En 5 día(s), 16 hora(s) y 9 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Efectos de la cirugía de estimulación cerebral profunda, sobre el aprendizaje motor en la Enfermedad de Parkinson

dc.contributor.advisorFernández Escobar, Williamspa
dc.contributor.authorGómez Hernández, Sandra Yanethspa
dc.contributor.researchgroupGRUPO DE NEUROCIENCIAS-UNIVERSIDAD NACIONAL DE COLOMBIAspa
dc.date.accessioned2020-02-24T15:02:42Zspa
dc.date.available2020-02-24T15:02:42Zspa
dc.date.issued2019spa
dc.description.abstractParkinson's disease (PD) is a neurodegenerative condition that is mainly characterized by a diverse range of motor impairments. One of its therapeutic alternatives is Deep Brain Stimulation (DBS), which has proved to be an effective treatment of symptomatology in PD. However, it has not been clarified if the decrease in movement impairments are only related to improving the ability to control movement or also facilitates motor learning. Objective: To describe changes in motor learning during the performance of three motor tasks, in patients with PD with DBS, versus patients with PD who have not undergone surgery and a potentially healthy control group. Methodology: A convenience sample is made with 7 people with PD and DBS (Group 1), 7 with PD without DBS but with motor fluctuations (Group 2) and 7 potentially healthy people (Group 3), who participated in a 2-week motor learning program for 8 days, using the Finger-Nose, Whipple and Balance Tests. Results: Group 1 shows a learning pattern different from Groups 2 and 3, with less improvement in the performance of the three tests, but only with statistically significant differences in the Whipple and Balance tests. However, this last test does not present conclusive data Conclusions: In the studied population it is observed that DBS modifies the way people with PD learn different motor tasks.spa
dc.description.abstractLa Enfermedad de Parkinson (EP), es una condición neurodegenerativa que se caracteriza principalmente por una diversa gama alteraciones motoras. Una de sus alternativas terapéuticas es la Estimulación Cerebral Profunda (DBS por sus siglas en inglés), que ha mostrado ser un tratamiento eficaz de la sintomatología en la EP, sin embargo, no se ha esclarecido, si la disminución en las alteraciones de movimiento solo están relacionadas con mejorar la capacidad de controlar el movimiento o también facilita el aprendizaje motor. Objetivo: Describir los cambios del aprendizaje motor durante la realización de tres tareas motoras, en pacientes con EP con DBS, versus pacientes con EP que no han sido intervenidos quirúrgicamente y un grupo control de personal potencialmente sanas. Metodología: Se realiza una muestra a conveniencia con 7 personas con EP y DBS (Grupo 1), 7 con EP sin DBS pero con fluctuaciones motoras (Grupo 2) y 7 personas potencialmente sanas (Grupo 3), los cuales participaron en un programa de aprendizaje motor de 2 semanas durante 8 días, usando los Test de Dedo-Nariz, Whipple y Equilibrio. Resultados: El Grupo 1 muestra un patrón de aprendizaje distinto a los Grupos 2 y 3, con menor mejoría en el desempeño de las tres pruebas, pero solo con diferencias estadísticamente significativas en las pruebas Whipple y de Equilibrio, no obstante este último test no presenta datos concluyentes. Conclusiones: En la población estudiada se observa que la DBS modifica la forma en que las personas con EP aprenden diferentes tareas motoras.spa
dc.description.additionalMagíster en Neurociencias. Línea de investigación: Comportamiento Humanospa
dc.description.degreelevelMaestríaspa
dc.format.extent104spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75690
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.references1. Atsushi Umemura, Jurg L. Jaggi, Howard I. Hurtig, Andrew D. Siderowf, AmyColcher, Matthew B. Stern, and Gordon H. Baltuch, (2003). Deep brain stimulation for move- ment disorders: morbidity and mortality in 109 patients. Journal of Neurosurgery, 98(4), 779-784. 2. A. Stefani, V. Trendafilov, C. Liguori, E. Fedele, S. Galati. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson’s disease: Focus on neurochemistry. Progress in Neurobiology. 2017. 151(157-174). 3. Avi Karni, Gundela Meyer, Christine Rey-Hipolito, Peter Jezzard, Michelle M. Adams, Robert Turner, and Leslie G. Ungerleider. The acquisition of skilled motor perfor- mance: Fast and slow experience-driven changes in primary motorcortex. PNAS, 95, 861868. 4. Beigi, M., Wilkinson, L., Gobet, F., Parton, A., & Jahanshahi, M. (2016). Levodopa medication improves incidental sequence learning in Parkinson's disease. Neuropsychologia, 93, 09 -19 5. Benjamin C.L. Lai, Joseph K.C. Tsui, (2001). Epidemiology of Parkinson’s Disease. BC Medical Journal, 43(3), 133-137. 6. Chandler E. Gill, Laura A. Allen, Peter E. Konrad, Thomas L. Davis, Mark J. Bliton, Stuart G. Finder, Michael g. Tramontana, C. Chirs Kao, Michael S. Remple, Courtney H. Bradenham, P. Charles, (2011). Neuromodulation. 14, 515-522. 7. Cristina Tassorelli, Simona Buscone, Giorgio Sandrini, Claudio Paccheti, Anna Furnari, Roberta Zangaglia, Michelagelo Bartolo, Giuseppe Nappi, Emilia Martignoni, (2009). The role of rehabilitation in deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: A pilot study. Parkinsonism and Related Disorders, 15, 675-681. 8. Dag Aarsland, Martin Wilhelm Kurz, (2010). The epidemiology of dementia associ- ated with Parkinson Disease. Journal of the Neurological Sciences, 289(1-2), 18-22. 9. Danealt JF, et al.,(2015). Physical activity in advanced Parkinson’s disease: impact of subthalamic deep brain stimulation. Journal of Parkinson’s Disease, 5(1):85-93. 10. Dong-Churl Suh, Rajesh Pahwa, Usha Mallya, (2012). Treatment patterns and as- sociated costs with Parkinson’s disease levodopa induced dyskinesia. Journal of the Neurological Sciences, 319, 24-31. 11. E.D. Anderson, F.B. Horak, M.R. Lasarev, and J. G. Nutt, (2014). Performance of a motor task learned ON levodopa deteriorates when subsequently practiced OFF. Movement Disorders, 29(1), 54-60. 12. Moro E., Et. al, (2010). Long-Term Results of a Multicenter Study on Subthalamic and Pallidal Stimulation in Parkinsons Disease. Movement Disorders, 25 (5), 578-586. 13. Elise D. Anderson, Fay B. Horak, Michael R. Lasarev, and John G. Nutt, (2014). Performance of a Motor Task Learned on Levodopa Deteriorates When Subsequently Practiced off. Movement Disorders, 2014, 29(1): 54-60. 14. Francesca Magrinelli, Alessandro Picelli, Pierluigi Tocco, Angela Federico, Laura Roncari, Nicola Smania, Giampietro Zanette, and Stefano Tamburin (2016). Pathophysiology of Motor Dysfunction in Parkinson’s Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinsons Disease. 2016, 9832839, 18 15. Genko Oyama, Kelly D. Foote, Charles E. Jacobson IV, Frances Velez-Lago, Criscely Go, Natlada Limotai, Pamela R. Zeilman, Janet Romrell, Samuel S. Wu, Dan Neal y Michael S. Okun, (2012). GPi and STN deep brain stimulation can suppress dysk- inesia in Parkinson’s disease. Parkinsonims and Related Disorders. 18, 814-818. 16. Gustavo Pradilla A., Boris E. Vesga A., Fidias E. Le´on-Sarmiento y grupo GENECO, (2003). Revista Panamericana de Salud Pu´blica. 14(2), 104-111. 17. Grimbergen YA, Munneke M, Bloem BR. Falls in Parkinson’s disease, (2009). Mov Disord,405-415. 18. Hoon-Ki Min , et.al (2012). Deep brain stimulation induces BOLD activation in motor and non-motor networks: An fMRI comparison study of STN and EN/GPi DBS in large animals. NeuroImage, 63, 14081420. 19. Horiba Mitsuya, et.al.,(2019). Impaired Motor Skill Acquisition Using Mirror Visual Feedback Improved by Transcranial Direct Current Stimulation (tDCS) in Patients With Parkinson’s Disease. Neuroscience.13.602. 20. Jean-Franois Daneault, Abbas F. Sadikot, S´ebastien Barbat-Atigas, Mylne Aubertin- Leheudre, Nicolas Jodoin, Michel Panisset and Christian Duval, (2015). Journal of Parkinsons Disease, 5(1), 85-93. 21. Jessop R.T., Horowicz C. y Dibble L. E. (2006). Motor learning and Parkinson disease: Refinement of movement velocity and endpoint excursion in a limits of stability balance task. Neurorehabil Neural Repair. 20(4):459-67. 22. Jörn Diedrichsen and Katja Kornysheva.(2015) Motor skill learning between selection and execution. Europe PMC Funders Group. 227–233 23. Karin Foerde y Daphna Shohamy, (2011). The role of the basal ganglia in learning and memory: Insight from Parkinson’s disease. Neurobiology of Learning and Memory. 96, 624636. 24. Landers MR, Hatlevig RM, Davis AD, Richards AR, Rosenlof LE.(2015) Does attentional focus during balance training in people with Parkinson’s disease affect outcome? A randomised controlled clinical trial. Clin Rehab. 30:53–63. 25. Lisa M. Muratori, Eric M. Lamberg, Lori Quinn and Susan V. Duff, (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26(2), 94103. 26. Li Qian et al, (2012). Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex. Neuron. 76, 10301041 27. Lorraine V Kalia and Anthony E. Lang, (2015). Parkinson’s Disease. The Lancet. Volumen 386, ISSUE 9996, P896-912, 28. Maren Carbon, David Eidelberg. Functional imaging of sequence learning in Parkin- son’s disease, (2006). Journal of the Neurological Sciences, 248: 72 77. 29. Mariana Moschovich, Alexandre Novicki Francisco, Erich Talamoni Fonoff, Manoel Jacobsen and Helio A.G. Teive, (2014). Freezing of Gait 3 Years After Bilateral Globus Pallidus Internus Deep Brain Stimulation In Generalized Dystonia. Movement Disorders, Case Report, 263-264. 30. Marinelli L., Quartarone A., Hallett M., Frazzitta G., Ghilardi M. F., (2017).The many facets of motor learning and their relevance for Parkinson’s disease. Clinical Neurophysiology. 1127–1141 31. M. C. Rodriguez-Oroz, J. A. Obeso, A. E. Lang, J.-L. Houeto, P. Pollak, S. Rehn- crona, J. Kulisevsky, A. Albanese, J. Volkmann, M. I. Hariz, N. P. Quinn, J. D. 32. Meg E Morris, (2000). Movement Disorders in People With Parkinson Disease: A Model for Physical Therapy. Journal of the American Physical therapy Association, 80(6), 578-597. 33. Felice Ghilardi, Andrew S. Feigin, Fortunato Battaglia, Giulia Silvestria, Paul Mattis, David Eidelberg, Alessandro Di Rocco, (2007). L-Dopa infusion does not improve explicit sequence learning in Parkinson’s disease. Parkinsonism and Related Disorders, 13, 146151. 34. M. Jahanshahi, C. M. A. Ardouin, R. G. Brown, J. C. Rothwell, J. Obeso, A. Albanese, M. C. Rodriguez-Oroz, E. Moro, A. L. Benabid, P. Pollak and P. Limousin-Dowsey, (2000). The impact of deep brain stimulation on executive function in parkinson’s disease. Brain, 123, 1142-1154. 35. Meissner S.N., Krausea V., Südmeyerb V., Hartmanna C.J., Pollok B., (2018). The significance of brain oscillations in motor sequence learning: Insights from Parkinson's disease. NeuroImage: Clinical, 448-457. 36. Monika Potter-Nerger y Jens Volkmann, (2013). Deep Brain Stimulation for Gait and Postural Symptoms in Parkinson’s Disease. Movement Disorders, 28(11): 1609-1615. 37. Morten L. Kringelbach, Ned Jenkinson, Sarah L.F. Owen and Tipu Z. Aziz, (2007). Translational principles of deep brain stimulation. Nature Reviews Neuroscience, 623- 635. 38. Nolan R. Williams, Kelly D. Foote and Michael S. Okun, (2014). Subthalamic Nucleus Versus Globus Pallidus Internus Deep Brain Stimulation: Translating the Rematch Into Clinical Practice. Movement Disorders, 24-35. 39. Nutt, J. G., Lea, E. S., Van Houten, L., Schuff, R. A. and Sexton, G. J. (2000), Determinants of tapping speed in normal control subjects and subjects with Parkinson's disease: Differing effects of brief and continued practice. Mov. Disord., 15: 843-849. 40. Olson, M., Lockhart, T. E., & Lieberman, A. (2019). Motor Learning Deficits in Parkinson's Disease (PD) and Their Effect on Training Response in Gait and Balance: A Narrative Review. Frontiers in neurology, 10, 62. doi:10.3389/fneur.2019.00062 41. Parkinson’s Disease Foundation, (2015). Statistics on Parkinson’s. Recuperado de http://www.pdf.org/en/parkinson statistics 42. Per Svenningsson, Eric Westman, Clive Ballard y Dag Aarsland. (2012). Cognitive impairment in patients with Parkinson’s disease: Diagnosis, biomarkers, and treat- ment, Lancet Neurology, 11, 697-707. 43. Peter Redgrave, et al,. (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nature Reviews Neuroscience, 11(11), 760772. 44. Philippe Huot, Tom H. Johnston, James B. Koprich, Susan H. Fox, and Jonathan M. Brotchie, (2013). The Pharmacology of L-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmac. 65 (1) 171-222. 45. Pompeu J.E., et.al, (2012). Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 98(3):196-204 46. Rocco Agostino, Jerome N. Sanes and Mark Hallett, (1996). Motor skill learning in Parkinson's disease. Neurological Sciences. 139 (218-226). 47. Rueda D. Laura, et. al.,(2019). Age-related differences in neural spectral power during motor learning. Neurobiology of Aging.77 (44-57) 48. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain.130:1596–1607. 49. Tao Wu, Mark Hallett, Piu Chan, (2015). Motor automaticity in Parkinson's disease. Neurobiology of Disease. 82, 226-234. 50. Tucker H.R., et.al, (2017). Deep brain stimulation of the ventroanterior and ventrolateral thalamus improves motor function in a rat model of Parkinson's disease. Experimental Neurology.317 (155-167)spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMedicina y saludspa
dc.subject.proposalEnfermedad de Parkinsonspa
dc.subject.proposalParkinson's diseaseeng
dc.subject.proposalCirugía de Estimulación cerebral profundaspa
dc.subject.proposalDeep brain stimulation surgeryeng
dc.subject.proposalAprendizaje motorspa
dc.subject.proposalMotor learningeng
dc.titleEfectos de la cirugía de estimulación cerebral profunda, sobre el aprendizaje motor en la Enfermedad de Parkinsonspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053584789.2020.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: