Metanación de CO2 sobre catalizadores básicos promovidos con CeO2

dc.contributor.advisorDaza Velasquez, Carlos Enrique
dc.contributor.authorOsorio Restrepo, Ederson Arnedt
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2021-03-19T16:45:22Z
dc.date.available2021-03-19T16:45:22Z
dc.date.issued2020
dc.description.abstractLa reacción de metanacion de CO2 es una tecnología promisoria para el almacenamiento químico de energía a partir de H2 y CO2. Con el desarrollo del siguiente trabajo de grado se sinterizaron catalizadores de naturaleza básica tipo óxidos mixtos (OM) de CaCe y MgCe promovidos con cantidades nominales de CeO2 de 3 y 5 % en masa, por el método de coprecipitación. Las técnicas de caracterización a los cuales fueron sometidos revelaron diferencia entre las propiedades físicas de los sólidos, para el caso de los OM CaCe se presentan áreas superficiales, tamaños de cristalito y de partícula inferiores los determinados para los OM MgCe. Por otra parte, con la incorporación de CeO2 a los OM se observaron tendencias decrecientes en el tamaño de cristalito y en el tamaño de partícula de los OM, solo las propiedades reductivas de los OM MgCe se afectaron obteniendo un descenso en el porcentaje de reducibilidad de los sólidos, adicionalmente, el estudio de espectroscopia IR de reflectancia difusa, muestra un aumento en los sitios de adsorción de CO2, a la par con el incremento en la cantidad de promotor adicionado y de acuerdo a las bandas formadas sobre los OM se sugiere que la ruta de metanacion de CO2 para los OM sintetizados es la ruta del formiato Los resultados de la actividad catalítica muestran que los todos los OM presentan una mayor conversión de CO2 a bajas temperatura en comparación con el sólido de referencia de Ni/γAl2O3 y una selectividad del 100% a la formación de CH4 bajo las condiciones de WHSV= 60000 mLg-1h-1, el incremento de la velocidad espacial genera una fuerte disminución en la conversión de CO2 y un aumento en la selectividad a CO, sin embargo, se aprecia una conversión mayor a medida que el contenido del promotor es mayor. Los ensayos de estabilidad indican que lo OM MgCe son estable y no presentan formación de depósitos de coque, en contraste, a los OM CaCe se forman depósitos de carbono, pero en menor medida en el OM con promotor.spa
dc.description.abstractThe CO2 methanation reaction is a promising technology for the chemical storage of energy from H2 and CO2, with the development of the following degree work, catalysts of a basic nature type mixed oxides (MO) of CaCe and MgCe promoted with amounts CeO2 nominals of 3 and 5% by mass, by the coprecipitation method the were synthetized. The characterization techniques to which they were subjected revealed a difference between the physical properties of the solids, for the case of the MO CaCe, surface areas, crystallite and particle sizes are presented lower than those determined for the MO MgCe. On the other hand, with the incorporation of CeO2 to the OM, decreasing trends were observed in the crystallite size and in the particle size of the MO, only the reductive properties of the OM MgCe were affected, obtaining a decrease in the percentage of deductibility of solids, additionally, diffuse reflectance IR spectroscopy study shows an increase in the CO2 adsorption sites, along with the increase in the amount of promoter added and according to the bands formed on the MO it is suggested that the CO2 methanation pathway for synthesized MO is the formiate pathway The results of the catalytic activity show that all the MO have a higher CO2 conversion at low temperature compared to the Ni/γAl2O3 reference solid and a selectivity of 100% to the formation of CH4 under the conditions of WHSV = 60000 mLg-1h-1, the increase in space velocity generates a strong decrease in CO2 conversion and an increase in selectivity to CO, however, a higher conversion is observed as the content of the promoter is higher. Stability tests indicate that MO MgCe are stable and do not present formation of coke deposits, in contrast, MO CaCe form carbon deposits, but to a lesser extent in MO with a promoter.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaCatálisis heterogéneaspa
dc.format.extent1 recurso en línea (83 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79365
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] B.P. Foundation, Territorial emissions in MtCO2, Glob. Carbon Atlas. (n.d.). http://www.globalcarbonatlas.org/en/CO2-emissions (accessed July 23, 2020).spa
dc.relation.references[2] N. National Oceanic and Atmospheric Administration, Trends in Atmospheric Carbon Dioxide, (2020). https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html (accessed August 4, 2020).spa
dc.relation.references[3] P. Tans, R. Keeling, Trends in Atmospheric Carbon Dioxide, NOAA/GML Scripps Inst. Oceanogr. (2020) 1. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed July 17, 2020).spa
dc.relation.references[4] IPCC, Global Warming of 1.5°C. Summary for Policymakers, (2018) 34. http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf (accessed October 15, 2018).spa
dc.relation.references[5] IPCC, Comunicado de presa, (2018) 1–5. https://www.ipcc.ch/pdf/session48/pr_181008_P48_spm_es.pdf (accessed October 15, 2018).spa
dc.relation.references[6] M. Henriques, Will Covid-19 have a lasting impact on the environment?, BBC Futur. (2020).spa
dc.relation.references[7] D. Cucinotta, M. Vanelli, WHO declares COVID-19 a pandemic, Acta Biomed. 91 (2020) 157–160. doi:10.23750/abm.v91i1.9397.spa
dc.relation.references[8] R. Román, J.M. Cansino, J.A. Rodas, Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications, Renew. Energy. 116 (2018) 402–411. doi:10.1016/j.renene.2017.09.016.spa
dc.relation.references[9] IDEAM, PNUD, MADS, DNP, CANCILLERIA, Inventario Nacional Y Departamental De Gases Efecto Invernadero - Colombia, Bogotá, 2016. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf.spa
dc.relation.references[10] S. Calderón, A.C. Alvarez, A.M. Loboguerrero, S. Arango, K. Calvin, T. Kober, K. Daenzer, K. Fisher-Vanden, Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets, Energy Econ. 56 (2014) 575–586. doi:10.1016/j.eneco.2015.05.010.spa
dc.relation.references[11] W. Wang, J. Gong, Methanation of carbon dioxide: An overview, Front. Chem. Eng. China. 5 (2011) 2–10. doi:10.1007/s11705-010-0528-3.spa
dc.relation.references[12] E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, V. Tekáč, Reaction mechanisms of carbon dioxide methanation, Chem. Pap. 70 (2016) 395–403. doi:10.1515/chempap- 2015-0216.spa
dc.relation.references[13] P. Frontera, A. Macario, M. Ferraro, P.L. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts. 7 (2017) 1–28. doi:10.3390/catal7020059.spa
dc.relation.references[14] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723.spa
dc.relation.references[15] H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W. Zhang, X. Chen, Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation, Fuel. 183 (2016) 335–344. doi:10.1016/j.fuel.2016.06.084.spa
dc.relation.references[16] J.J. Bravo-Suárez, R. V. Chaudhari, B. Subramaniam, Design of heterogeneous catalysts for fuels and chemicals processing: An overview, ACS Symp. Ser. 1132 (2013) 3–68. doi:10.1021/bk-2013-1132.ch001.spa
dc.relation.references[17] D.P.M.S.M.D.R.J.M.D.D.R. Rosseinsky, Metal Oxides, in: Electrochromism, 2007: pp. 59–92. doi:10.1002/9783527615377.ch4.spa
dc.relation.references[18] B. Solsona, P. Concepción, S. Hernández, B. Demicol, J.M.L. Nieto, Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts, Catal. Today. 180 (2012) 51–58. doi:10.1016/j.cattod.2011.03.056.spa
dc.relation.references[19] O. Cairon, E. Dumitriu, C. Guimon, Acido-basicity of Mg-Ni-Al mixed oxides from LDH precursors: A FTIR and XPS study, J. Phys. Chem. C. 111 (2007) 8015–8023. doi:10.1021/jp0673011.spa
dc.relation.references[20] D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, M.E. Gálvez, P. Da Costa, Novel Ni- La-hydrotalcite derived catalysts for CO2 methanation, Catal. Commun. 83 (2016) 5– 8. doi:10.1016/j.catcom.2016.04.021.spa
dc.relation.references[21] S. Tada, S. Ikeda, N. Shimoda, T. Honma, M. Takahashi, A. Nariyuki, S. Satokawa, Sponge Ni catalyst with high activity in CO2 methanation, Int. J. Hydrogen Energy. 42 (2017) 30126–30134. doi:10.1016/j.ijhydene.2017.10.138.spa
dc.relation.references[22] T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today. 293–294 (2017) 89–96. doi:10.1016/j.cattod.2016.12.036.spa
dc.relation.references[23] N. Von Der Assen, L.J. Müller, A. Steingrube, P. Voll, A. Bardow, Selecting CO2 sources for CO2 Utilization by Environmental-Merit-Order Curves, Environ. Sci. Technol. 50 (2016) 1093–1101. doi:10.1021/acs.est.5b03474.spa
dc.relation.references[24] J.I. Mikayilov, M. Galeotti, F.J. Hasanov, The impact of economic growth on CO2 emissions in Azerbaijan, J. Clean. Prod. 197 (2018) 1558–1572. doi:10.1016/j.jclepro.2018.06.269.spa
dc.relation.references[25] J.D.S. Pueyo, La cobertura de la Cumbre del Clima Chile Madrid COP25 en los informativos de la radio española The coverage of the Chile Madrid COP25 Climate Summit on the news of the Spanish radio stations, AdComunica. Rev. Científica Del Estrategias, Tendencias e Innovación En Comun. 20 (2020) 205–230. doi:http://dx.doi.org/10.6035/2174-0992.2020.20.9.spa
dc.relation.references[26] B.N. Mundo, COP25: 3 claves del polémico nuevo acuerdo por el clima (y por qué dicen que fracasó) - BBC News Mundo, BBC News. (2019). https://www.bbc.com/mundo/noticias-internacional-50800493 (accessed August 4, 2020).spa
dc.relation.references[27] X. Xu, X. Xu, Q. Chen, Y. Che, The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model, Resour. Policy. 58 (2018) 268–276. doi:10.1016/j.resourpol.2018.05.015.spa
dc.relation.references[28] S.T.T. Piers M. Forster, Harriet I. Forster, Mat J. Evans, Matthew J. Gidden, Chris D. Jones, Christoph A. Keller, Robin Lamboll, Corinne Le Quéré, Joeri Rogelj, Deborah Rosen, Carl-Friedrich Schleussner, Thomas B. Richardson, Christopher J. Smith, Current and future global climate impacts resulting from COVID-19, Nat. Clim. Chang. (2020) 1–15. doi:10.1017/CBO9781107415324.004.spa
dc.relation.references[29] C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement, Nat. Clim. Chang. 10 (2020) 647–653. doi:10.1038/s41558-020- 0797-x.spa
dc.relation.references[30] N. Abas, N. Khan, A. Haider, S. Iqbal, M. Shahbaz, CO2 utilization drivers, opportunities and conversion challenges, Ref. Modul. Mater. Sci. Mater. Eng. (2018). doi:10.1016/B978-0-12-803581-8.10494-1.spa
dc.relation.references[31] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001.spa
dc.relation.references[32] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids. 132 (2018) 3–16. doi:10.1016/j.supflu.2017.07.029.spa
dc.relation.references[33] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res. 12 (2012) 745–769. doi:10.4209/aaqr.2012.05.0132.spa
dc.relation.references[34] R.J. Perry, J.L. Davis, CO2 capture using solutions of alkanolamines and aminosilicones, Energy and Fuels. 26 (2012) 2512–2517. doi:10.1021/ef201963m.spa
dc.relation.references[35] A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: A critical review, Environ. Sci. Technol. 50 (2016) 7276–7289. doi:10.1021/acs.est.6b00627.spa
dc.relation.references[36] M. Songolzadeh, M.T. Ravanchi, M. Soleimani, Carbon Dioxide Capture and Storage : A General Review on Adsorbents, 6 (2012) 900–907.spa
dc.relation.references[37] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci. 4 (2011) 42–55. doi:10.1039/c0ee00064g.spa
dc.relation.references[38] J. Miranda-Pizarro, A. Perejón, J.M. Valverde, L.A. Pérez-Maqueda, P.E. Sánchez- Jiménez, CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions, Fuel. 196 (2017) 497–507. doi:10.1016/j.fuel.2017.01.119.spa
dc.relation.references[39] J.M. Valverde, P.E. Sanchez-Jimenez, A. Perejon, L.A. Perez-Maqueda, Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions, Appl. Energy. 108 (2013) 108–120. doi:10.1016/j.apenergy.2013.03.013spa
dc.relation.references[40] E.J. (Ben) Anthony, Ca looping technology : current status , developments and future directions, Greenh. Gases Sci. Technol. 47 (2011) 36–47. doi:10.1002/ghg3.spa
dc.relation.references[41] M. Aresta, A. Dibenedetto, A. Angelini, From CO2 to Chemicals, Materials, and Fuels: The Role of Catalysis, Encycl. Inorg. Bioinorg. Chem. (2014) 1–18. doi:10.1002/9781119951438.eibc2257.spa
dc.relation.references[42] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001.spa
dc.relation.references[43] G. Ibram, Solar fuels vis-à-vis electricity generation from sunlight: The current state- of-the-art (a review), Renew. Sustain. Energy Rev. 44 (2015) 904–932. doi:10.1016/j.rser.2015.01.019.spa
dc.relation.references[44] M. Aresta, A. Dibenedetto, Industrial utilization of carbon dioxide (CO2), Dev. Innov. Carbon Dioxide (Co. 2 (2010) 377–410. doi:10.1533/9781845699581.4.377.spa
dc.relation.references[45] C.H. Huang, C.S. Tan, A review: CO2 utilization, Aerosol Air Qual. Res. 14 (2014) 480–499. doi:10.4209/aaqr.2013.10.0326.spa
dc.relation.references[46] E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum. 3 (2017) 109–126. doi:10.1016/J.PETLM.2016.11.003.spa
dc.relation.references[47] A. Lewandowska-Bernat, U. Desideri, Opportunities of power-to-gas technology in different energy systems architectures, Appl. Energy. 228 (2018) 57–67. doi:10.1016/j.apenergy.2018.06.001.spa
dc.relation.references[48] R. Peters, M. Baltruweit, T. Grube, R.C. Samsun, D. Stolten, A techno economic analysis of the power to gas route, J. CO2 Util. 34 (2019) 616–634. doi:10.1016/j.jcou.2019.07.009.spa
dc.relation.references[49] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 1371–1390. doi:10.1016/j.renene.2015.07.066.spa
dc.relation.references[50] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany, Int. J. Hydrogen Energy. 40 (2015) 4285–4294. doi:10.1016/j.ijhydene.2015.01.123.spa
dc.relation.references[51] C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2 (2019) 188–197. doi:10.1038/s41929-019-0244-4.spa
dc.relation.references[52] D. Hidalgo, J.M. Martín-Marroquín, Power-to-methane, coupling CO2 capture with fuel production: An overview, Renew. Sustain. Energy Rev. 132 (2020) 110057. doi:10.1016/j.rser.2020.110057.spa
dc.relation.references[53] T.A. Le, T.W. Kim, S.H. Lee, E.D. Park, CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases, Korean J. Chem. Eng. 34 (2017) 3085–3091. doi:10.1007/s11814-017-0257-0.spa
dc.relation.references[54] K. Ghaib, K. Nitz, F.-Z. Ben-Fares, Chemical Methanation of CO2: A Review , ChemBioEng Rev. 3 (2016) 266–275. doi:10.1002/cben.201600022.spa
dc.relation.references[55] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632dspa
dc.relation.references[56] B. Miao, S.S.K. Ma, X. Wang, H. Su, S.H. Chan, Catalysis mechanisms of CO2 and CO methanation, Catal. Sci. Technol. 6 (2016) 4048–4058. doi:10.1039/c6cy00478d.spa
dc.relation.references[57] A. Westermann, B. Azambre, M.C. Bacariza, I. Graça, M.F. Ribeiro, J.M. Lopes, C. Henriques, Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study, Appl. Catal. B Environ. 174–175 (2015) 120–125. doi:10.1016/j.apcatb.2015.02.026.spa
dc.relation.references[58] A. Solis-Garcia, J.C. Fierro-Gonzalez, Mechanistic Insights into the CO2 Methanation Catalyzed by Supported Metals: A Review , J. Nanosci. Nanotechnol. 19 (2019) 3110–3123. doi:10.1166/jnn.2019.16606.spa
dc.relation.references[59] X. Wang, H. Shi, J.H. Kwak, J. Szanyi, Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies, ACS Catal. 5 (2015) 6337–6349. doi:10.1021/acscatal.5b01464.spa
dc.relation.references[60] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR, Inorg. Chem. 57 (2018) 5859–5869. doi:10.1021/acs.inorgchem.8b00241.spa
dc.relation.references[61] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst, Appl. Catal. B Environ. 113–114 (2012) 2–10. doi:10.1016/j.apcatb.2011.02.033.spa
dc.relation.references[62] S. Eckle, H. Anfang, R. Ju, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2 -Rich reformate gases, (2011) 1361–1367.spa
dc.relation.references[63] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation - From fundamentals to current projects, Fuel. 166 (2016) 276–296. doi:10.1016/j.fuel.2015.10.111spa
dc.relation.references[64] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723.spa
dc.relation.references[65] Y. Cao, H. Li, J. Zhang, L. Shi, D. Zhang, Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on NiMgAl catalysts for dry reforming of methane, RSC Adv. 6 (2016) 112215–112225. doi:10.1039/c6ra19139h.spa
dc.relation.references[66] L. Karam, M.C. Bacariza, J.M. Lopes, C. Henriques, P. Massiani, N. El Hassan, Assessing the potential of xNi-yMg-Al2O3 catalysts prepared by EISA-one-pot synthesis towards CO2 methanation: An overall study, Int. J. Hydrogen Energy. (2020). doi:10.1016/j.ijhydene.2020.07.170.spa
dc.relation.references[67] L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding, X. Lu, Investigation of mesoporous NiAl2O4/MO: X (M = La, Ce, Ca, Mg)-γ-Al2O3 nanocomposites for dry reforming of methane, RSC Adv. 7 (2017) 33143–33154. doi:10.1039/c7ra04497f.spa
dc.relation.references[68] R. Daroughegi, F. Meshkani, M. Rezaei, Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni–Al2O3 catalysts prepared by ultrasound-assisted co- precipitation method, Int. J. Hydrogen Energy. 42 (2017) 15115–15125. doi:10.1016/j.ijhydene.2017.04.244.spa
dc.relation.references[69] N.A.A. Fatah, A.A. Jalil, N.F.M. Salleh, M.Y.S. Hamid, Z.H. Hassan, M.G.M. Nawawi, Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM), Int. J. Hydrogen Energy. 45 (2020) 18562–18573. doi:10.1016/j.ijhydene.2019.04.119.spa
dc.relation.references[70] E. Marconi, S. Tuti, I. Luisetto, Structure-sensitivity of CO2 methanation over nanostructured Ni supported on CeO2 nanorods, Catalysts. 9 (2019) 1–13. doi:10.3390/catal9040375.spa
dc.relation.references[71] J.C. Védrine, Heterogeneous catalysis on metal oxides, Catalysts. 7 (2017). doi:10.3390/catal7110341.spa
dc.relation.references[72] U.P.M. Ashik, S. Kudo, J. Hayashi, An Overview of Metal Oxide Nanostructures, Elsevier Ltd., 2018. doi:10.1016/b978-0-08-101975-7.00002-6.spa
dc.relation.references[73] J.C. Védrine, Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World, ChemSusChem. 12 (2019) 577–588. doi:10.1002/cssc.201802248.spa
dc.relation.references[74] H. Dong, A. Wang, G.M. Koenig, Role of coprecipitation and calcination of precursors on phase homogeneity and electrochemical properties of battery active materials, Powder Technol. 335 (2018) 137–146. doi:10.1016/j.powtec.2018.05.020.spa
dc.relation.references[75] T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, J.D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method, J. Phys. Chem. C. 116 (2012) 6069–6076. doi:10.1021/jp211843g.spa
dc.relation.references[76] W.M. Rangel, R.A.A. Boca Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation, J. Mater. Res. Technol. 9 (2020) 994–1004. doi:10.1016/j.jmrt.2019.11.039.spa
dc.relation.references[77] M.K. Zate, S.D. Raut, S.D. Shirsat, S. Sangale, A.S. Kadam, Ferrite nanostructures, Elsevier Inc., 2020. doi:10.1016/b978-0-12-819237-5.00002-x.spa
dc.relation.references[78] A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, Elsevier Inc., 2018. doi:10.1016/B978-0-323-51254- 1.00001-4.spa
dc.relation.references[79] P. Munnik, P.E. De Jongh, K.P. De Jong, Recent Developments in the Synthesis of Supported Catalysts, Chem. Rev. 115 (2015) 6687–6718. doi:10.1021/cr500486u.spa
dc.relation.references[80] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel. 90 (2011) 1309–1324. doi:10.1016/j.fuel.2010.10.015.spa
dc.relation.references[81] N. Oueda, Y.L. Bonzi-Coulibaly, I.W.K. Ouédraogo, Deactivation Processes, Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production—A Review, Mater. Sci. Appl. 08 (2017) 94– 122. doi:10.4236/msa.2017.81007.spa
dc.relation.references[82] R. Dȩbek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni-Mg-Al mixed oxides: The influence of Ni content on catalytic activity, selectivity and stability, Catal. Sci. Technol. 6 (2016) 6705–6715. doi:10.1039/c6cy00906a.spa
dc.relation.references[83] A. Jangam, S. Das, N. Dewangan, P. Hongmanorom, W.M. Hui, S. Kawi, Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions, Catal. Today. (2019) 0–1. doi:10.1016/j.cattod.2019.08.049.spa
dc.relation.references[84] A. Alarcón, J. Guilera, J.A. Díaz, T. Andreu, Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation, Fuel Process. Technol. 193 (2019) 114–122. doi:10.1016/j.fuproc.2019.05.008spa
dc.relation.references[85] A. Alarcón, J. Guilera, R. Soto, T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Appl. Catal. B Environ. 263 (2020). doi:10.1016/j.apcatb.2019.118346.spa
dc.relation.references[86] H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, J. Nat. Gas Chem. 21 (2012) 703– 707. doi:10.1016/S1003-9953(11)60422-2.spa
dc.relation.references[87] A. Azizzadeh Fard, R. Arvaneh, S.M. Alavi, A. Bazyari, A. Valaei, Propane steam reforming over promoted Ni–Ce/MgAl2O4 catalysts: Effects of Ce promoter on the catalyst performance using developed CCD model, Int. J. Hydrogen Energy. 44 (2019) 21607–21622. doi:10.1016/j.ijhydene.2019.06.100.spa
dc.relation.references[88] N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat, Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation, Chem. Eng. J. 112 (2005) 13–22. doi:10.1016/j.cej.2005.06.003.spa
dc.relation.references[89] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano- Castelló, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B Environ. 265 (2020) 118538. doi:10.1016/j.apcatb.2019.118538.spa
dc.relation.references[90] T. Sakpal, L. Lefferts, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal. 367 (2018) 171–180. doi:10.1016/j.jcat.2018.08.027.spa
dc.relation.references[91] S.M. Lee, Y.H. Lee, D.H. Moon, J.Y. Ahn, D.D. Nguyen, S.W. Chang, S.S. Kim, Reaction Mechanism and Catalytic Impact of Ni/CeO2–x Catalyst for Low- Temperature CO2 Methanation , Ind. Eng. Chem. Res. 58 (2019) 8656–8662. doi:10.1021/acs.iecr.9b00983.spa
dc.relation.references[92] S. Sharma, K.B. Sravan Kumar, Y.M. Chandnani, V.S. Phani Kumar, B.P. Gangwar, A. Singhal, P.A. Deshpande, Mechanistic Insights into CO2 Methanation over Ru- Substituted CeO2, J. Phys. Chem. C. 120 (2016) 14101–14112. doi:10.1021/acs.jpcc.6b03224.spa
dc.relation.references[93] L. Zhang, L. Bian, Z. Zhu, Z. Li, La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrogen Energy. 43 (2018) 2197–2206. doi:10.1016/j.ijhydene.2017.12.082.spa
dc.relation.references[94] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the properties of metal oxide loaded/KCC-1 toward a different mechanism of CO2 methanation by in situ IR and ESR, Inorg. Chem. 57 (2018) 5859– 5869. doi:10.1021/acs.inorgchem.8b00241.spa
dc.relation.references[95] X. Guo, Z. Peng, M. Hu, C. Zuo, A. Traitangwong, V. Meeyoo, C. Li, S. Zhang, Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation, Ind. Eng. Chem. Res. 57 (2018) 9102–9111. doi:10.1021/acs.iecr.8b01619.spa
dc.relation.references[96] X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng, C. Li, Carbon dioxide methanation over Nickel-based catalysts supported on various mesoporous material, Energy and Fuels. 32 (2018) 3681–3689. doi:10.1021/acs.energyfuels.7b03826.spa
dc.relation.references[97] J. Guilera, J. Del Valle, A. Alarcón, J.A. Díaz, T. Andreu, Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts, J. CO2 Util. 30 (2019) 11–17. doi:10.1016/j.jcou.2019.01.003.spa
dc.relation.references[98] Z. Li, B. Li, Z. Li, X. Rong, The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2, Kinet. Catal. 56 (2015) 329–334. doi:10.1134/S0023158415030143.spa
dc.relation.references[99] P.H. Ho, G.S. de Luna, S. Angelucci, A. Canciani, W. Jones, D. Decarolis, F. Ospitali, E.R. Aguado, E. Rodríguez-Castellón, G. Fornasari, A. Vaccari, A.M. Beale, P. Benito, Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation, Appl. Catal. B Environ. 278 (2020) 119256. doi:10.1016/j.apcatb.2020.119256.spa
dc.relation.references[100] Y. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, Z. jun Wang, Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts, J. Chem. Technol. Biotechnol. 94 (2019) 3780–3786. doi:10.1002/jctb.6078.spa
dc.relation.references[101] S. Wang, C. Li, S. Yan, Y. Zhao, X. Ma, Adsorption of CO2 on mixed oxides derived from Ca–Al–ClO4-Layered double hydroxide, Energy & Fuels. 30 (2016) 1217–1222. doi:10.1021/acs.energyfuels.5b02506.spa
dc.relation.references[102] M. Muñoz, S. Moreno, R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method, Int. J. Hydrogen Energy. 37 (2012) 18827–18842. doi:10.1016/j.ijhydene.2012.09.132.spa
dc.relation.references[103] C.E. Daza, F. Mondragón, S. Moreno, R. Molina, Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni, Rev. Fac. Ing. (2011) 66–74.spa
dc.relation.references[104] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/j.ijhydene.2010.12.082spa
dc.relation.references[105] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/J.IJHYDENE.2010.12.082.spa
dc.relation.references[106] C.E. Daza, J. Gallego, J.A. Moreno, F. Mondragón, S. Moreno, R. Molina, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal. Today. 133–135 (2008) 357–366. doi:10.1016/j.cattod.2007.12.081.spa
dc.relation.references[107] C.E. Daza, J. Gallego, F. Mondragón, S. Moreno, R. Molina, High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane, Fuel. 89 (2010) 592–603. doi:10.1016/j.fuel.2009.10.010.spa
dc.relation.references[108] S. Zhu, L. Avadiar, Y.K. Leong, Yield stress- and zeta potential-pH behaviour of washed α-Al2O3 suspensions with relatively high Ca(II) and Mg(II) concentrations: Hydrolysis product and bridging, Int. J. Miner. Process. 148 (2016) 1–8. doi:10.1016/j.minpro.2016.01.004.spa
dc.relation.references[109] F. XIAO, B. ZHANG, C. LEE, Effects of low temperature on aluminum(III) hydrolysis: Theoretical and experimental studies, J. Environ. Sci. 20 (2008) 907–914. doi:10.1016/S1001-0742(08)62185-3.spa
dc.relation.references[110] S.J. Hassani Rad, M. Haghighi, A. Alizadeh Eslami, F. Rahmani, N. Rahemi, Sol-gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition, Int. J. Hydrogen Energy. 41 (2016) 5335–5350. doi:10.1016/j.ijhydene.2016.02.002.spa
dc.relation.references[111] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F. Su, Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production, Ind. Eng. Chem. Res. 51 (2012) 4875–4886. doi:10.1021/ie300049f.spa
dc.relation.references[112] K. Nakayama, T. Nakamura, Undersized (12.5mm diameter) glass beads with minimal amount (11mg) of geochemical and archeological silicic samples for X-ray fluorescence determination of major oxides, X-Ray Spectrom. 41 (2012) 225–234. doi:10.1002/xrs.2382.spa
dc.relation.references[113] G.J. Simandl, R.S. Stone, S. Paradis, R. Fajber, H.M. Reid, K. Grattan, An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals, Miner. Depos. 49 (2014) 999–1012. doi:10.1007/s00126-013-0493-0.spa
dc.relation.references[114] J.S.J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React. 2 (2016) 33–37. doi:10.1080/2055074X.2016.1252548.spa
dc.relation.references[115] F. Hu, S. Tong, K. Lu, C. Chen, F. Su, J. Zhou, Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Authors : Affiliation : Correspo, J. CO2 Util. 34 (2019) 676–687. doi:10.1016/j.jcou.2019.08.020.spa
dc.relation.references[116] N. Schreiter, J. Kirchner, S. Kureti, A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst, Catal. Commun. 140 (2020) 105988. doi:10.1016/j.catcom.2020.105988.spa
dc.relation.references[117] P. Muñoz, Síntesis de catalizadores de Ni y/o Co promovidos por Ce y/o Pr obtenidos a partir de hidróxidos de doble capa para la producción de hidrógeno por reformado de etanol con vapor oxidativo, Universidad Nacional de Colombia, 2014. https://repositorio.unal.edu.co/handle/unal/54195.spa
dc.relation.references[118] J. Jayaraj, C.L. Mendis, T. Ohkubo, K. Oh-Ishi, K. Hono, Enhanced precipitation hardening of Mg-Ca alloy by Al addition, Scr. Mater. 63 (2010) 831–834. doi:10.1016/j.scriptamat.2010.06.028.spa
dc.relation.references[119] X. Kou, C. Li, Y. Zhao, S. Wang, X. Ma, CO2 sorbents derived from capsule- connected Ca-Al hydrotalcite-like via low-saturated coprecipitation, Fuel Process. Technol. 177 (2018) 210–218. doi:10.1016/j.fuproc.2018.04.036spa
dc.relation.referencesR.W. Wilson, Aluminum, Fish Physiol. 31 (2011) 67–123. doi:10.1016/S1546- 5098(11)31024-2.spa
dc.relation.references[121] J. Liu, S. Bi, L. Yang, X. Gu, P. Ma, N. Gan, X. Wang, X. Long, F. Zhang, Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection, Analyst. 127 (2002) 1657–1665. doi:10.1039/b205559g.spa
dc.relation.references[122] Z. Li, L. Bian, Q. Zhu, W. Wang, Ni-based catalyst derived from Ni/Mg/Al hydrotalcite- like compounds and its activity in the methanation of carbon monoxide, Kinet. Catal. 55 (2014) 217–223. doi:10.1134/S0023158414020049.spa
dc.relation.references[123] Y. Zhu, S. Zhang, B. Chen, Z. Zhang, C. Shi, Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane, Catal. Today. 264 (2016) 163–170. doi:10.1016/j.cattod.2015.07.037.spa
dc.relation.references[124] A.M. Campos, S. Moreno, R.A. Molina, Characterization of Al-Zr, Al-Hf and Al-Ce- pillared vermiculites by X-ray photoelectron spectroscopy, Rev. La Acad. Colomb. Ciencias Exactas, Físicas y Nat. 38 (2014) 401. doi:10.18257/raccefyn.85.spa
dc.relation.references[125] L. Wei, F. Zietzschmann, L.C. Rietveld, D. van Halem, Fluoride removal by Ca-Al- CO3 layered double hydroxides at environmentally-relevant concentrations, Chemosphere. 243 (2020) 125307. doi:10.1016/j.chemosphere.2019.125307.spa
dc.relation.references[126] A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, J. Non. Cryst. Solids. 334–335 (2004) 317–322. doi:10.1016/j.jnoncrysol.2003.11.065.spa
dc.relation.references[127] J.Y. Jing, S.D. Wang, X.W. Zhang, Q. Li, W.Y. Li, Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 45 (2017) 956–962. doi:10.1016/s1872-5813(17)30046-4spa
dc.relation.references[128] D.G. Costa, A.B. Rocha, W.F. Souza, S.S.X. Chiaro, A.A. Leitão, Structural and energetic analysis of MgxM1-x(OH) 2 (M = Zn, Cu or Ca) brucite-like compounds by DFT calculations, J. Phys. Chem. C. 112 (2008) 10681–10687. doi:10.1021/jp8016453.spa
dc.relation.references[129] A.J. Vizcaíno, M. Lindo, A. Carrero, J.A. Calles, Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation, Int. J. Hydrogen Energy. 37 (2012) 1985–1992. doi:10.1016/j.ijhydene.2011.04.179.spa
dc.relation.references[130] D.H. Yang, B.Y. Hur, S.R. Yang, Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent, J. Alloys Compd. 461 (2008) 221–227. doi:10.1016/j.jallcom.2007.07.098.spa
dc.relation.references[131] R. Atchudan, N. Lone, J. Joo, Preparation of CaCO3 and CaO Nanoparticles via Solid-State Conversion of Calcium Oleate Precursor , J. Nanosci. Nanotechnol. 18 (2017) 1958–1964. doi:10.1166/jnn.2018.14208.spa
dc.relation.references[132] H. Jo, M.G. Lee, J. Park, K.D. Jung, Preparation of high-purity nano-CaCO3 from steel slag, Energy. 120 (2017) 884–894. doi:10.1016/j.energy.2016.11.140.spa
dc.relation.references[133] J. Liu, W. Bing, X. Xue, F. Wang, B. Wang, S. He, Y. Zhang, M. Wei, Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature activity toward CO2 methanation Jie, Catal. Sci. Technol. (2015). doi:DOI:10.1039/C5CY02026C.spa
dc.relation.references[134] N.D. Charisiou, A. Baklavaridis, V.G. Papadakis, M.A. Goula, Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO– Al2O3 Catalysts, Waste and Biomass Valorization. 7 (2016) 725–736. doi:10.1007/s12649-016-9627-9.spa
dc.relation.references[135] O. Aschenbrenner, P. McGuire, S. Alsamaq, J. Wang, S. Supasitmongkol, B. Al-Duri, P. Styring, J. Wood, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions, Chem. Eng. Res. Des. 89 (2011) 1711–1721. doi:10.1016/j.cherd.2010.09.019.spa
dc.relation.references[136] M.K. Montañez, R. Molina, S. Moreno, Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 8225–8237. doi:10.1016/j.ijhydene.2014.03.103.spa
dc.relation.references[137] D.Y. Kalai, K. Stangeland, W.M. Tucho, Y. Jin, Z. Yu, Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion, J. CO2 Util. 33 (2019) 189–200. doi:10.1016/j.jcou.2019.05.011.spa
dc.relation.references[138] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni- containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity, Catal. Today. 257 (2015) 59–65. doi:10.1016/j.cattod.2015.03.017.spa
dc.relation.references[139] H. Han, J. Li, H. Wang, Y. Han, Y. Chen, J. Li, Y. Zhang, Y. Wang, B. Wang, One- Step Valorization of Calcium Lignosulfonate to Produce Phenolics with the Addition of Solid Base Oxides in the Hydrothermal Reaction System, Energy and Fuels. 33 (2019) 4302–4309. doi:10.1021/acs.energyfuels.9b00332.spa
dc.relation.references[140] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. doi:10.1515/pac-2014-1117.spa
dc.relation.references[141] Z. Bao, Y. Lu, J. Han, Y. Li, F. Yu, Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane, Appl. Catal. A Gen. 491 (2015) 116–126. doi:10.1016/j.apcata.2014.12.005.spa
dc.relation.references[142] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014.spa
dc.relation.references[143] P.H. Chang, Y.P. Chang, S.Y. Chen, C.T. Yu, Y.P. Chyou, Ca-rich Ca-Al-oxide, high- temperature-stable sorbents prepared from hydrotalcite precursors: Synthesis, characterization, and CO2 capture capacity, ChemSusChem. 4 (2011) 1844–1851. doi:10.1002/cssc.201100357.spa
dc.relation.references[144] G. Wu, C. Zhang, S. Li, Z. Huang, S. Yan, S. Wang, X. Ma, J. Gong, Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds, Energy Environ. Sci. 5 (2012) 8942–8949. doi:10.1039/c2ee21995f.spa
dc.relation.references[145] Y. Li, J. Wang, Z. Li, Q. Liu, J. Liu, L. Liu, X. Zhang, J. Yu, Ultrasound assisted synthesis of Ca-Al hydrotalcite for U (VI) and Cr (VI) adsorption, Chem. Eng. J. 218 (2013) 295–302. doi:10.1016/j.cej.2012.12.051.spa
dc.relation.references[146] W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, M. Wei, Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation, ACS Catal. 8 (2018) 656–664. doi:10.1021/acscatal.7b03022spa
dc.relation.references[147] A. Serrano-Lotina, L. Rodríguez, G. Muñoz, L. Daza, Biogas reforming on La- promoted NiMgAl catalysts derived from hydrotalcite-like precursors, J. Power Sources. 196 (2011) 4404–4410. doi:10.1016/j.jpowsour.2010.10.107.spa
dc.relation.references[148] Y. Yan, Y. Dai, H. He, Y. Yu, Y. Yang, A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation, Appl. Catal. B Environ. 196 (2016) 108–116. doi:10.1016/j.apcatb.2016.05.016.spa
dc.relation.references[149] C. Mebrahtu, F. Krebs, S. Perathoner, S. Abate, G. Centi, R. Palkovits, Hydrotalcite based Ni-Fe/(Mg, Al)O:X catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size, Catal. Sci. Technol. 8 (2018) 1016–1027. doi:10.1039/c7cy02099f.spa
dc.relation.references[150] S. Ewald, M. Kolbeck, T. Kratky, M. Wolf, O. Hinrichsen, On the deactivation of Ni-Al catalysts in CO2 methanation, Appl. Catal. A Gen. 570 (2019) 376–386. doi:10.1016/j.apcata.2018.10.033.spa
dc.relation.references[151] S. Sivasangar, M.S. Mastuli, A. Islam, Y.H. Taufiq-Yap, Screening of modified CaO- based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen, RSC Adv. 5 (2015) 36798–36808. doi:10.1039/c5ra03430b.spa
dc.relation.references[152] J. Zhou, H. Ma, C. Liu, H. Zhang, W. Qian, W. Ying, Ni Based Catalysts Supported on Ce Modified MgAl Spinel Supports for High Temperature Syngas Methanation, Catal. Letters. 149 (2019) 2563–2574. doi:10.1007/s10562-019-02868-7.spa
dc.relation.references[153] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3, J. CO2 Util. 34 (2019) 576–587. doi:10.1016/j.jcou.2019.08.011.spa
dc.relation.references[154] H.P. Ren, Y.H. Song, W. Wang, J.G. Chen, J. Cheng, J. Jiang, Z.T. Liu, Z.W. Liu, Z. Hao, J. Lu, Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane, Chem. Eng. J. 259 (2015) 581–593. doi:10.1016/j.cej.2014.08.029.spa
dc.relation.references[155] R. Dębek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition, React. Kinet. Mech. Catal. 121 (2017) 185–208. doi:10.1007/s11144-017-1167-1.spa
dc.relation.references[156] C.O. Calgaro, O.W. Perez-Lopez, Biogas dry reforming for hydrogen production over Ni-M-Al catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn), Int. J. Hydrogen Energy. 44 (2019) 17750–17766. doi:10.1016/j.ijhydene.2019.05.113.spa
dc.relation.references[157] B.T. Meshesha, N. Barrabés, K. Föttinger, R.J. Chimentão, J. Llorca, F. Medina, G. Rupprechter, J.E. Sueiras, Gas-phase hydrodechlorination of trichloroethylene over Pd/NiMgAl mixed oxide catalysts, Appl. Catal. B Environ. 117–118 (2012) 236–245. doi:10.1016/j.apcatb.2012.01.018.spa
dc.relation.references[158] X.D. Feng, J. Feng, W.Y. Li, CO2 reforming of CH4 over a highly active and stable Ni-Mg-Al catalyst, Int. J. Hydrogen Energy. 42 (2017) 3036–3042. doi:10.1016/j.ijhydene.2016.09.205.spa
dc.relation.references[159] Y. Cao, H. Zhang, J. Dong, Y. Ma, H. Sun, L. Niu, X. Lan, L. Cao, G. Bai, A stable nickel-based catalyst derived from layered double hydroxide for selective hydrogenation of benzonitrile, Mol. Catal. 475 (2019) 110452. doi:10.1016/j.mcat.2019.110452.spa
dc.relation.references[160] H. Messaoudi, S. Thomas, A. Djaidja, S. Slyemi, A. Barama, Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane, J. CO2 Util. 24 (2018) 40–49. doi:10.1016/j.jcou.2017.12.002.spa
dc.relation.references[161] A.F. Lucrédio, G. Jerkiewickz, E.M. Assaf, Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions, Appl. Catal. A Gen. 333 (2007) 90–95. doi:10.1016/j.apcata.2007.09.009.spa
dc.relation.references[162] A.V. Paladino Lino, C.B. Rodella, E.M. Assaf, J.M. Assaf, Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio, Int. J. Hydrogen Energy. 5 (2020). doi:10.1016/j.ijhydene.2020.01.002.spa
dc.relation.references[163] A.R. Keshavarz, M. Soleimani, Nano-sized Ni/(CaO)x-(Al2O3)y catalysts for steam pre-reforming of ethane and propane in natural gas: The role of CaO/Al2O3 ratio to enhance conversion efficiency and resistance to coke formation, J. Nat. Gas Sci. Eng. 45 (2017) 1–10. doi:10.1016/j.jngse.2017.05.019.spa
dc.relation.references[164] M.J. Kim, J.R. Youn, H.J. Kim, M.W. Seo, D. Lee, K.S. Go, K.B. Lee, S.G. Jeon, Effect of surface properties controlled by Ce addition on CO2 methanation over Ni/Ce/Al2O3 catalyst, Int. J. Hydrogen Energy. (2020) 2–10. doi:10.1016/j.ijhydene.2020.06.144.spa
dc.relation.references[165] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane, Nanoscale. 5 (2013) 2659–2663. doi:10.1039/c3nr33921a.spa
dc.relation.references[166] M. Shokrollahi Yancheshmeh, H.R. Radfarnia, M.C. Iliuta, Sustainable Production of High-Purity Hydrogen by Sorption Enhanced Steam Reforming of Glycerol over CeO2-Promoted Ca9Al6O18-CaO/NiO Bifunctional Material, ACS Sustain. Chem. Eng. 5 (2017) 9774–9786. doi:10.1021/acssuschemeng.7b01627.spa
dc.relation.references[167] E. Akbari, S.M. Alavi, M. Rezaei, CeO2 Promoted Ni-MgO-Al2O3 nanocatalysts for carbon dioxide reforming of methane, J. CO2 Util. 24 (2018) 128–138. doi:10.1016/j.jcou.2017.12.015.spa
dc.relation.references[168] X. Fang, J. Zhang, J. Liu, C. Wang, Q. Huang, X. Xu, H. Peng, W. Liu, X. Wang, W. Zhou, Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides, J. CO2 Util. 25 (2018) 242–253. doi:10.1016/j.jcou.2018.04.011.spa
dc.relation.references[169] H.C. Wu, Y.C. Chang, J.H. Wu, J.H. Lin, I.K. Lin, C.S. Chen, Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway, Catal. Sci. Technol. 5 (2015) 4154–4163. doi:10.1039/c5cy00667h.spa
dc.relation.references[170] G. Botzolaki, G. Goula, A. Rontogianni, E. Nikolaraki, N. Chalmpes, P. Zygouri, M. Karakassides, D. Gournis, N. Charisiou, M. Goula, S. Papadopoulos, I. Yentekakis, CO2 Methanation on Supported Rh Nanoparticles : The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size, Catalysts. (2020) 9–14. doi:doi:10.3390/catal10080944.spa
dc.relation.references[171] J.K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, G. Iucci, C. Battocchio, S. Mobilio, S. Casciardi, R. Sisto, Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO2 methanation, J. CO2 Util. 23 (2018) 200–211. doi:10.1016/j.jcou.2017.11.015.spa
dc.relation.references[172] J. Liao, B. Jin, Y. Zhao, Z. Liang, Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture, Chem. Eng. J. 372 (2019) 1028–1037. doi:10.1016/j.cej.2019.04.212.spa
dc.relation.references[173] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng. 02 (2012) 154– 160. doi:10.4236/wjnse.2012.23020.spa
dc.relation.references[174] B. Akbari, M.P. Tavandashti, M. Zandrahimi, Particle size characterization of nanoparticles- a practicalapproach, Iran. J. Mater. Sci. Eng. 8 (2011) 48–56.spa
dc.relation.references[175] M.L. Lavčević, A. Turković, The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method, Scr. Mater. 46 (2002) 501–505. doi:10.1016/S1359-6462(02)00021-0.spa
dc.relation.references[176] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 1–4. doi:10.1038/s41598-017-09897-5.spa
dc.relation.references[177] T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Improving the ethanol sensing of ZnO nano-particle thin films - The correlation between the grain size and the sensing mechanism, Sensors Actuators, B Chem. 152 (2011) 73–81. doi:10.1016/j.snb.2010.09.045.spa
dc.relation.references[178] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO- CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B Environ. 172–173 (2015) 116–128. doi:10.1016/j.apcatb.2015.02.017.spa
dc.relation.references[179] X. Yu, N. Wang, W. Chu, M. Liu, Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites, Chem. Eng. J. 209 (2012) 623–632. doi:10.1016/j.cej.2012.08.037.spa
dc.relation.references[180] J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today. 281 (2017) 304–311. doi:10.1016/j.cattod.2016.07.020.spa
dc.relation.references[181] L. Proaño, M.A. Arellano-Treviño, R.J. Farrauto, M. Figueredo, C. Jeong-Potter, M. Cobo, Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS, Appl. Surf. Sci. 533 (2020) 147469. doi:10.1016/j.apsusc.2020.147469.spa
dc.relation.references[182] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation, J. Am. Chem. Soc. 138 (2016) 6298–6305. doi:10.1021/jacs.6b02762spa
dc.relation.references[183] C. Liang, X. Hu, T. Wei, P. Jia, Z. Zhang, D. Dong, S. Zhang, Q. Liu, G. Hu, Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity, Int. J. Hydrogen Energy. 44 (2019) 8197–8213. doi:10.1016/j.ijhydene.2019.02.014.spa
dc.relation.references[184] D. Cornu, H. Guesmi, J.M. Krafft, H. Lauron-Pernot, Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches, J. Phys. Chem. C. 116 (2012) 6645–6654. doi:10.1021/jp211171t.spa
dc.relation.references[185] P. Gruene, A.G. Belova, T.M. Yegulalp, R.J. Farrauto, M.J. Castaldi, Dispersed calcium oxide as a reversible and efficient CO2 sorbent at intermediate temperatures, Ind. Eng. Chem. Res. 50 (2011) 4042–4049. doi:10.1021/ie102475d.spa
dc.relation.references[186] A. Lind, K. Thorshaug, K.A. Andreassen, R. Blom, B. Arstad, The Role of Water during CO2 Adsorption by Ca-Based Sorbents at High Temperature, Ind. Eng. Chem. Res. 57 (2018) 2829–2837. doi:10.1021/acs.iecr.7b04052.spa
dc.relation.references[187] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation, Appl. Catal. A Gen. 560 (2018) 42–53. doi:10.1016/j.apcata.2018.04.036.spa
dc.relation.references[188] W. Gao, T. Zhou, Q. Wang, Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under di ff erent adsorption conditions, Chem. Eng. J. 336 (2018) 710–720. doi:10.1016/j.cej.2017.12.025.spa
dc.relation.references[189] S. Sharma, Z. Hu, P. Zhang, E.W. McFarland, H. Metiu, CO2 methanation on Ru- doped ceria, J. Catal. 278 (2011) 297–309. doi:10.1016/j.jcat.2010.12.015.spa
dc.relation.references[190] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts, Catal. Today. (2019). doi:10.1016/j.cattod.2019.05.040.spa
dc.relation.references[191] K. Tahvildari, Y.N. Anaraki, R. Fazaeli, S. Mirpanji, E. Delrish, The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil, J. Environ. Heal. Sci. Eng. 13 (2015) 1–9. doi:10.1186/s40201-015-0226-7.spa
dc.relation.references[192] Y. Bang, S.J. Han, S. Kwon, V. Hiremath, I.K. Song, J.G. Seo, High temperature carbon dioxide capture on Nano-structured MgO-Al2O3 and CaO-Al2O3 adsorbents: An experimental and theoretical study, J. Nanosci. Nanotechnol. 14 (2014) 8531– 8538. doi:10.1166/jnn.2014.9954.spa
dc.relation.references[193] Z. Cheng, B.J. Sherman, C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): A density functional theory study, J. Chem. Phys. 138 (2013). doi:10.1063/1.4773248.spa
dc.relation.references[194] X. Wang, L. Zhu, Y. Liu, S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ. 625 (2018) 686–695. doi:10.1016/j.scitotenv.2017.12.308.spa
dc.relation.references[195] K. Zhao, W. Wang, Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util. 16 (2016) 236–244. doi:10.1016/j.jcou.2016.07.010.spa
dc.relation.references[196] Q. Liu, H. Dong, In Situ Immobilizing Ni Nanoparticles to FDU-12 via Trehalose with Fine Size and Location Control for CO2 Methanation, ACS Sustain. Chem. Eng. 8 (2020) 2093–2105. doi:10.1021/acssuschemeng.9b07004.spa
dc.relation.references[197] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632d.spa
dc.relation.references[198] L. He, Q. Lin, Y. Liu, Y. Huang, Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support, J. Energy Chem. 23 (2014) 587–592. doi:10.1016/S2095-4956(14)60144-3.spa
dc.relation.references[199] A. Zhao, W. Ying, H. Zhang, M. Hongfang, D. Fang, Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter, J. Nat. Gas Chem. 21 (2012) 170–177. doi:10.1016/S1003-9953(11)60350-2.spa
dc.relation.references[200] C. Bassano, P. Deiana, L. Lietti, C.G. Visconti, P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources, Fuel. 253 (2019) 1071–1079. doi:10.1016/j.fuel.2019.05.074.spa
dc.relation.references[201] S. Kim, S.G. Jeon, K.B. Lee, High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio, ACS Appl. Mater. Interfaces. 8 (2016) 5763–5767. doi:10.1021/acsami.5b12598.spa
dc.relation.references[202] W. Yang, Y. Feng, W. Chu, Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation, Int. J. Chem. Eng. 2016 (2016). doi:10.1155/2016/2041821.spa
dc.relation.references[203] Z. Taherian, V. Shahed Gharahshiran, A. Khataee, F. Meshkani, Y. Orooji, Comparative study of modified Ni catalysts over mesoporous CaO-Al2O3 support for CO2/methane reforming, Catal. Commun. 145 (2020) 106100. doi:10.1016/j.catcom.2020.106100.spa
dc.relation.references[204] L. Xu, F. Wang, M. Chen, H. Yang, D. Nie, L. Qi, X. Lian, Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation, RSC Adv. 7 (2017) 18199–18210. doi:10.1039/c7ra01673e.spa
dc.relation.references[205] M. Broda, A.M. Kierzkowska, C.R. Müller, Sorbent-Enhanced Steam Methane Reforming Reaction Studied over a Ca-Based CO2 Sorbent and Ni Catalyst, Chem. Eng. Technol. 36 (2013) 1496–1502. doi:10.1002/ceat.201200643.spa
dc.relation.references[206] A. Sharma, I. Saito, H. Nakagawa, K. Miura, Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds, Fuel. 86 (2007) 915–920. doi:10.1016/j.fuel.2006.11.001.spa
dc.relation.references[207] C.O. Calgaro, A.L. Rocha, O.W. Perez-Lopez, Deactivation control in CO2 reforming of methane over Ni–Mg–Al catalyst, React. Kinet. Mech. Catal. 130 (2020) 159–178. doi:10.1007/s11144-020-01770-3.spa
dc.relation.references[208] J.P. da S.Q. Menezes, A.P. do. S. Dias, M.A.P. da Silva, M.M.V.M. Souza, Effect of alkaline earth oxides on nickel catalysts supported over γ-alumina for butanol steam reforming: Coke formation and deactivation process, Int. J. Hydrogen Energy. 45 (2020) 22906–22920. doi:10.1016/j.ijhydene.2020.06.187.spa
dc.relation.references[209] J.P. da S.Q. Menezes, F.C. Jácome, R.L. Manfro, M.M.V.M. Souza, Effect of CaO Addition on Nickel Catalysts Supported on Alumina for Glycerol Steam Reforming, Catal. Letters. 149 (2019) 1991–2003. doi:10.1007/s10562-019-02792-w.spa
dc.relation.references[210] M. Ding, J. Tu, Q. Zhang, M. Wang, N. Tsubaki, T. Wang, L. Ma, Enhancement of methanation of bio-syngas over CeO2-modified Ni/Al2O3 catalysts, Biomass and Bioenergy. 85 (2016) 12–17. doi:10.1016/j.biombioe.2015.11.025.spa
dc.relation.references[211] Y. Jiang, T. Huang, L. Dong, Z. Qin, H. Ji, Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation, Chinese J. Chem. Eng. (2018) 2361–2367. doi:10.1016/j.cjche.2018.03.029.spa
dc.relation.references[212] Y.R. Dias, O.W. Perez-Lopez, Carbon dioxide methanation over Ni-Cu/SiO2 catalysts, Energy Convers. Manag. 203 (2020) 112214. doi:10.1016/j.enconman.2019.112214.spa
dc.relation.references[213] A. Quindimil, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation, Appl. Catal. B Environ. 238 (2018) 393–403. doi:10.1016/j.apcatb.2018.07.034.spa
dc.relation.references[214] Z. Li, T. Zhao, L. Zhang, Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation, Appl. Organomet. Chem. 32 (2018) 1–7. doi:10.1002/aoc.4328spa
dc.relation.references[215] V. Alcalde-Santiago, A. Davó-Quiñonero, D. Lozano-Castelló, A. Quindimil, U. De- La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno- López, Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation, ChemCatChem. 11 (2019) 810–819. doi:10.1002/cctc.201801585.spa
dc.relation.references[216] Z. Fan, K. Sun, N. Rui, B. Zhao, C.J. Liu, Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition, J. Energy Chem. 24 (2015) 655–659. doi:10.1016/j.jechem.2015.09.004.spa
dc.relation.references[217] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014.spa
dc.relation.references[218] W. Ahmad, M.N. Younis, R. Shawabkeh, S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun. 100 (2017) 121–126. doi:10.1016/j.catcom.2017.06.044.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.otherCatálisis
dc.subject.otherCatalysis
dc.subject.proposalConversión de CO2spa
dc.subject.proposalMetanacion de CO2spa
dc.subject.proposalPromotor de CeO2spa
dc.subject.proposalCO2 conversioneng
dc.subject.proposalCO2 methanationeng
dc.subject.proposalCeO2 promotereng
dc.subject.unescoBiogás
dc.subject.unescoBiogas
dc.subject.unescoFuente de energía renovable
dc.subject.unescoAlternative energy sources
dc.titleMetanación de CO2 sobre catalizadores básicos promovidos con CeO2spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1080185196.2020.pdf
Tamaño:
2.62 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: