Magnesium-based bioresorbable cellular metal as bone substitute

dc.contributor.advisorRamírez Patiño, Juan Fernando
dc.contributor.advisorFernández Morales, Gloria Patricia
dc.contributor.authorPosada Pérez, Viviana Marcela
dc.contributor.researchgroupGrupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (GI-BIR)spa
dc.date.accessioned2021-05-31T16:47:48Z
dc.date.available2021-05-31T16:47:48Z
dc.date.issued2021
dc.description.abstractThe design and development of an osteoinductive environment to reconstruct and treat large bone defects is still a challenge. Biodegradable porous metals have been proposed to bridge healthy parts of the tissue when the lesion overcomes the bone self-healing capacity. Mg-based scaffolds promise to assist in this bridging process, providing the mechanical properties and adapting to the new requirements such as weight and geometry as the healing time advances. Moreover, the porous condition guides the tissue and blood vessels' growth, and the release of Mg2+ accelerates the healing process. However, the Mg support is limited by its rapid degradation, which hinders the appropriate integration with the tissue. Additionally, the degradation is again accelerated in the porous condition, and the complex geometry limits the application of current protection methods. The present thesis aims to create an open-porous Mg-based scaffold for bone tissue engineering, focused on enhanced corrosion resistance and biocompatibility. Porous Mg materials were then fabricated in various geometrical configurations: random pores, truncated octahedron, and diamond unit cells. The control over the degradation of the material was achieved by modifying the first nanometers of the surface, avoiding changes in the architecture of the structures, and preserving the bulk properties of the material such as open porosity and lightweight. The nanometric modification was created via low-energy Ar+ irradiation, which developed well-ordered nanostructures on the surface, followed by Al-rich nanoclusters' accumulation. The creation of the Al-rich nanoclusters accelerated the passivation kinetics of the porous Mg, enhancing the apatite nucleation ability when immersing the materials in physiological fluids. Moreover, the apatite formation ability was conditioned to the concentration of Al on the near-surface, which offered surfaces for different biological purposes by tailoring the CaP ratio. Superior properties regarding in vitro biodegradation and biocompatibility were obtained on hydroxylapatite tailored surfaces, such as decreased weight loss, conservation of the strut size during the immersion time, and decreased H2 and Mg2+ release. Furthermore, higher cell density was adhered to and proliferated on the DPNS surfaces indicating outstanding biocompatibility. The increase in biocompatibility was also supported by the formation of focal adhesion points and increased osteogenic potential, and the immune response modulation of the cells seeded on the modified surfaces. Finally, the material was tested in vivo, demonstrating steady corrosion and improved porous structure stability after 8 weeks of implantation in Wistar rats.eng
dc.description.abstractEl diseño y desarrollo de un entorno osteoinductivo para reconstruir y tratar grandes defectos óseos sigue siendo un desafío. Los metales porosos biodegradables se han propuesto para conectar partes sanas del tejido cuando le lesión supera la capacidad autoreparadora del hueso. Los scaffolds de Mg prometen ayudar en este proceso de soporte, proporcionando las propiedades mecánicas y adaptándose a los nuevos requisitos, como el peso y la geometría, a medida que avanza el tiempo de curación. Además, la condición porosa guiaría el crecimiento del tejido y de los vasos sanguíneos, y la liberación de Mg2 + aceleraría el proceso de curación. Sin embargo, las funciones de soporte del Mg están limitadas por su rápida degradación, lo que dificulta la integración con el tejido. Además, el proceso de corrosión se acelera con la condición de porosidad, y la geometría compleja limita la aplicación de los métodos de protección actuales. La presente tesis tiene como objetivo crear un andamio basado en Mg de poros abiertos para reemplazo de hueso, centrado en una mayor resistencia a la corrosión y biocompatibilidad. Para este propósito, se fabricaron materiales porosos de Mg en varias configuraciones geométricas: poros aleatorios, octaedro truncado y celdas unitarias de diamante. El control sobre la degradación del material se logró modificando los primeros nanómetros de la superficie, para evitar transformaciones en la arquitectura del material y conservar de propiedades volumétricas como la porosidad abierta y el peso ligero. La modificación nanométrica se creó mediante irradiación de baja energía con Ar+, lo que desarrolló nanoestructuras ordenadas en la superficie, seguidas de la acumulación de nanoclusters ricos en Al. La creación de nanoclusters ricos en Al aceleró la cinética de pasivación del scaffold de Mg, mejorando su capacidad de nucleación de apatita al sumergir los materiales en fluidos fisiológicos. Además, dicha capacidad de formación de apatita estaba condicionada a la concentración de Al en la superficie, lo que ofrece superficies para diferentes propósitos biológicos al adaptar la proporción de CaP. Se obtuvieron propiedades mejoradas en cuanto a biodegradación y biocompatibilidad in vitro en superficies irradiadas que formaron una relación Ca:P similar a la hidroxiapatita. Estas propiedades incluyen menor pérdida de peso, conservación del tamaño del strut durante el tiempo de inmersión y disminución de la liberación de H2 y Mg2+. Además, se adhirió y proliferó una mayor densidad celular en las superficies de DPNS, lo que indica una mejora sobresaliente también en la biocompatibilidad, que, además, está respaldada por la formación de puntos de adhesión focales y el aumento del potencial osteogénico y la modulación de la respuesta inmune de las células adheridas a la superficie modificada de Mg. Finalmente, el material se evaluó in vivo, demostrando una corrosión constante y una estabilidad mejorada de la estructura porosa después de 8 semanas de implantación en ratas Wistar.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ingeniería Mecánica y Mecatrónicaspa
dc.description.researchareaBiomecánicaspa
dc.description.researchareaBiomaterialesspa
dc.format.extent186 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79575
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.references[1] E. Roddy, M.R. DeBaun, A. Daoud-Gray, Y.P. Yang, M.J. Gardner, Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol. 28 (2018) 351–362. https://doi.org/10.1007/s00590-017-2063-0.spa
dc.relation.references[2] S. van Gaalen, M. Kruyt, G. Meijer, A. Mistry, A. Mikos, J. van den Beucken, J. Jansen, K. de Groot, R. Cancedda, C. Olivo, M. Yaszemski, W. Dhert, Chapter 19 - Tissue engineering of bone, in: Academic Press, Burlington, 2008: pp. 559–610. http://www.sciencedirect.com/science/article/pii/B9780123708694000197 (accessed February 9, 2016).spa
dc.relation.references[3] T.X. Song, Y.L. Hu, Z.M. He, Y. Cui, Q. Ding, Z.Y. Qiu, Clinical applications of the mineralized collagen, in: Miner. Collagen Bone Graft Substitutes, Elsevier, 2019: pp. 167–232. https://doi.org/10.1016/B978-0-08-102717-2.00005-9.spa
dc.relation.references[4] W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007.spa
dc.relation.references[5] S. Wu, X. Liu, K.W.K.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36. https://doi.org/10.1016/j.mser.2014.04.001.spa
dc.relation.references[6] A. Nauth, E. Schemitsch, B. Norris, Z. Nollin, J.T. Watson, Critical-Size Bone Defects, J. Orthop. Trauma. 32 (2018) S7–S11. https://doi.org/10.1097/BOT.0000000000001115.spa
dc.relation.references[7] S.K. Jaganathan, M. Prasath Mani, M. Ayyar, R. Rathanasamy, Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds, Polym. Test. 78 (2019) 105955. https://doi.org/10.1016/j.polymertesting.2019.105955.spa
dc.relation.references[8] H. Zhou, S.B. Bhaduri, 3D printing in the research and development of medical devices, in: Biomater. Transl. Med. A Biomater. Approach, Elsevier, 2018: pp. 269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8.spa
dc.relation.references[9] A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review, Int. J. Biomater. 2012 (2012) 1–10. https://doi.org/10.1155/2012/641430.spa
dc.relation.references[10] H. Ding, H. Pan, X. Xu, R. Tang, Toward a Detailed Understanding of Magnesium Ions on Hydroxyapatite Crystallization Inhibition, Cryst. Growth Des. 14 (2014) 763–769. https://doi.org/10.1021/cg401619s.spa
dc.relation.references[11] E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.-H. Lo, The roles of ions on bone regeneration, Drug Discov. Today. 23 (2018) 879–890. https://doi.org/10.1016/J.DRUDIS.2018.01.049.spa
dc.relation.references[12] Y. Zhang, J. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D. Shi, J. Wang, S. Chen, J.Q. Feng, D.H.K. Chow, X. Xie, L. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H. Li, D. Zhao, X. Guo, K. Chan, F. Witte, H.C. Chan, Y. Zheng, L. Qin, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat. Med. 22 (2016) 1160–1169. https://doi.org/10.1038/nm.4162.spa
dc.relation.references[13] M. Wang, Y. Yu, K. Dai, Z. Ma, Y. Liu, J. Wang, C. Liu, Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement: Via macrophage immunomodulation, Biomater. Sci. 4 (2016) 1574–1583. https://doi.org/10.1039/c6bm00290k.spa
dc.relation.references[14] B. Li, H. Cao, Y. Zhao, M. Cheng, H. Qin, T. Cheng, Y. Hu, X. Zhang, X. Liu, In vitro and in vivo responses of macrophages to magnesium-doped titanium, Sci. Rep. 7 (2017) 1–12. https://doi.org/10.1038/srep42707.spa
dc.relation.references[15] T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater. 13 (2011) 872–881. https://doi.org/10.1002/adem.201100029.spa
dc.relation.references[16] G. Jia, C. Chen, J. Zhang, Y. Wang, R. Yue, B.J.C. Luthringer - Feyerabend, R. Willumeit-Roemer, H. Zhang, M. Xiong, H. Huang, G. Yuan, F. Feyerabend, In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering, Corros. Sci. 144 (2018) 301–312. https://doi.org/10.1016/j.corsci.2018.09.001.spa
dc.relation.references[17] Y. Wang, P. Fu, N. Wang, L. Peng, B. Kang, H. Zeng, G. Yuan, W. Ding, Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants, Engineering. (2020). https://doi.org/10.1016/j.eng.2020.02.015.spa
dc.relation.references[18] J. M.Rúa, A.A. Zuleta, J. Ramírez, P. Fernández-Morales, Micro-arc oxidation coating on porous magnesium foam and its potential biomedical applications, Surf. Coatings Technol. 360 (2019) 213–221. https://doi.org/10.1016/j.surfcoat.2018.12.106.spa
dc.relation.references[19] S. Julmi, A.-K. Krüger, A.-C. Waselau, A. Meyer-Lindenberg, P. Wriggers, C. Klose, H.J. Maier, Processing and coating of open-pored absorbable magnesium-based bone implants, Mater. Sci. Eng. C. 98 (2019) 1073–1086. https://doi.org/10.1016/j.msec.2018.12.125.spa
dc.relation.references[20] S. Weiner, H.D. Wagner, The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci. 28 (1998) 271–298.spa
dc.relation.references[21] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Microstructural and mechanical study of PCL coated Mg scaffolds, Surf. Eng. 30 (2014) 920–926. https://doi.org/10.1179/1743294414Y.0000000307.spa
dc.relation.references[22] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite, Mater. Sci. Eng. C. 49 (2015) 436–444. https://doi.org/10.1016/j.msec.2015.01.041.spa
dc.relation.references[23] Z. Chen, X. Mao, L. Tan, T. Friis, C. Wu, R. Crawford, Y. Xiao, Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate, Biomaterials. 35 (2014) 8553–8565. https://doi.org/10.1016/j.biomaterials.2014.06.038.spa
dc.relation.references[24] Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, Advances in coatings on biodegradable magnesium alloys, J. Magnes. Alloy. 8 (2020) 42–65. https://doi.org/10.1016/j.jma.2019.09.008.spa
dc.relation.references[25] R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, Y.F. Zheng, In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l -lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants, ACS Appl. Mater. Interfaces. 8 (2016) 10014–10028. https://doi.org/10.1021/acsami.6b00527.spa
dc.relation.references[26] F. Czerwinski, ed., Magnesium Alloys - Corrosion and Surface Treatments, InTech, 2011. http://www.intechopen.com/books/magnesium-alloys-corrosion-and-surface-treatments (accessed November 3, 2014).spa
dc.relation.references[27] G. Zhang, L. Wu, A. Tang, Y. Ma, G.-L. Song, D. Zheng, B. Jiang, A. Atrens, F. Pan, Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31, Corros. Sci. 139 (2018) 370–382. https://doi.org/10.1016/J.CORSCI.2018.05.010.spa
dc.relation.references[28] J. Liao, M. Hotta, Corrosion products of field-exposed Mg-Al series magnesium alloys, Corros. Sci. 112 (2016) 276–288. https://doi.org/10.1016/j.corsci.2016.07.023.spa
dc.relation.references[29] G. Wu, R. Xu, K. Feng, S. Wu, Z. Wu, G. Sun, G. Zheng, G. Li, P.K. Chu, Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation, Appl. Surf. Sci. 258 (2012) 7651–7657. https://doi.org/10.1016/j.apsusc.2012.04.112.spa
dc.relation.references[30] M.C. Delgado, F.R. García-Galvan, I. Llorente, P. Pérez, P. Adeva, S. Feliu, Influence of aluminium enrichment in the near-surface region of commercial twin-roll cast AZ31 alloys on their corrosion behaviour, Corros. Sci. 123 (2017) 182–196. https://doi.org/10.1016/J.CORSCI.2017.04.027.spa
dc.relation.references[31] M.K. Lei, P. Li, H.G. Yang, X.M. Zhu, Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy, Surf. Coatings Technol. 201 (2007) 5182–5185. https://doi.org/10.1016/J.SURFCOAT.2006.07.091.spa
dc.relation.references[32] D. Dubé, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Mater. Sci. Eng. A. 299 (2001) 38–45. https://doi.org/10.1016/S0921-5093(00)01414-3.spa
dc.relation.references[33] S. Hao, M. Li, Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 375 (2016) 1–4. https://doi.org/10.1016/j.nimb.2016.03.035.spa
dc.relation.references[34] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochim. Acta. 53 (2008) 7890–7902. https://doi.org/10.1016/J.ELECTACTA.2008.06.001.spa
dc.relation.references[35] F. Reichel, L.P.H. Jeurgens, E.J. Mittemeijer, Modeling compositional changes in binary solid solutions under ion bombardment: Application to the Ar+ bombardment of MgAl alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006). https://doi.org/10.1103/PhysRevB.73.024103.spa
dc.relation.references[37] M.A. Yánez Contreras, C.D. Maldonado Pedroza, K.P. Del Risco Serje, Labor force participation of people aged 60 years old and above in Colombia, Rev. Econ. Del Caribe. (2016) 39–63. https://doi.org/10.14482/ecoca.17.8004.spa
dc.relation.references[38] R. Aziziyeh, M. Amin, M. Habib, J. Garcia Perlaza, K. Szafranski, R.K. McTavish, T. Disher, A. Lüdke, C. Cameron, The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina, J. Med. Econ. 22 (2019) 638–644. https://doi.org/10.1080/13696998.2019.1590843.spa
dc.relation.references[39] Instituto Nacional De Salud, Informe anual red de donación y trasplantes, 2018. https://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionOrganosYTejidos/Estadisticas/Informe-Anual-Red-Donacion-Trasplantes-2018.pdf.spa
dc.relation.references[40] W.M. Baldwin, C.P. Larsen, R.L. Fairchild, Innate immune responses to transplants: A significant variable with cadaver donors, Immunity. 14 (2001) 369–376. https://doi.org/10.1016/S1074-7613(01)00117-0.spa
dc.relation.references[41] R.A. Navarro, N.C. Reddy, J.M. Weiss, A.J. Yates, F.H. Fu, M. McKee, E.S. Lederman, Orthopaedic Systems Response to and Return from the COVID-19 Pandemic: Lessons for Future Crisis Management, J. Bone Jt. Surg. - Am. Vol. 102 (2020) E75. https://doi.org/10.2106/JBJS.20.00709.spa
dc.relation.references[42] B. Fiani, R. Jenkins, I. Siddiqi, A. Khan, A. Taylor, Socioeconomic Impact of COVID-19 on Spinal Instrumentation Companies in the Era of Decreased Elective Surgery, Cureus. 12 (2020). https://doi.org/10.7759/cureus.9776.spa
dc.relation.references[43] S. Von Euw, Y. Wang, G. Laurent, C. Drouet, F. Babonneau, N. Nassif, T. Azaïs, Bone mineral: new insights into its chemical composition, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-44620-6.spa
dc.relation.references[44] J.L. Shaker, L. Deftos, Calcium and Phosphate Homeostasis, in: Endocr. Reprod. Physiol., Elsevier, 2013: pp. 77-e1. https://doi.org/10.1016/b978-0-323-08704-9.00004-x.spa
dc.relation.references[45] J.D. Black, B.J. Tadros, Bone structure: from cortical to calcium, Orthop. Trauma. 34 (2020) 113–119. https://doi.org/10.1016/j.mporth.2020.03.002.spa
dc.relation.references[46] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 20 (1998) 92–102. https://doi.org/10.1016/S1350-4533(98)00007-1.spa
dc.relation.references[47] F.M. Vanhoenacker, A.L. Baert, C. Faletti, M. Maas, J.L.M.A. Gielen, Imaging of Orthopedic Sports Injuries, Springer Berlin Heidelberg, 2007. https://books.google.com.co/books?id=BjWq_4WqRFEC.spa
dc.relation.references[48] R. Oftadeh, M. Perez-Viloria, J.C. Villa-Camacho, A. Vaziri, A. Nazarian, Biomechanics and Mechanobiology of Trabecular Bone: A Review, J. Biomech. Eng. 137 (2015). https://doi.org/10.1115/1.4029176.spa
dc.relation.references[49] G.S. Baht, L. Vi, B.A. Alman, The Role of the Immune Cells in Fracture Healing, Curr. Osteoporos. Rep. 16 (2018) 138–145. https://doi.org/10.1007/s11914-018-0423-2.spa
dc.relation.references[50] T. Ono, H. Takayanagi, Osteoimmunology in Bone Fracture Healing, Curr. Osteoporos. Rep. 15 (2017) 367–375. https://doi.org/10.1007/s11914-017-0381-0.spa
dc.relation.references[51] A. Dorronsoro, I. Ferrin, J.M. Salcedo, E. Jakobsson, J. Fernández‐Rueda, V. Lang, P. Sepulveda, K. Fechter, D. Pennington, C. Trigueros, Human mesenchymal stromal cells modulate T‐cell responses through TNF‐α‐mediated activation of NF‐κB, Eur. J. Immunol. 44 (2014) 480–488. https://doi.org/10.1002/eji.201343668.spa
dc.relation.references[52] T.A. Einhorn, Bone Regeneration and Repair, J. Bone Jt. Surg. 88 (2006) 469–470. https://doi.org/10.2106/00004623-200602000-00050.spa
dc.relation.references[53] L.J. Kidd, A.S. Stephens, J.S. Kuliwaba, N.L. Fazzalari, A.C.K. Wu, M.R. Forwood, Temporal pattern of gene expression and histology of stress fracture healing, Bone. 46 (2010) 369–378. https://doi.org/10.1016/j.bone.2009.10.009.spa
dc.relation.references[54] N.A. Sims, T.J. Martin, The osteoblast lineage: Its actions and communication mechanisms, in: Princ. Bone Biol., Elsevier, 2019: pp. 89–110. https://doi.org/10.1016/B978-0-12-814841-9.00004-X.spa
dc.relation.references[55] G.K.K. and A.E. Javad Parvizi, High Yield Orthopaedics, Elsevier, 2010. https://doi.org/10.1016/c2009-0-32243-6.spa
dc.relation.references[56] T.A. Franz-Odendaal, B.K. Hall, P.E. Witten, Buried alive: How osteoblasts become osteocytes, Dev. Dyn. 235 (2006) 176–190. https://doi.org/10.1002/dvdy.20603.spa
dc.relation.references[57] M.H.V. Choy, R.M.Y. Wong, S.K.H. Chow, M.C. Li, Y.N. Chim, T.K. Li, W.T. Ho, J.C.Y. Cheng, W.H. Cheung, How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review, J. Orthop. Transl. 21 (2020) 111–121. https://doi.org/10.1016/j.jot.2019.07.005.spa
dc.relation.references[58] B.M. Willie, E.A. Zimmermann, I. Vitienes, R.P. Main, S. V. Komarova, Bone adaptation: Safety factors and load predictability in shaping skeletal form, Bone. 131 (2020) 115114. https://doi.org/10.1016/j.bone.2019.115114.spa
dc.relation.references[59] J.H. Kim, D. Kim, M.G. Lee, Mechanics of Cellular Materials and its Applications, in: Multiscale Simulations Mech. Biol. Mater., John Wiley and Sons, 2013: pp. 411–434. https://doi.org/10.1002/9781118402955.ch22.spa
dc.relation.references[60] L.J. Gibson, The mechanical behaviour of cancellous bone, J. Biomech. 18 (1985) 317–328. https://doi.org/10.1016/0021-9290(85)90287-8.spa
dc.relation.references[61] A. Nouri, Deakin University, Deakin University, Novel metal structures through powder metallurgy for biomedical applications, 2008.spa
dc.relation.references[62] T.S. Keller, Predicting the compressive mechanical behavior of bone, J. Biomech. 27 (1994) 1159–1168. https://doi.org/10.1016/0021-9290(94)90056-6.spa
dc.relation.references[63] J.D. Silva-Henao, R.J. Rueda Esteban, A. Marañon-Leon, J.P. Casas-Rodríguez, Post-yield mechanical properties of bovine trabecular bone – Relationships with bone volume fraction and strain rate, Eng. Fract. Mech. 233 (2020) 107053. https://doi.org/10.1016/j.engfracmech.2020.107053.spa
dc.relation.references[64] H. Leng, M.J. Reyes, X.N. Dong, X. Wang, Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone, Bone. 55 (2013) 288–291. https://doi.org/10.1016/j.bone.2013.04.006.spa
dc.relation.references[65] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999. http://books.google.com.co/books?id=IySUr5sn4N8C.spa
dc.relation.references[66] N. Fratzl-Zelman, A.P. Roschger, A.A. Gourrier, A.M. Weber, A.B.M. Misof, A.N. Loveridge, A.J. Reeve, A.K. Klaushofer, A.P. Fratzl, Á.P. Roschger, Á.B.M. Misof, Á.K. Klaushofer, A. Gourrier, Á.M. Weber, Á.P. Fratzl, M. Weber, E. Schmid, N. Loveridge, Á.J. Reeve, Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility, Calcif Tissue Int. 85 (2009) 335–343. https://doi.org/10.1007/s00223-009-9289-8.spa
dc.relation.references[67] M.A.K.L. and W.S. M. A. Wettergreen, B. S. Bucklen, CAD Assembly Process for Bone Replacement Scaffolds in Computer-Aided Tissue Engineering, in: Virtual Prototyp. Bio Manuf. Med. Appl., 2008: pp. 87–112.spa
dc.relation.references[68] R. Dimitriou, E. Tsiridis, P. V. Giannoudis, Current concepts of molecular aspects of bone healing, Injury. 36 (2005) 1392–1404. https://doi.org/10.1016/j.injury.2005.07.019.spa
dc.relation.references[69] C.W. Schlickewei, H. Kleinertz, D.M. Thiesen, K. Mader, M. Priemel, K.H. Frosch, J. Keller, Current and future concepts for the treatment of impaired fracture healing, Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20225805.spa
dc.relation.references[70] F. Barrère, C.A. van Blitterswijk, K. de Groot, Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics, Int. J. Nanomedicine. 1 (2006) 317–332.spa
dc.relation.references[71] R. Langer, J.P. Vacanti, Tissue Engineering, n.d. http://science.sciencemag.org/ (accessed June 13, 2020).spa
dc.relation.references[72] K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials (Basel). 2 (2009) 790–832. https://doi.org/10.3390/ma2030790.spa
dc.relation.references[73] N. Abbasi, S. Hamlet, R.M. Love, N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci. Adv. Mater. Devices. 5 (2020) 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007.spa
dc.relation.references[74] K.A. Hing, Bioceramic bone graft substitutes: Influence of porosity and chemistry, Int. J. Appl. Ceram. Technol. 2 (2005) 184–199. https://doi.org/10.1111/j.1744-7402.2005.02020.x.spa
dc.relation.references[75] X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao, L. Geng, Y. Yuan, J. Lu, Z. Wang, The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep. 5 (2015) 1–11. https://doi.org/10.1038/srep09409.spa
dc.relation.references[76] C.M. Murphy, F.J. O’Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell Adhes. Migr. 4 (2010) 377–381. https://doi.org/10.4161/cam.4.3.11747.spa
dc.relation.references[77] L. Chu, G. Jiang, X.-L. Hu, T.D. James, X.-P. He, Y. Li, T. Tang, Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization, J. Mater. Chem. B. 6 (2018) 1658–1667. https://doi.org/10.1039/C7TB03353B.spa
dc.relation.references[78] Z. Chen, X. Yan, S. Yin, L. Liu, X. Liu, G. Zhao, W. Ma, W. Qi, Z. Ren, H. Liao, M. Liu, D. Cai, H. Fang, Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth, Mater. Sci. Eng. C. 106 (2020) 110289. https://doi.org/10.1016/j.msec.2019.110289.spa
dc.relation.references[79] P. Ouyang, H. Dong, X. He, X. Cai, Y. Wang, J. Li, H. Li, Z. Jin, Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth, Mater. Des. 183 (2019) 108151. https://doi.org/10.1016/j.matdes.2019.108151.spa
dc.relation.references[80] S. Ray, U. Thormann, M. Eichelroth, M. Budak, C. Biehl, M. Rupp, U. Sommer, T. El Khassawna, F.I. Alagboso, M. Kampschulte, M. Rohnke, A. Henß, K. Peppler, V. Linke, P. Quadbeck, A. Voigt, F. Stenger, D. Karl, R. Schnettler, C. Heiss, K.S. Lips, V. Alt, Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing, Biomaterials. 157 (2018) 1–16. https://doi.org/10.1016/j.biomaterials.2017.11.049.spa
dc.relation.references[81] M.Q. Cheng, T. Wahafu, G.F. Jiang, W. Liu, Y.Q. Qiao, X.C. Peng, T. Cheng, X.L. Zhang, G. He, X.Y. Liu, A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration, Sci. Rep. 6 (2016) 24134. https://doi.org/10.1038/srep24134.spa
dc.relation.references[82] M.H. Kang, H. Lee, T.S. Jang, Y.J. Seong, H.E. Kim, Y.H. Koh, J. Song, H. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Materialia Inc., 2019. https://doi.org/10.1016/j.actbio.2018.11.045.spa
dc.relation.references[83] E. Dayaghi, H.R. Bakhsheshi-Rad, E. Hamzah, A. Akhavan-Farid, A.F. Ismail, M. Aziz, E. Abdolahi, Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment, Mater. Sci. Eng. C. 102 (2019) 53–65. https://doi.org/10.1016/j.msec.2019.04.010.spa
dc.relation.references[84] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Mater. Sci. Eng. C. 59 (2016) 690–701. https://doi.org/10.1016/j.msec.2015.10.069.spa
dc.relation.references[85] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute, Biomaterials. 24 (2003) 4691–4697. https://doi.org/10.1016/S0142-9612(03)00359-4.spa
dc.relation.references[86] S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, 3D-printed cellular structures for bone biomimetic implants, Addit. Manuf. 15 (2017) 93–101. https://doi.org/10.1016/j.addma.2017.03.010.spa
dc.relation.references[87] C.M. Murphy, M.G. Haugh, F.J. O’Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials. 31 (2010) 461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063.spa
dc.relation.references[88] B.B. Mandal, S.C. Kundu, Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds, Biomaterials. 30 (2009) 5019–5030. https://doi.org/10.1016/j.biomaterials.2009.05.064.spa
dc.relation.references[89] Y. Kuboki, Q. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis., J. Bone Joint Surg. Am. 83 A Suppl 1 (2001). https://doi.org/10.2106/00004623-200100002-00005.spa
dc.relation.references[90] T. Lou, X. Wang, G. Song, Z. Gu, Z. Yang, Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med. 26 (2015) 34. https://doi.org/10.1007/s10856-014-5366-2.spa
dc.relation.references[91] S. Pina, R.F. Canadas, G. Jiménez, M. Perán, J.A. Marchal, R.L. Reis, J.M. Oliveira, Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding, Cells Tissues Organs. 204 (2017) 150–163. https://doi.org/10.1159/000469703.spa
dc.relation.references[92] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, M. Azzi, RAWGraphs: A Visualisation Platform to Create Open Outputs, in: Proc. 12th Biannu. Conf. Ital. SIGCHI Chapter - CHItaly ’17, ACM Press, New York, New York, USA, 2017: pp. 1–5. https://doi.org/10.1145/3125571.3125585.spa
dc.relation.references[93] T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Mater. Des. 183 (2019) 108137. https://doi.org/10.1016/j.matdes.2019.108137.spa
dc.relation.references[94] C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des. 55 (2014) 533–541. https://doi.org/10.1016/j.matdes.2013.10.027.spa
dc.relation.references[95] B.S. Bucklen, W.A. Wettergreen, E. Yuksel, M.A.K. Liebschner, Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering, Virtual Phys. Prototyp. 3 (2008) 13–23. https://doi.org/10.1080/17452750801911352.spa
dc.relation.references[96] M.A. Wettergreen, B.S. Bucklen, B. Starly, E. Yuksel, W. Sun, M.A.K. Liebschner, Creation of a unit block library of architectures for use in assembled scaffold engineering, Comput. Des. 37 (2005) 1141–1149. https://doi.org/10.1016/j.cad.2005.02.005.spa
dc.relation.references[97] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification, Int J Adv Manuf Technol. 21 (2003) 291–301. https://link.springer.com/content/pdf/10.1007%2Fs001700300034.pdf (accessed August 9, 2017).spa
dc.relation.references[98] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program, 2003.spa
dc.relation.references[99] N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, K. Sitthiseripratip, Scaffold Library for Tissue Engineering: A Geometric Evaluation, Comput. Math. Methods Med. 2012 (2012) 1–14. https://doi.org/10.1155/2012/407805.spa
dc.relation.references[100] M.J. Wenninger, Polyhedron models, Cambridge University Press, 2015. https://doi.org/10.1017/CBO9780511569746.spa
dc.relation.references[101] J. Wieding, A. Wolf, R. Bader, Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone, J. Mech. Behav. Biomed. Mater. 37 (2014) 56–68. https://doi.org/10.1016/j.jmbbm.2014.05.002.spa
dc.relation.references[102] G. Bini, F. Bini, R. Bedini, A. Marinozzi, F. Marinozzi, A topological look at human trabecular bone tissue, Math. Biosci. 288 (2017) 159–165. https://doi.org/10.1016/j.mbs.2017.03.009.spa
dc.relation.references[103] V.M. Posada, C. Orozco, J. Ramírez, P. Fernandez-Morales, Human bone inspired design of an Mg alloy-based foam, 2018. https://doi.org/10.4028/www.scientific.net/MSF.933.291.spa
dc.relation.references[104] L.J. Gibson, Biomechanics of cellular solids, J. Biomech. 38 (2005) 377–399. https://doi.org/10.1016/j.jbiomech.2004.09.027.spa
dc.relation.references[105] P.K. Zysset, M.S. Ominsky, S.A. Goldstein, A novel 3D microstructural model for trabecular bone: I. The relationship between fabric and elasticity, Comput. Methods Biomech. Biomed. Engin. 1 (1998) 321–331. https://doi.org/10.1080/01495739808936710.spa
dc.relation.references[106] S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34 (2014) 106–115. https://doi.org/10.1016/j.jmbbm.2014.02.003.spa
dc.relation.references[107] P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater. 4 (2008) 1536–1544. https://doi.org/10.1016/j.actbio.2008.03.013.spa
dc.relation.references[108] N. Reznikov, H. Chase, Y. Ben Zvi, V. Tarle, M. Singer, V. Brumfeld, R. Shahar, S. Weiner, Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs, Acta Biomater. 44 (2016) 65–72. https://doi.org/10.1016/j.actbio.2016.08.040.spa
dc.relation.references[109] A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Mater. Des. 137 (2018) 345–354. https://doi.org/10.1016/j.matdes.2017.10.040.spa
dc.relation.references[110] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci. 3 (2015) 231–245. https://doi.org/10.1039/C4BM00291A.spa
dc.relation.references[111] Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. Schleifenbaum, Additive manufacturing of biodegradable metals: Current research status and future perspectives, Acta Biomater. 98 (2019) 3–22. https://doi.org/10.1016/j.actbio.2019.04.046.spa
dc.relation.references[112] R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Additive manufacturing of magnesium alloys, Bioact. Mater. 5 (2020) 44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004.spa
dc.relation.references[113] M. Joner, P. Ruppelt, P. Zumstein, C. Lapointe-Corriveau, G. Leclerc, A. Bulin, M.I. Castellanos, E. Wittchow, M. Haude, R. Waksman, Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds, EuroIntervention. 14 (2018) e1040–e1048. https://doi.org/10.4244/eij-d-17-00708.spa
dc.relation.references[114] R. Biber, J. Pauser, M. Geßlein, H.J. Bail, Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation., Case Rep. Orthop. 2016 (2016) 9673174. https://doi.org/10.1155/2016/9673174.spa
dc.relation.references[115] U&i Corporation - Driving beyond the innovations, (n.d.). http://www.youic.com/sub02/list.php?ca_id=10 (accessed October 25, 2020).spa
dc.relation.references[116] G. Papanikolaou, K. Pantopoulos, Iron metabolism and toxicity, Toxicol. Appl. Pharmacol. 202 (2005) 199–211. https://doi.org/10.1016/j.taap.2004.06.021.spa
dc.relation.references[117] P. Sharma, P.M. Pandey, Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application, Mater. Sci. Eng. C. 99 (2019) 838–852. https://doi.org/10.1016/j.msec.2019.01.114.spa
dc.relation.references[118] D. Carluccio, C. Xu, J. Venezuela, Y. Cao, D. Kent, M. Bermingham, A.G. Demir, B. Previtali, Q. Ye, M. Dargusch, Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications, Acta Biomater. 103 (2020) 346–360. https://doi.org/10.1016/j.actbio.2019.12.018.spa
dc.relation.references[119] P. Sharma, P.M. Pandey, A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold, Mater. Lett. 222 (2018) 160–163. https://doi.org/10.1016/J.MATLET.2018.03.206.spa
dc.relation.references[120] R. Alavi, A. Trenggono, S. Champagne, H. Hermawan, Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions, Metals (Basel). 7 (2017) 202. https://doi.org/10.3390/met7060202.spa
dc.relation.references[121] I. Cockerill, Y. Su, S. Sinha, Y.X. Qin, Y. Zheng, M.L. Young, D. Zhu, Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach, Mater. Sci. Eng. C. 110 (2020) 110738. https://doi.org/10.1016/j.msec.2020.110738.spa
dc.relation.references[122] J. Nriagu, Zinc deficiency in human health, in: Encycl. Environ. Heal., Elsevier, 2019: pp. 489–499. https://doi.org/10.1016/B978-0-12-409548-9.11433-2.spa
dc.relation.references[123] P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, J.W. Drelich, Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys, Adv. Healthc. Mater. 5 (2016) 1121–1140. https://doi.org/10.1002/adhm.201501019.spa
dc.relation.references[124] J. Venezuela, M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater. 87 (2019) 1–40. https://doi.org/10.1016/j.actbio.2019.01.035.spa
dc.relation.references[125] S.M. Glasdam, S. Glasdam, G.H. Peters, The Importance of Magnesium in the Human Body: A Systematic Literature Review, in: Adv. Clin. Chem., Academic Press Inc., 2016: pp. 169–193. https://doi.org/10.1016/bs.acc.2015.10.002.spa
dc.relation.references[126] N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Magnesium: An update on physiological, clinical and analytical aspects, Clin. Chim. Acta. 294 (2000) 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2.spa
dc.relation.references[127] J.-L. Wang, J.-K. Xu, C. Hopkins, D. Ho-Kiu Chow, L. Qin, Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives, (2020). https://doi.org/10.1002/advs.201902443.spa
dc.relation.references[128] S. Castiglioni, A. Cazzaniga, W. Albisetti, J.A.M. Maier, Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions, Nutrients. 5 (2013) 3022–3033. https://doi.org/10.3390/nu5083022.spa
dc.relation.references[129] R.K. Rude, H.E. Gruber, Magnesium deficiency and osteoporosis: Animal and human observations, J. Nutr. Biochem. 15 (2004) 710–716. https://doi.org/10.1016/j.jnutbio.2004.08.001.spa
dc.relation.references[130] T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, H.C. Lichtenegger, Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone, Biomaterials. 76 (2016) 250–260. https://doi.org/10.1016/j.biomaterials.2015.10.054.spa
dc.relation.references[131] J. Wang, J. Xu, B. Song, D.H. Chow, P. Shu-hang Yung, L. Qin, Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits, Acta Biomater. 63 (2017) 393–410. https://doi.org/10.1016/j.actbio.2017.09.018.spa
dc.relation.references[132] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Porous magnesium-based scaffolds for tissue engineering, Mater. Sci. Eng. C. 71 (2017) 1253–1266. https://doi.org/10.1016/j.msec.2016.11.027.spa
dc.relation.references[133] Y. Yan, Y. Kang, D. Li, K. Yu, T. Xiao, Q. Wang, Y. Deng, H. Fang, D. Jiang, Y. Zhang, Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform. 27 (2018) 970–984. https://doi.org/10.1007/s11665-018-3189-x.spa
dc.relation.references[134] Z.S. Seyedraoufi, S. Mirdamadi, Synthesis, microstructure and mechanical properties of porous MgZn scaffolds, J. Mech. Behav. Biomed. Mater. 21 (2013) 1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023.spa
dc.relation.references[135] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett. 64 (2010) 1871–1874. https://doi.org/10.1016/j.matlet.2010.06.015.spa
dc.relation.references[136] Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.-U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. Zadpoor, Additively manufactured biodegradable porous magnesium, Acta Biomater. 67 (2018) 378–392. https://doi.org/10.1016/j.actbio.2017.12.008.spa
dc.relation.references[137] M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64 (2010) 2572–2574. https://doi.org/10.1016/j.matlet.2010.08.049.spa
dc.relation.references[138] X.X. Wang, Z. Li, Y. Huang, K. Wang, X.X. Wang, F. Han, Processing of magnesium foams by weakly corrosive and highly flexible space holder materials, Mater. Des. 64 (2014) 324–329. https://doi.org/10.1016/j.matdes.2014.07.049.spa
dc.relation.references[139] S. Dutta, K. Bavya Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications, Adv. Powder Technol. 28 (2017) 3204–3212. https://doi.org/10.1016/J.APT.2017.09.024.spa
dc.relation.references[140] D. YANG, C. SEO, B.-Y. HUR, D. YANG, C. SEO, B.-Y. HUR, Mg Alloy Foam Fabrication via Melt Foaming Method, 材料科学与技术. 24 (2009) 302–304. https://www.jmst.org/CN/abstract/abstract8161.shtml (accessed October 27, 2020).spa
dc.relation.references[141] V.M. Posada, J.F. Ramirez, J.P. Allain, A.S. Shetty, P. Fernández-Morales, Synthesis and properties of Mg-based foams by infiltration casting without protective cover gas, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04566-7.spa
dc.relation.references[142] M. Ali, M. Elsherif, A.E. Salih, A. Ul-Hamid, M.A. Hussein, S. Park, A.K. Yetisen, H. Butt, Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances, J. Alloys Compd. 825 (2020) 154140. https://doi.org/10.1016/j.jallcom.2020.154140spa
dc.relation.references[143] N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloy. 6 (2018) 23–43. https://doi.org/10.1016/J.JMA.2018.02.003.spa
dc.relation.references[144] N. Sezer, Z. Evis, M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.09.014.spa
dc.relation.references[145] J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: A review, J. Mech. Behav. Biomed. Mater. 87 (2018) 68–79. https://doi.org/10.1016/J.JMBBM.2018.07.022.spa
dc.relation.references[146] R.B. Heimann, Magnesium alloys for biomedical application: Advanced corrosion control through surface coating, Surf. Coatings Technol. (2020) 126521. https://doi.org/10.1016/j.surfcoat.2020.126521.spa
dc.relation.references[147] S. Heise, S. Virtanen, A.R. Boccaccini, Tackling Mg alloy corrosion by natural polymer coatings-A review, J. Biomed. Mater. Res. Part A. 104 (2016) 2628–2641. https://doi.org/10.1002/jbm.a.35776.spa
dc.relation.references[148] V. Hernández-Montes, C.P. Betancur-Henao, J.F. Santa-Marín, Titanium dioxide coatings on magnesium alloys for biomaterials: A review, DYNA. 84 (2017) 261–270. https://doi.org/10.15446/dyna.v84n200.59664.spa
dc.relation.references[149] Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B. 2 (2014) 1912–1933. https://doi.org/10.1039/C3TB21746A.spa
dc.relation.references[150] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193. https://doi.org/10.1016/J.PMATSCI.2017.04.011.spa
dc.relation.references[151] F. Cao, G.-L. Song, A. Atrens, Corrosion and passivation of magnesium alloys, Corros. Sci. 111 (2016) 835–845. https://doi.org/10.1016/J.CORSCI.2016.05.041.spa
dc.relation.references[152] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials. (2016). https://doi.org/10.1016/j.biomaterials.2016.10.017.spa
dc.relation.references[153] N. Jasmawati, S. Fatihhi, A. Putra, A. Syahrom, M. Harun, A. Öchsner, M. Abdul Kadir, Mg-based porous metals as cancellous bone analogous material: A review, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231 (2017) 544–556. https://doi.org/10.1177/1464420715624449.spa
dc.relation.references[154] A. Vahidgolpayegani, C. Wen, P. Hodgson, Y. Li, Production methods and characterization of porous Mg and Mg alloys for biomedical applications, Met. Foam Bone. (2017) 25–82. https://doi.org/10.1016/B978-0-08-101289-5.00002-0.spa
dc.relation.references[155] Y. Liu, B. Rath, M. Tingart, J. Eschweiler, Role of implants surface modification in osseointegration: A systematic review, J. Biomed. Mater. Res. Part A. 108 (2020) 470–484. https://doi.org/10.1002/jbm.a.36829.spa
dc.relation.references[156] R. Walter, M.B. Kannan, Y. He, A. Sandham, Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy, Appl. Surf. Sci. 279 (2013) 343–348. https://doi.org/10.1016/j.apsusc.2013.04.096.spa
dc.relation.references[157] S. Virtanen, Biodegradable Mg and Mg alloys: Corrosion and biocompatibility, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1600–1608. https://doi.org/10.1016/j.mseb.2011.05.028.spa
dc.relation.references[158] X.-N. Gu, S.-S. Li, X.-M. Li, Y.-B. Fan, Magnesium based degradable biomaterials: A review, Front. Mater. Sci. 8 (2014) 200–218. https://doi.org/10.1007/s11706-014-0253-9.spa
dc.relation.references[159] F. Peng, D. Wang, D. Zhang, B. Yan, H. Cao, Y. Qiao, X. Liu, PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities, ACS Biomater. Sci. Eng. 4 (2018) 4112–4121. https://doi.org/10.1021/acsbiomaterials.8b01184.spa
dc.relation.references[160] Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452–1459. https://doi.org/10.1016/j.actbio.2010.12.004.spa
dc.relation.references[161] R. ZENG, J. ZHANG, W. HUANG, W. DIETZEL, K.U. KAINER, C. BLAWERT, W. KE, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous Met. Soc. China. 16 (2006) s763–s771. https://doi.org/10.1016/S1003-6326(06)60297-5.spa
dc.relation.references[162] J.E. Gray-Munro, M. Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31, J. Biomed. Mater. Res. Part A. 90A (2009) 339–350. https://doi.org/10.1002/jbm.a.32107.spa
dc.relation.references[163] Z. Wen, C. Wu, C. Dai, F. Yang, Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid, J. Alloys Compd. 488 (2009) 392–399. https://doi.org/10.1016/j.jallcom.2009.08.147.spa
dc.relation.references[164] D. Mei, S. V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review, Corros. Sci. 171 (2020) 108722. https://doi.org/10.1016/j.corsci.2020.108722.spa
dc.relation.references[165] W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo De Mele, Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater. 6 (2010) 1749–1755. https://doi.org/10.1016/j.actbio.2009.12.048.spa
dc.relation.references[166] C. Schille, M. Braun, H.P. Wendel, L. Scheideler, N. Hort, H.P. Reichel, E. Schweizer, J. Geis-Gerstorfer, Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1797–1801. https://doi.org/10.1016/j.mseb.2011.04.007.spa
dc.relation.references[167] A. Carangelo, A. Acquesta, T. Monetta, Durability of AZ31 magnesium biodegradable alloys polydopamine aided. Part 2: Ageing in Hank’s solution, J. Magnes. Alloy. 7 (2019) 218–226. https://doi.org/10.1016/J.JMA.2019.04.003.spa
dc.relation.references[168] V. Wagener, S. Virtanen, Protective layer formation on magnesium in cell culture medium, Mater. Sci. Eng. C. 63 (2016) 341–351. https://doi.org/10.1016/j.msec.2016.03.003.spa
dc.relation.references[169] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Mater. Lett. 132 (2014) 106–110. https://doi.org/10.1016/j.matlet.2014.06.036.spa
dc.relation.references[170] M.-H.H. Kang, H. Lee, T.-S.S. Jang, Y.-J.J. Seong, H.-E.E. Kim, Y.-H.H. Koh, J. Song, H.-D. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Biomater. 84 (2019) 453–467. https://doi.org/10.1016/j.actbio.2018.11.045.spa
dc.relation.references[171] X. Lu, Y. Leng, Theoretical analysis of calcium phosphate precipitation in simulated body fluid, Biomaterials. 26 (2005) 1097–1108. https://doi.org/10.1016/j.biomaterials.2004.05.034.spa
dc.relation.references[172] H. Zhuang, Y. Han, A. Feng, Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, Mater. Sci. Eng. C. 28 (2008) 1462–1466. https://doi.org/10.1016/j.msec.2008.04.001.spa
dc.relation.references[173] A.P. Md Saad, R.A. Abdul Rahim, M.N. Harun, H. Basri, J. Abdullah, M.R. Abdul Kadir, A. Syahrom, The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone, Mater. Des. 122 (2017) 268–279. https://doi.org/10.1016/j.matdes.2017.03.029.spa
dc.relation.references[174] Y. Li, H. Jahr, X.-Y. Zhang, M.A. Leeflang, W. Li, B. Pouran, F.D. Tichelaar, H. Weinans, J. Zhou, A.A. Zadpoor, Biodegradation-affected fatigue behavior of additively manufactured porous magnesium, Addit. Manuf. 28 (2019) 299–311. https://doi.org/10.1016/j.addma.2019.05.013.spa
dc.relation.references[175] W.C. Kim, K.H. Han, J.G. Kim, S.J. Yang, H.K. Seok, H.S. Han, Y.Y. Kim, Effect of surface area on corrosion properties of magnesium for biomaterials, Met. Mater. Int. 19 (2013) 1131–1137. https://doi.org/10.1007/s12540-013-5032-0.spa
dc.relation.references[176] A.P. Md Saad, N. Jasmawati, M.N. Harun, M.R. Abdul Kadir, H. Nur, H. Hermawan, A. Syahrom, Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone, Corros. Sci. 112 (2016) 495–506. https://doi.org/10.1016/j.corsci.2016.08.017.spa
dc.relation.references[177] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925–936. https://doi.org/10.1016/j.actbio.2011.11.014.spa
dc.relation.references[178] S. Singh, P. Vashisth, A. Shrivastav, N. Bhatnagar, Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application, J. Mech. Behav. Biomed. Mater. 94 (2019) 54–62. https://doi.org/10.1016/j.jmbbm.2019.02.010.spa
dc.relation.references[179] W. Yu, H. Zhao, Z. Ding, Z. Zhang, B. Sun, J. Shen, S. Chen, B. Zhang, K. Yang, M. Liu, D. Chen, Y. He, In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration, Colloids Surfaces B Biointerfaces. 149 (2017) 330–340. https://doi.org/10.1016/j.colsurfb.2016.10.037.spa
dc.relation.references[180] R.M. Twyman, ATOMIC EMISSION SPECTROMETRY | Principles and Instrumentation, in: Encycl. Anal. Sci., Elsevier, 2005: pp. 190–198. https://doi.org/10.1016/B0-12-369397-7/00029-7.spa
dc.relation.references[181] Z.S.S. Seyedraoufi, S. Mirdamadi, Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application, Mater. Chem. Phys. 148 (2014) 519–527. https://doi.org/10.1016/j.matchemphys.2014.06.067.spa
dc.relation.references[182] S. Toghyani, M. Khodaei, M. Razavi, Magnesium scaffolds with two novel biomimetic designs and MgF2 coating for bone tissue engineering, Surf. Coatings Technol. 395 (2020) 125929. https://doi.org/10.1016/j.surfcoat.2020.125929.spa
dc.relation.references[183] G. Jiang, G. He, A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications, Mater. Sci. Eng. C. 43 (2014) 317–320. https://doi.org/10.1016/j.msec.2014.07.033.spa
dc.relation.references[184] F.-W. Bach, D. Bormann, R. Kucharski, A. Meyer-Lindenberg, Magnesium sponges as a bioabsorbable material – attributes and challenges, Int. J. Mater. Res. 98 (2007) 609–612. https://doi.org/10.3139/146.101514.spa
dc.relation.references[185] S. Jiang, S. Cai, Y. Lin, X. Bao, R. Ling, D. Xie, J. Sun, J. Wei, G. Xu, Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys, J. Alloys Compd. 793 (2019) 202–211. https://doi.org/10.1016/J.JALLCOM.2019.04.198.spa
dc.relation.references[186] M. Diez, M.H. Kang, S.M. Kim, H.E. Kim, J. Song, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications, J. Mater. Sci. Mater. Med. 27 (2016) 1–9. https://doi.org/10.1007/s10856-015-5643-8.spa
dc.relation.references[187] M.-H. Kang, H.-D. Jung, S.-W. Kim, S.-M. Lee, H.-E. Kim, Y. Estrin, Y.-H. Koh, Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications, Mater. Lett. 108 (2013) 122–124. https://doi.org/10.1016/j.matlet.2013.06.096.spa
dc.relation.references[188] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnes. Alloy. 5 (2017) 74–132. https://doi.org/10.1016/j.jma.2017.02.004.spa
dc.relation.references[189] R. Chaharmahali, A. Fattah-alhosseini, K. Babaei, Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.07.004.spa
dc.relation.references[190] A. Kopp, T. Derra, M. Müther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kröger, Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds, Acta Biomater. 98 (2019) 23–35. https://doi.org/10.1016/j.actbio.2019.04.012.spa
dc.relation.references[191] T. Yuan, J. Yu, J. Cao, F. Gao, Y. Zhu, Y. Cheng, W. Cui, Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer, Materials (Basel). 9 (2016) 384. https://doi.org/10.3390/ma9050384.spa
dc.relation.references[192] P. Shi, B. Niu, S. E, Y. Chen, Q. Li, Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance, Surf. Coatings Technol. 262 (2015) 26–32. https://doi.org/10.1016/j.surfcoat.2014.11.069.spa
dc.relation.references[193] M. Yazdimamaghani, M. Razavi, D. Vashaee, V.R. Pothineni, S. Assefa, G.A. Köhler, J. Rajadas, L. Tayebi, In vitro analysis of Mg scaffolds coated with polymer/hydrogel/ceramic composite layers, Surf. Coatings Technol. 301 (2016) 126–132. https://doi.org/10.1016/j.surfcoat.2016.01.017.spa
dc.relation.references[194] V.M. Posada, A. Civantos, J. Ramírez, P. Fernández-Morales, J.P. Allain, Tailoring adaptive bioresorbable Mg-based scaffolds with directed plasma nanosynthesis for enhanced osseointegration and tunable resorption, Appl. Surf. Sci. 550 (2021) 149388. https://doi.org/10.1016/j.apsusc.2021.149388.spa
dc.relation.references[195] N. Angrisani, J. Reifenrath, F. Zimmermann, R. Eifler, A. Meyer-Lindenberg, K. Vano-Herrera, C. Vogt, Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model, Acta Biomater. 44 (2016) 355–365. https://doi.org/10.1016/J.ACTBIO.2016.08.002.spa
dc.relation.references[196] G. Song, A. Atrens, D. StJohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, Magnes. Technol. 2001. (2013) 254–262. https://doi.org/10.1002/9781118805497.ch44.spa
dc.relation.references[197] H. Saleh, T. Weling, J. Seidel, M. Schmidtchen, R. Kawalla, F.O.R.L. Mertens, H.-P. Vogt, An XPS Study of Native Oxide and Isothermal Oxidation Kinetics at 300 °C of AZ31 Twin Roll Cast Magnesium Alloy, Oxid. Met. 81 (2014) 529–548. https://doi.org/10.1007/s11085-013-9466-z.spa
dc.relation.references[198] G. Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Oxidation studies of Al alloys: Part II Al-Mg alloy, Corros. Sci. 155 (2019) 97–108. https://doi.org/10.1016/j.corsci.2019.04.018.spa
dc.relation.references[199] B. Wang, P. Huang, C. Ou, K. Li, B. Yan, W. Lu, In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications, Int. J. Mol. Sci. 14 (2013) 23614–23628. https://doi.org/10.3390/ijms141223614.spa
dc.relation.references[200] A. Gökhan Demir, V. Furlan, N. Lecis, B. Previtali, Laser surface structuring of AZ31 Mg alloy for controlled wettability, Biointerphases. 9 (2014) 029009. https://doi.org/10.1116/1.4868240.spa
dc.relation.references[201] Ri-Sheng Li, Influence of bombardment-induced Gibbsian segregation on alloy sputtering, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 82 (1993) 283–290. https://doi.org/10.1016/0168-583X(93)96030-G.spa
dc.relation.references[202] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 44 (2002) 2737–2756. https://doi.org/10.1016/S0010-938X(02)00075-6.spa
dc.relation.references[203] B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, C. Dong, High current pulsed electron beam treatment of AZ31 Mg alloy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 23 (2005) 1548–1553. https://doi.org/10.1116/1.2049299.spa
dc.relation.references[204] G. Bo, H. Yi, Z. Wenfeng, T. Ganfeng, Surface Modification of Mg Alloys AZ31 and ZK60-1Y by High Current Pulsed Electron Beam, Spec. Issues Magnes. Alloy. (2011). https://doi.org/10.5772/16808.spa
dc.relation.references[205] G.T. Bo Gao a, Shengzhi Hao, Jianxin Zou, Wenyuan Wu, C.D. B, Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy, Surf. Coatings Technol. 201 (2007) 6297–6303. https://doi.org/10.1016/J.SURFCOAT.2006.11.036.spa
dc.relation.references[206] X. Zhang, K. Zhang, J. Zou, P. Yan, L. Song, Y. Liu, Surface microstructure modifications and in-vitro corrosion resistance improvement of a WE43 Mg alloy treated by pulsed electron beams, Vacuum. 173 (2020) 109132. https://doi.org/10.1016/j.vacuum.2019.109132.spa
dc.relation.references[207] S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys, Appl. Surf. Sci. 255 (2009) 4102–4108. https://doi.org/10.1016/J.APSUSC.2008.10.095.spa
dc.relation.references[208] W.J.E.M. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A.J.M. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013) 1507. https://doi.org/10.1038/ncomms2490.spa
dc.relation.references[209] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013) 104–111. https://doi.org/10.1016/J.CORSCI.2013.01.017.spa
dc.relation.references[210] F. Barrere, C.. van Blitterswijk, K. de Groot, P. Layrolle, Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium, Biomaterials. 23 (2002) 2211–2220. https://doi.org/10.1016/S0142-9612(01)00354-4.spa
dc.relation.references[211] M. Tomozawa, S. Hiromoto, Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium, Appl. Surf. Sci. 257 (2011) 8253–8257. https://doi.org/10.1016/j.apsusc.2011.04.087.spa
dc.relation.references[212] S. Feliu, I. Llorente, Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability, Appl. Surf. Sci. 347 (2015) 736–746. https://doi.org/10.1016/J.APSUSC.2015.04.189.spa
dc.relation.references[213] Y.F. Zhang, B. Hinton, G. Wallace, X. Liu, M. Forsyth, On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments, Corros. Eng. Sci. Technol. 47 (2012) 374–382. https://doi.org/10.1179/1743278212Y.0000000032.spa
dc.relation.references[214] T.L. Nguyen, A. Blanquet, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, On the role of surface roughness in the corrosion of pure magnesium in vitro, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 (2012) 1310–1318. https://doi.org/10.1002/jbm.b.32697.spa
dc.relation.references[215] R.B. Alvarez, H.J. Martin, M.F. Horstemeyer, M.Q. Chandler, N. Williams, P.T. Wang, A. Ruiz, Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy, Corros. Sci. 52 (2010) 1635–1648. https://doi.org/10.1016/j.corsci.2010.01.018.spa
dc.relation.references[216] A.F. Cipriano, A. Sallee, R.-G.G. Guan, Z.-Y.Y. Zhao, M. Tayoba, J. Sanchez, H. Liu, Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture, Acta Biomater. 12 (2015) 298–321. https://doi.org/10.1016/j.actbio.2014.10.018.spa
dc.relation.references[217] J. Fischer, M.H. Prosenc, M. Wolff, N. Hort, R. Willumeit, F. Feyerabend, Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays☆, Acta Biomater. 6 (2010) 1813–1823. https://doi.org/10.1016/j.actbio.2009.10.020.spa
dc.relation.references[218] A. Burmester, R. Willumeit-Römer, F. Feyerabend, R. Willumeit‐Römer, F. Feyerabend, Behavior of bone cells in contact with magnesium implant material, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 165–179. https://doi.org/10.1002/jbm.b.33542.spa
dc.relation.references[219] R. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Des. 32 (2011) 4548–4552. https://doi.org/10.1016/J.MATDES.2011.04.031.spa
dc.relation.references[220] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 830–834. https://doi.org/10.1016/j.mseb.2011.04.008.spa
dc.relation.references[221] D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P.N. Kumta, In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials, Acta Biomater. 9 (2013) 8518–8533. https://doi.org/10.1016/j.actbio.2013.06.025.spa
dc.relation.references[222] R. Willumeit, A. Möhring, F. Feyerabend, Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions, Int. J. Mol. Sci. 15 (2014) 7639–7650. https://doi.org/10.3390/ijms15057639.spa
dc.relation.references[223] E. Ferna  Ndez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications Part II: Precipitate formation during setting reactions, J. Mater. Sci. Mater. Med. 10 (1999) 177–183. https://doi.org/10.1023/A:1008989525461.spa
dc.relation.references[224] M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, M.M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys—A Review Paper, Materials (Basel). 11 (2018) 2561. https://doi.org/10.3390/ma11122561.spa
dc.relation.references[225] X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, P.K. Chu, Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion, Sci. Rep. 5 (2015) 17399. https://doi.org/10.1038/srep17399.spa
dc.relation.references[226] K. DAS, S. BOSE, A. BANDYOPADHYAY, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater. 3 (2007) 573–585. https://doi.org/10.1016/j.actbio.2006.12.003.spa
dc.relation.references[227] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corros. Sci. 50 (2008) 823–834. https://doi.org/10.1016/j.corsci.2007.11.005.spa
dc.relation.references[228] B. Carlson, J. Jones, The Metallurgical Aspects of the Corrosion Behaviour of Cast Mg--Al Alloys, Light Met. Process. Appl. (1993) 833–847.spa
dc.relation.references[229] Y. Lu, P. Wan, B. Zhang, L. Tan, K. Yang, J. Lin, Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures, Mater. Sci. Eng. C. 43 (2014) 264–271. https://doi.org/10.1016/j.msec.2014.06.039.spa
dc.relation.references[230] S.-H. Kwon, T.-J. Lee, J. Park, J.-E. Hwang, M. Jin, H.-K. Jang, N.S. Hwang, B.-S. Kim, Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices, Tissue Eng. Part A. 19 (2013) 49–58. https://doi.org/10.1089/ten.TEA.2012.0245.spa
dc.relation.references[231] F. Geng, L.L. Tan, X.X. Jin, J.Y. Yang, K. Yang, The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium, J. Mater. Sci. Mater. Med. 20 (2009) 1149–1157. https://doi.org/10.1007/s10856-008-3669-x.spa
dc.relation.references[232] R. Harrison, D. Maradze, S. Lyons, Y. Zheng, Y. Liu, Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment, Prog. Nat. Sci. Mater. Int. 24 (2014) 539–546. https://doi.org/10.1016/J.PNSC.2014.08.010.spa
dc.relation.references[233] N.A. Agha, R. Willumeit-Römer, D. Laipple, B. Luthringer, F. Feyerabend, The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells, PLoS One. 11 (2016) e0157874. https://doi.org/10.1371/journal.pone.0157874.spa
dc.relation.references[234] A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mater. Sci. Eng. C. 29 (2009) 1559–1568. https://doi.org/10.1016/j.msec.2008.12.015.spa
dc.relation.references[235] F. Seuss, S. Seuss, M.C. Turhan, B. Fabry, S. Virtanen, Corrosion of Mg alloy AZ91D in the presence of living cells, J. Biomed. Mater. Res. - Part B Appl. Biomater. 99B (2011) 276–281. https://doi.org/10.1002/jbm.b.31896.spa
dc.relation.references[236] S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation, Acta Biomater. 10 (2014) 2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002.spa
dc.relation.references[237] R.W. Li, N.T. Kirkland, J. Truong, J. Wang, P.N. Smith, N. Birbilis, D.R. Nisbet, The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells, J. Biomed. Mater. Res. Part A. 102 (2014) n/a-n/a. https://doi.org/10.1002/jbm.a.35111.spa
dc.relation.references[238] W. Huang, B. Carlsen, G. Rudkin, M. Berry, K. Ishida, D.T. Yamaguchi, T.A. Miller, Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells, Bone. 34 (2004) 799–808. https://doi.org/10.1016/j.bone.2003.11.027.spa
dc.relation.references[239] J.-A. Kim, J. Lim, R. Naren, H. Yun, E.K. Park, Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo, Acta Biomater. 44 (2016) 155–167. https://doi.org/10.1016/j.actbio.2016.08.039.spa
dc.relation.references[240] M. Bessa-Gonçalves, A.M. Silva, J.P. Brás, H. Helmholz, B.J.C. Luthringer-Feyerabend, R. Willumeit-Römer, M.A. Barbosa, S.G. Santos, Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells, Acta Biomater. 114 (2020) 471–484. https://doi.org/10.1016/j.actbio.2020.07.028.spa
dc.relation.references[241] F. Alvarez, R.M. Lozano Puerto, B. Pérez-Maceda, C.A. Grillo, M. Fernández Lorenzo de Mele, Time-Lapse Evaluation of Interactions Between Biodegradable Mg Particles and Cells, Microsc. Microanal. 22 (2016) 1–12. https://doi.org/10.1017/S1431927615015597.spa
dc.relation.references[242] A. Mantovani, S.K. Biswas, M.R. Galdiero, A. Sica, M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J. Pathol. 229 (2013) 176–185. https://doi.org/10.1002/path.4133.spa
dc.relation.references[243] G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF- promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells, Proc. Natl. Acad. Sci. 108 (2011) 1585–1590. https://doi.org/10.1073/pnas.1018501108.spa
dc.relation.references[244] W.L. Chan, E. Chason, Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering, J. Appl. Phys. 101 (2007) 121301. https://doi.org/10.1063/1.2749198.spa
dc.relation.references[245] O.D. Acevedo Rueda, Desarrollo de un metal celular ordenado con recubrimiento continuo como alternativa aplicable a elementos de fijación ósea, Universidad Nacional de Colombia , 2019. http://bdigital.unal.edu.co/75011/ (accessed October 5, 2020).spa
dc.relation.references[246] M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F.P. Cordelières, R.P. Dougherty, J.S. Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ, Bone. 47 (2010) 1076–1079. https://doi.org/10.1016/J.BONE.2010.08.023.spa
dc.relation.references[247] C. Colosi, M. Costantini, A. Barbetta, R. Pecci, R. Bedini, M. Dentini, Morphological Comparison of PVA Scaffolds Obtained by Gas Foaming and Microfluidic Foaming Techniques, Langmuir. 29 (2013) 82–91. https://doi.org/10.1021/la303788z.spa
dc.relation.references[248] L. Wu, F. Pan, M. Yang, R. Cheng, An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents, J. Mater. Sci. 48 (2013) 5456–5469. https://doi.org/10.1007/s10853-013-7339-0.spa
dc.relation.references[249] J. Tao, Y. Zhang, F. Fan, Q. Chen, Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Casting-solid Extrusion Forging During Partial Remelting, Def. Technol. 9 (2013) 146–152. https://doi.org/10.1016/j.dt.2013.09.013.spa
dc.relation.references[250] L. Bourgeois, B.C. Muddle, J.F. Nie, The crystal structure of the equilibrium Φ phase in Mg-Zn-Al casting alloys, Acta Mater. 49 (2001) 2701–2711. https://doi.org/10.1016/S1359-6454(01)00162-8.spa
dc.relation.references[251] Michael Ashby, Tony Evans, NA Fleck, J.W. Hutchinson, H.N.G. Wadley, L. J. Gibson, Properties of metal foams, in: Met. Foam. A Des. Guid., Elsevier, 2000: pp. 42–48.spa
dc.relation.references[252] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid, Acta Biomater. 6 (2010) 4605–4613. https://doi.org/10.1016/j.actbio.2010.07.026.spa
dc.relation.references[253] C. Miura, Y. Shimizu, Y. Imai, T. Mukai, A. Yamamoto, Y. Sano, N. Ikeo, S. Isozaki, T. Takahashi, M. Oikawa, H. Kumamoto, M. Tachi, In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats, Biomed. Mater. 11 (2016) 025001. https://doi.org/10.1088/1748-6041/11/2/025001.spa
dc.relation.references[254] Y. Jang, B. Collins, J. Sankar, Y. Yun, Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion, Acta Biomater. 9 (2013) 8761–8770. https://doi.org/10.1016/j.actbio.2013.03.026.spa
dc.relation.references[255] F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: Brushite and monetite, Acta Biomater. 8 (2012) 474–487. https://doi.org/10.1016/j.actbio.2011.08.005.spa
dc.relation.references[256] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci. 12 (2008) 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.spa
dc.relation.references[257] F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037.spa
dc.relation.references[258] D. Zhao, T. Wang, W. Hoagland, D. Benson, Z. Dong, S. Chen, D.-T. Chou, D. Hong, J. Wu, P.N. Kumta, W.R. Heineman, Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo, Acta Biomater. 45 (2016) 399–409. https://doi.org/10.1016/J.ACTBIO.2016.08.049.spa
dc.relation.references[259] N.I. Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, A. Atrens, The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91, Corros. Sci. 75 (2013) 354–366. https://doi.org/10.1016/J.CORSCI.2013.06.019.spa
dc.relation.references[260] J. Wang, L. Cui, Y. Ren, Y. Zou, J. Ma, C. Wang, Z. Zheng, X. Chen, R. Zeng, Y. Zheng, In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31, J. Mater. Sci. Technol. 47 (2020) 52–67. https://doi.org/10.1016/j.jmst.2020.02.006.spa
dc.relation.references[261] I. Heinonen, J. Kemppainen, K. Kaskinoro, H. Langberg, J. Knuuti, R. Boushel, M. Kjaer, K.K. Kalliokoski, Bone blood flow and metabolism in humans: Effect of muscular exercise and other physiological perturbations, J. Bone Miner. Res. 28 (2013) 1068–1074. https://doi.org/10.1002/jbmr.1833.spa
dc.relation.references[262] J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, G.J. Dias, Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B (2012) 1134–1141. https://doi.org/10.1002/jbm.b.32680.spa
dc.relation.references[263] S.E. Harandi, P.C. Banerjee, C.D. Easton, R.K. Singh Raman, Influence of bovine serum albumin in Hanks’ solution on the corrosion and stress corrosion cracking of a magnesium alloy, Mater. Sci. Eng. C. 80 (2017) 335–345. https://doi.org/10.1016/j.msec.2017.06.002.spa
dc.relation.references[264] M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants, Coatings. 9 (2019) 282. https://doi.org/10.3390/coatings9050282.spa
dc.relation.references[265] H. Wu, C. Zhang, T. Lou, B. Chen, R. Yi, W. Wang, R. Zhang, M. Zuo, H. Xu, P. Han, S. Zhang, J. Ni, X. Zhang, Crevice corrosion – A newly observed mechanism of degradation in biomedical magnesium, Acta Biomater. 98 (2019) 152–159. https://doi.org/10.1016/j.actbio.2019.06.013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembMagnesio
dc.subject.lembMateriales biomédicos
dc.subject.proposalMagnesiumeng
dc.subject.proposalcontrolled degradationeng
dc.subject.proposalbiodegradable implanteng
dc.subject.proposalporous magnesiumeng
dc.subject.proposalion-enhanced Gibbsian segregationeng
dc.subject.proposalDirected plasma nanosynthesiseng
dc.subject.proposalnanostructured surfaceeng
dc.subject.proposalimplante biodegradablespa
dc.subject.proposalmagnesio porosospa
dc.subject.proposalsuperficie nanostructuradaspa
dc.subject.proposalnanostructured surfaceeng
dc.titleMagnesium-based bioresorbable cellular metal as bone substituteeng
dc.title.translatedMetal celular bioabsorbible a base de magnesio como sustituto óseospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1038407092.2021.pdf
Tamaño:
11.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería – Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: