. https://doi.org/10.1016/j.trd.2017.05.003spa
dc.relation.referencesVanti. (2020). Precio histórico del Gas Natural Vehicular. Gas Natural Vehicular - GNV-. https://www.grupovanti.com/co/gas+natural+vehicular+–+gnv/1297370398775/precio+historico+del+gas+natural+vehicular.htmlspa
dc.relation.referencesVedrenne, M., Borge, R., Lumbreras, J., Conlan, B., Rodríguez, M. E., de Andrés, J. M., de la Paz, D., Pérez, J., & Narros, A. (2015). An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements. Science of the Total Environment, 527–528, 351–361. https://doi.org/10.1016/j.scitotenv.2015.05.014spa
dc.relation.referencesVickerman, R. (2017). Beyond cost-bene fi t analysis : the search for a comprehensive evaluation of transport investment. Research in Transportation Economics, 63, 5–12. https://doi.org/10.1016/j.retrec.2017.04.003spa
dc.relation.referencesWang, C., Cai, W., Lu, X., & Chen, J. (2007). CO2 mitigation scenarios in China’s road transport sector. Energy Conversion and Management, 48(7), 2110–2118. https://doi.org/10.1016/j.enconman.2006.12.022spa
dc.relation.referencesWang, R., Wu, Y., Ke, W., Zhang, S., Zhou, B., & Hao, J. (2015). Can propulsion and fuel diversity for the bus fleet achieve the win – win strategy of energy conservation and environmental protection ? Applied Energy, 147, 92–103.spa
dc.relation.referencesWill, M. E., Cornet, Y., & Munshi, T. (2020). Measuring road space consumption by transport modes: Toward a standard spatial efficiency assessment method and an application to the development scenarios of Rajkot City, India. Journal of Transport and Land Use, 13(1), 651–669. https://doi.org/10.5198/jtlu.2020.1526spa
dc.relation.referencesWolfram, P., & Lutsey, N. (2016). Electric vehicles: Literature review of technology costs and carbon emissions. The International Council on Clean …, July, 1–23.spa
dc.relation.referencesWorld Energy Council. (2011). Global Transport Scenarios. In Global Transport Scenarios 2050. WEC. https://doi.org/10.1177/1077800405284363spa
dc.relation.referencesWorld Energy Council (WEC). (2021). Energy Trilemma Index. https://trilemma.worldenergy.org/spa
dc.relation.referencesXM S.A. E.S.P. (2020a). Boletín energético # 208 Seguimiento a variables. Boletín Energético. https://www.xm.com.co/boletinesenergetico/Boletín_208.pdfspa
dc.relation.referencesXM S.A. E.S.P. (2020b). Precio promedio y energía transada. Transacciones. http://www.xm.com.co/Paginas/Mercado-de-energia/precio-promedio-y-energia-transada.aspxspa
dc.relation.referencesXM S.A. E.S.P. (2021). Estructura del mercado. Mercado de Energía. https://www.xm.com.co/Paginas/Mercado-de-energia/descripcion-del-sistema-electrico-colombiano.aspxspa
dc.relation.referencesXu, L., Yilmaz, H. Ü., Wang, Z., Poganietz, W. R., & Jochem, P. (2020). Greenhouse gas emissions of electric vehicles in Europe considering different charging strategies. Transportation Research Part D: Transport and Environment, 87(September), 102534. https://doi.org/10.1016/j.trd.2020.102534spa
dc.relation.referencesYin, H., Pizzol, M., & Xu, L. (2017). External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. Environmental Pollution, 226, 356–369. https://doi.org/10.1016/j.envpol.2017.02.029spa
dc.relation.referencesYork Bigazzi, A., & Rouleau, M. (2017). Can traffic management strategies improve urban air quality? A review of the evidence. Journal of Transport and Health, 7(April), 111–124. https://doi.org/10.1016/j.jth.2017.08.001spa
dc.relation.referencesZárate, E., Carlos Belalcázar, L., Clappier, A., Manzi, V., & Van den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41, 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011spa
dc.relation.referencesZheng, G., & Peng, Z. (2021). Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Reports, 7, 1203–1216. https://doi.org/10.1016/j.egyr.2021.02.039spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.lembCalidad del airespa
dc.subject.lembAir qualityeng
dc.subject.lembSaneamiento ambientalspa
dc.subject.lembEnvironmental healtheng
dc.subject.proposalAir Qualityeng
dc.subject.proposalClimate changeeng
dc.subject.proposalEmissions inventoryeng
dc.subject.proposalWell to wheelseng
dc.subject.proposalElectricity mixeng
dc.subject.proposalLife cycle emissionseng
dc.subject.proposalIntegrated assessment methodologyeng
dc.subject.proposalTotal ownership costeng
dc.subject.proposalCalidad del airespa
dc.subject.proposalCambio climáticospa
dc.subject.proposalInventario de emisionesspa
dc.subject.proposalPozo a las ruedasspa
dc.subject.proposalMatriz eléctricaspa
dc.subject.proposalEmisiones del ciclo de vidaspa
dc.subject.proposalMetodología de evaluación integradaspa
dc.subject.proposalCosto total de la propiedadspa
dc.titleDevelopment of a new integrated assessment methodology to design and select the best emission reduction strategies for urban passenger transporteng
dc.title.translatedDesarrollo de una nueva metodología de evaluación integrada para diseñar y seleccionar las mejores estrategias de reducción de las emisiones del transporte urbano de pasajerosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameConvocatoria 753 de 2016 de Colciencias para la formación de capital humano de alto nivel del Departamento de Norte de Santanderspa
oaire.fundernameConvocatoria 836 de 2019 de Colciencias: Movilidad Académica con Europa - ECOSNORD- Contrato 887 de la Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032381694.2023 (3).pdf
Tamaño:
8.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: