Papel de la proteína quinasa C (PKC) en el crecimiento de células de leucemia linfoide aguda tipo B, en el soporte que les proporcionan las células stem mesenquimales y en su funcionalidad en un modelo in vitro de nicho leucémico

dc.contributor.advisorVernot, Jean-Paul
dc.contributor.authorVanegas Avendaño, Natalia-Del Pilar
dc.contributor.researchgroupFisiología Celular y Molecularspa
dc.date.accessioned2021-09-24T22:20:14Z
dc.date.available2021-09-24T22:20:14Z
dc.date.issued2021
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractEl microambiente de la médula ósea (MO) impacta de manera importante la progresión de la leucemia, favoreciendo la supervivencia y la resistencia a la muerte celular. Las mesenchymal stem cells (MSC) constituyen una población celular importante del nicho hematopoyético de la MO, sin embargo, su funcionalidad se ve afectada de manera importante por el estrés celular inducido por el crecimiento de las células leucémicas, con consecuencias desfavorables para las células stem hematopoyéticas en favor de las células leucémicas. Se ha demostrado un papel de la proteína quinasa C (PKC) estromal en el soporte, supervivencia y proliferación de varios tipos de leucemia. Las alteraciones de las MSC en la leucemia linfoblástica aguda de células B (LLA-B) solo han sido estudiadas parcialmente. En este trabajo, se mostró que la inhibición específica de la PKC con un péptido quimérico HKPS induce una reducción de la viabilidad, entre un 45 y 60%, de las células leucémicas de pacientes con LLA-B. También, se estudiaron las modificaciones de las MSC en un nicho leucémico in vitro, y en MSC aisladas de pacientes con LLA-B. Las MSC mostraron características de un proceso senescente con pérdida de su morfología fibroblastoide con células aplanadas con aumento de su área citoplasmática, un aumento en la actividad β-galactosidasa asociada a senescencia (SA-βGAL) y en la transcripción de los genes p53 y p21, también la detención del ciclo celular, una reducida clonogenicidad y la generación transitoria de especies reactivas de oxígeno (ROS) citosólico y mitocondrial, siendo las células leucémicas las reguladoras positivas para la inducción de este proceso. En particular, una disfunción moderada en las propiedades stemness, con una proliferación reducida, una pérdida de la capacidad de diferenciación osteoblástica y un aumento de la diferenciación adipogénica y, con un aumento en su capacidad de autorrenovación. Características reportadas en MSC senescentes que, se asocian con la inflamación y, la activación de la vía NF-B encontrada en el modelo in vitro. En este modelo se encontró que, el retiro de las células leucémicas del co-cultivo y el cultivo extendido de las MSC senescentes con un estímulo proliferante (SFB) induce el re-ingreso al ciclo celular y una disminución de la SA-βGAL, sugiriendo una reversión del fenotipo senescente con la reaparición parcial de las propiedades de stem. Además, solo una pequeña población de MSC acumuló daño al DNA por la fosforilación de H2AX que además se redujo a niveles basales después del cultivo. También se encontró un perfil claro de citoquinas y quimioquinas pro-inflamatorias (CCL2, IL-8, IL-6), característico de un fenotipo secretor asociado a la senescencia (SASP) en el NL, que fundamenta las acciones de las MSC en el microambiente leucémico a través de mecanismos paracrinos y el cual fue mediado por la actividad de la PKC. En conclusión, la afectación que sufren las MSC requiere de la presencia permanente de células leucémicas, y cuando se retira el estrés leucémico, las MSC retoman prácticamente a su funcionamiento normal. Estos hallazgos son de gran relevancia en la progresión de la enfermedad y en el tratamiento.(Texto tomado de la fuente)spa
dc.description.abstractThe bone marrow (BM) microenvironment influences dramatically leukemia progression by favoring survival and resistance to cell death. Mesenchymal stem cells (MSC) constitute an important cell population of the BM hematopoietic niche; however, most of their functions are significantly affected by cellular stress imposed by leukemic cell growth, with unfavorable consequences for hematopoietic stem cells in favor of leukemic cells. A role of stromal protein kinase C (PKC) in the support, survival and proliferation of various types of leukemia has been demonstrated. MSC alterations in B-cell acute lymphoblastic leukemia (B-ALL) have only been partially studied. In this work, we showed that specific inhibition of PKC with a chimeric HKPS peptide induces a 45-60% reduction in viability of leukemic cells from B-ALL patients. Also, MSC modifications were studied in a leukemic niche (LN) in vitro, and in MSC isolated from B-ALL patients. MSC showed features of a senescent process with loss of their fibroblastoid morphology with flattened cells with increased cytoplasmic area and increase in senescence-associated β-galactosidase (SA-βGAL) activity and in the expression of p53 and p21 genes, cell cycle arrest, reduced clonogenicity and transient generation of intracellular and mitochondrial reactive oxygen species (ROS), with leukemic cells being the inducers and regulators of this process. A moderate dysfunction in stemness properties, with reduced proliferation, loss of osteoblastic differentiation capacity, increased adipogenic differentiation and an increase in their self-renewal capacity were also found. In the in vitro model, it was found that, removal of leukemic cells followed by further culture with a proliferating stimulus induced re-entry into the cell cycle and a decrease in SA-βGAL, suggesting a reversal of the senescent phenotype with partial reappearance of stem-like cell properties. Accordingly, only a small population of MSC accumulated DNA damage by H2AX phosphorylation which was reduced to basal levels after culture. A clear pro-inflammatory cytokine and chemokine profile characteristic of a senescence-associated secretory phenotype (SASP) was also found in the LN (CCL2, IL-8, IL-6), validating MSC role in the leukemic microenvironment through paracrine mechanisms and which was mediated by PKC activity. In conclusion, MSC impairment requires the presence of leukemic cells, and when leukemic stress is removed, MSC almost recovered normal function. These findings are of great relevance in disease progression and treatment.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Biomédicasspa
dc.format.extentxix, 225 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80304
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicasspa
dc.relation.referencesAbdul-Aziz, A. M., Shafat, M. S., Mehta, T. K., Di Palma, F., Lawes, M. J., Rushworth, S. A., y Bowles, K. M. (2017). MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia. Cancer Research, 77(2). https://doi.org/10.1158/0008-5472.CAN-16-1095spa
dc.relation.referencesAbdul-Aziz, A. M., Sun, Y., Hellmich, C., Marlein, C. R., Mistry, J., Forde, E., Piddock, R. E., Shafat, M. S., Morfakis, A., Mehta, T., Di Palma, F., Macaulay, I., Ingham, C. J., Haestier, A., Collins, A., Campisi, J., Bowles, K. M., y Rushworth, S. A. (2019). Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood, 133(5), 446-456. https://doi.org/10.1182/blood-2018-04-845420spa
dc.relation.referencesAbrams, S. T., Lakum, T., Lin, K., Jones, G. M., Treweeke, A. T., Farahani, M., Hughes, M., Zuzel, M., y Slupsky, J. R. (2007). B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CβII. Blood, 109(3), 1193-1201. https://doi.org/10.1182/blood-2006-03-012021spa
dc.relation.referencesAcuña, L., Sánchez, P., Uribe, D., Pulido, D., y Valencia, O. (2015). Situación del cáncer en Colombia 2015. https://doi.org/Book_Doi 10.1201/9781420072884spa
dc.relation.referencesAndré, T., Meuleman, N., Stamatopoulos, B., De Bruyn, C., Pieters, K., Bron, D., y Lagneaux, L. (2013). Evidences of Early Senescence in Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells. PLoS ONE, 8(3), e59756. https://doi.org/10.1371/journal.pone.0059756spa
dc.relation.referencesAntonsson, A. y Persson, J. L. (2009). Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G(2)/m checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res., 29(8), 2893-2898. http://www.ncbi.nlm.nih.gov/pubmed/19661292spa
dc.relation.referencesArnulf, B., Lecourt, S., Soulier, J., Ternaux, B., Lacassagne, M.-N., Crinquette, A., Dessoly, J., Sciaini, A.-K., Benbunan, M., Chomienne, C., Fermand, J.-P., Marolleau, J.-P., y Larghero, J. (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1), 158-163. https://doi.org/10.1038/sj.leu.2404466spa
dc.relation.referencesArranz, L., Sánchez-Aguilera, A., Martín-Pérez, D., Isern, J., Langa, X., Tzankov, A., Lundberg, P., Muntión, S., Tzeng, Y. S., Lai, D. M., Schwaller, J., Skoda, R. C., y Méndez-Ferrer, S. (2014). Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 512(1). https://doi.org/10.1038/nature13383spa
dc.relation.referencesBaker, R. G., Hayden, M. S., y Ghosh, S. (2011). NF-κB, inflammation, and metabolic disease. En Cell Metabolism. https://doi.org/10.1016/j.cmet.2010.12.008spa
dc.relation.referencesBarragán, M., Bellosillo, B., Campàs, C., Colomer, D., Pons, G., y Gil, J. (2002). Involvement of protein kinase C and phosphatidylinositol 3–kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood, 99(8), 2969-2976. https://doi.org/10.1182/blood.V99.8.2969spa
dc.relation.referencesBaryawno, N., Przybylski, D., Kowalczyk, M. S., Kfoury, Y., Severe, N., Gustafsson, K., Kokkaliaris, K. D., Mercier, F., Tabaka, M., Hofree, M., Dionne, D., Papazian, A., Lee, D., Ashenberg, O., Subramanian, A., Vaishnav, E. D., Rozenblatt-Rosen, O., Regev, A., y Scadden, D. T. (2019). A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell, 177(7), 1915-1932.e16. https://doi.org/10.1016/j.cell.2019.04.040spa
dc.relation.referencesBeauséjour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P., y Campisi, J. (2003). Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J, 22(16), 4212-4222. https://doi.org/10.1093/emboj/cdg417spa
dc.relation.referencesBelmokhtar, C. A., Hillion, J., y Ségal-Bendirdjian, E. (2001). Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene, 20(26), 3354-3362. https://doi.org/10.1038/sj.onc.1204436spa
dc.relation.referencesBen-Neriah, Y. y Karin, M. (2011). Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 12(8), 715-723. https://doi.org/10.1038/ni.2060spa
dc.relation.referencesBerenstein, R., Blau, O., Nogai, A., Waechter, M., Slonova, E., Schmidt-Hieber, M., Kunitz, A., Pezzutto, A., Doerken, B., y Blau, I. W. (2015). Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region. BMC Cancer, 15(1), 68. https://doi.org/10.1186/s12885-015-1078-3spa
dc.relation.referencesBernardo, M. E., Zaffaroni, N., Novara, F., Cometa, A. M., Avanzini, M. A., Moretta, A., Montagna, D., Maccario, R., Villa, R., Daidone, M. G., Zuffardi, O., y Locatelli, F. (2007). Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-06-4690spa
dc.relation.referencesBhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., y Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. En Biomedicine and Pharmacotherapy (Vol. 74). https://doi.org/10.1016/j.biopha.2015.07.025spa
dc.relation.referencesBhatia, B., Multani, A. S., Patrawala, L., Chen, X., Calhoun-Davis, T., Zhou, J., Schroeder, L., Schneider-Broussard, R., Shen, J., Pathak, S., Chang, S., y Tang, D. G. (2007). Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT. Int. J. Cancer, 122(7), 1483-1495. https://doi.org/10.1002/ijc.23222spa
dc.relation.referencesBhojwani, D. y Pui, C. H. (2013). Relapsed childhood acute lymphoblastic leukaemia. En Lancet Oncol. https://doi.org/10.1016/S1470-2045(12)70580-6spa
dc.relation.referencesBlaser, H., Dostert, C., Mak, T. W., y Brenner, D. (2016). TNF and ROS Crosstalk in Inflammation. En Trends in Cell Biology (Vol. 26, Número 4). https://doi.org/10.1016/j.tcb.2015.12.002spa
dc.relation.referencesBonilla, X., Vanegas, N.-D. P., y Vernot, J. P. (2019). Acute Leukemia Induces Senescence and Impaired Osteogenic Differentiation in Mesenchymal Stem Cells Endowing Leukemic Cells with Functional Advantages. Stem Cells Int, 2019, 1-16. https://doi.org/10.1155/2019/3864948spa
dc.relation.referencesBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., y Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin., 68(6), 394-424. https://doi.org/10.3322/caac.21492spa
dc.relation.referencesBrenner, A. K., Reikvam, H., y Bruserud, Ø. (2016). A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators. Front Immunol, 7(MAY). https://doi.org/10.3389/fimmu.2016.00205spa
dc.relation.referencesBrücher, B. L. D. M. y Jamall, I. S. (2014). Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. En Cellular Physiology and Biochemistry (Vol. 34, Número 2). https://doi.org/10.1159/000362978spa
dc.relation.referencesBurger, J. A., Tsukada, N., Burger, M., Zvaifler, N. J., Dell’Aquila, M., y Kipps, T. J. (2000). Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell–derived factor-1. Blood, 96(8), 2655-2663. https://doi.org/10.1182/blood.V96.8.2655spa
dc.relation.referencesCanli, Ö., Nicolas, A. M., Gupta, J., Finkelmeier, F., Goncharova, O., Pesic, M., Neumann, T., Horst, D., Löwer, M., Sahin, U., y Greten, F. R. (2017). Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis. Cancer Cell, 32(6). https://doi.org/10.1016/j.ccell.2017.11.004spa
dc.relation.referencesChauhan, D., Uchiyama, H., Akbarali, Y., Urashima, M., Yamamoto, K., Libermann, T., y Anderson, K. (1996). Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood, 87(3), 1104-1112. https://doi.org/10.1182/blood.V87.3.1104.bloodjournal8731104spa
dc.relation.referencesChen, X., Li, N., Weng, J., y Du, X. (2021). Senescent Mesenchymal Stem Cells in Myelodysplastic Syndrome: Functional Alterations, Molecular Mechanisms, and Therapeutic Strategies. En Frontiers in Cell and Developmental Biology (Vol. 8). https://doi.org/10.3389/fcell.2020.617466spa
dc.relation.referencesCheung, L. C., Tickner, J., Hughes, A. M., Skut, P., Howlett, M., Foley, B., Oommen, J., Wells, J. E., He, B., Singh, S., Chua, G.-A., Ford, J., Mullighan, C. G., Kotecha, R. S., y Kees, U. R. (2018). New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment. Leukemia, 32(11), 2326-2338. https://doi.org/10.1038/s41375-018-0144-7spa
dc.relation.referencesChilds, B. G., Baker, D. J., Kirkland, J. L., Campisi, J., y Deursen, J. M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO reports. https://doi.org/10.15252/embr.201439245spa
dc.relation.referencesCidado, J., Wong, H. Y., Marc Rosen, D., Cimino-Mathews, A., Garay, J. P., Fessler, A. G., Rasheed, Z. A., Hicks, J., Cochran, R. L., Croessmann, S., Zabransky, D. J., Mohseni, M., Beaver, J. A., Chu, D., Cravero, K., Christenson, E. S., Medford, A., Mattox, A., De Marzo, A. M., … Park, B. H. (2016). Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget. https://doi.org/10.18632/oncotarget.7057spa
dc.relation.referencesCimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. -g., Kipps, T. J., Negrini, M., y Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U.S.A., 102(39), 13944-13949. https://doi.org/10.1073/pnas.0506654102spa
dc.relation.referencesConforti, A., Biagini, S., Del Bufalo, F., Sirleto, P., Angioni, A., Starc, N., Li Pira, G., Moretta, F., Proia, A., Contoli, B., Genovese, S., Ciardi, C., Avanzini, M. A., Rosti, V., Lo-Coco, F., Locatelli, F., y Bernardo, M. E. (2013). Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia. PLoS ONE, 8(11), e76989. https://doi.org/10.1371/journal.pone.0076989spa
dc.relation.referencesCoppé, J. P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., y Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. https://doi.org/10.1371/journal.pbio.0060301spa
dc.relation.referencesCorradi, G., Baldazzi, C., Očadlíková, D., Marconi, G., Parisi, S., Testoni, N., Finelli, C., Cavo, M., Curti, A., y Ciciarello, M. (2018). Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res. Ther., 9(1), 271. https://doi.org/10.1186/s13287-018-1013-zspa
dc.relation.referencesCorre, J., Mahtouk, K., Attal, M., Gadelorge, M., Huynh, A., Fleury-Cappellesso, S., Danho, C., Laharrague, P., Klein, B., Rème, T., y Bourin, P. (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5), 1079-1088. https://doi.org/10.1038/sj.leu.2404621spa
dc.relation.referencesCosentino-Gomes, D., Rocco-Machado, N., y Meyer-Fernandes, J. R. (2012). Cell Signaling through Protein Kinase C Oxidation and Activation. Int. J. Mol. Sci., 13(9), 10697-10721. https://doi.org/10.3390/ijms130910697spa
dc.relation.referencesDANE. (2018). Defunciones Estadísticas Vitales. http://systema74.dane.gov.co/bincol/RpWebEngine.exe/Portal?BASE=DEFOC08&lang=espspa
dc.relation.referencesDarwish, N. H. E., Sudha, T., Godugu, K., Bharali, D. J., Elbaz, O., El-ghaffar, H. A. A., Azmy, E., Anber, N., y Mousa, S. A. (2019). Novel Targeted Nano-Parthenolide Molecule against NF-kB in Acute Myeloid Leukemia. Molecules, 24(11), 2103. https://doi.org/10.3390/molecules24112103spa
dc.relation.referencesDavalli, P., Mitic, T., Caporali, A., Lauriola, A., y D’Arca, D. (2016). ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid. Med. Cell. Longev., 2016, 1-18. https://doi.org/10.1155/2016/3565127spa
dc.relation.referencesde Vasconcellos, J. F., Laranjeira, A. B. A., Zanchin, N. I. T., Otubo, R., Vaz, T. H., Cardoso, A. A., Brandalise, S. R., y Yunes, J. A. (2011). Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr. Blood Cancer, 56(4), 568-577. https://doi.org/10.1002/pbc.22941spa
dc.relation.referencesDen Boer, M. L., van Slegtenhorst, M., De Menezes, R. X., Cheok, M. H., Buijs-Gladdines, J. G., Peters, S. T., Van Zutven, L. J., Beverloo, H. B., Van der Spek, P. J., Escherich, G., Horstmann, M. A., Janka-Schaub, G. E., Kamps, W. A., Evans, W. E., y Pieters, R. (2009). A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(08)70339-5spa
dc.relation.referencesDenizot, Y., Fixe, P., Liozon, E., y Praloran, V. (1996). Serum interleukin-8 (IL-8) and IL-6 concentrations in patients with hematologic malignancies [letter]. Blood, 87(9), 4016-4017. https://doi.org/10.1182/blood.V87.9.4016.bloodjournal8794016spa
dc.relation.referencesDierks, C., Grbic, J., Zirlik, K., Beigi, R., Englund, N. P., Guo, G.-R., Veelken, H., Engelhardt, M., Mertelsmann, R., Kelleher, J. F., Schultz, P., y Warmuth, M. (2007). Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med, 13(8), 944-951. https://doi.org/10.1038/nm1614spa
dc.relation.referencesDing, W., Nowakowski, G. S., Knox, T. R., Boysen, J. C., Maas, M. L., Schwager, S. M., Wu, W., Wellik, L. E., Dietz, A. B., Ghosh, A. K., Secreto, C. R., Medina, K. L., Shanafelt, T. D., Zent, C. S., Call, T. G., y Kay, N. E. (2009). Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression. Br. J. Haematol., 147(4), 471-483. https://doi.org/10.1111/j.1365-2141.2009.07868.xspa
dc.relation.referencesDominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. ., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., y Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905spa
dc.relation.referencesDuarte, D., Hawkins, E. D., y Lo Celso, C. (2018). The interplay of leukemia cells and the bone marrow microenvironment. En Blood (Vol. 131, Número 14). https://doi.org/10.1182/blood-2017-12-784132spa
dc.relation.referencesEbinger, S., Özdemir, E. Z., Ziegenhain, C., Tiedt, S., Castro Alves, C., Grunert, M., Dworzak, M., Lutz, C., Turati, V. A., Enver, T., Horny, H.-P., Sotlar, K., Parekh, S., Spiekermann, K., Hiddemann, W., Schepers, A., Polzer, B., Kirsch, S., Hoffmann, M., … Jeremias, I. (2016). Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell, 30(6), 849-862. https://doi.org/10.1016/j.ccell.2016.11.002spa
dc.relation.referencesEgle, A., Holler, C., Pinon, J. D., Denk, U., Heyder, C., y Greil, R. (2008). PKCβ Is Essential for the Development of CLL in the TCL1 Transgenic Mouse Model: Validation of PKCβ as a Therapeutic Target in CLL. Blood, 112(11), 4164-4164. https://doi.org/10.1182/blood.V112.11.4164.4164spa
dc.relation.referencesEl-Gamal, D., Williams, K., LaFollette, T. D., Cannon, M., Blachly, J. S., Zhong, Y., Woyach, J. A., Williams, E., Awan, F. T., Jones, J., Andritsos, L., Maddocks, K., Wu, C.-H., Chen, C.-S., Lehman, A., Zhang, X., Lapalombella, R., y Byrd, J. C. (2014). PKC-β as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL. Blood, 124(9), 1481-1491. https://doi.org/10.1182/blood-2014-05-574830spa
dc.relation.referencesGarderet, L., Mazurier, C., Chapel, A., Ernou, I., Boutin, L., Holy, X., Gorin, N. C., Lopez, M., Doucet, C., y Lataillade, J.-J. (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leukemia & Lymphoma, 48(10), 2032-2041. https://doi.org/10.1080/10428190701593644spa
dc.relation.referencesGill, J. G., Piskounova, E., y Morrison, S. J. (2016). Cancer, oxidative stress, and metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 81(1). https://doi.org/10.1101/sqb.2016.81.030791spa
dc.relation.referencesGiordano, P., Molinari, A. C., Del Vecchio, G. C., Saracco, P., Russo, G., Altomare, M., Perutelli, P., Crescenzio, N., Santoro, N., Marchetti, M., De Mattia, D., y Falanga, A. (2010). Prospective study of hemostatic alterations in children with acute lymphoblastic leukemia. Am. J. Hematol., 85(5), NA-NA. https://doi.org/10.1002/ajh.21665spa
dc.relation.referencesGnani, D., Crippa, S., della Volpe, L., Rossella, V., Conti, A., Lettera, E., Rivis, S., Ometti, M., Fraschini, G., Bernardo, M. E., y Di Micco, R. (2019). An early‐senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro‐inflammatory program. Aging Cell, 18(3), e12933. https://doi.org/10.1111/acel.12933spa
dc.relation.referencesGopalakrishna, R. y Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med., 28(9), 1349-1361. https://doi.org/10.1016/S0891-5849(00)00221-5spa
dc.relation.referencesGrivennikov, S. I., Greten, F. R., y Karin, M. (2010). Immunity, Inflammation, and Cancer. En Cell (Vol. 140, Número 6). https://doi.org/10.1016/j.cell.2010.01.025spa
dc.relation.referencesGuo, J., Zhao, Y., Fei, C., Zhao, S., Zheng, Q., Su, J., Wu, D., Li, X., y Chang, C. (2018). Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death Dis, 9(5), 512. https://doi.org/10.1038/s41419-018-0545-6spa
dc.relation.referencesGupta, V. A., Matulis, S. M., Conage-Pough, J. E., Nooka, A. K., Kaufman, J. L., Lonial, S., y Boise, L. H. (2017). Bone marrow microenvironment–derived signals induce Mcl-1 dependence in multiple myeloma. Blood, 129(14), 1969-1979. https://doi.org/10.1182/blood-2016-10-745059spa
dc.relation.referencesHalton, J. M., Atkinson, S. A., Fraher, L., Webber, C. E., Cockshott, W. P., Tam, C., y Barr, R. D. (1995). Mineral homeostasis and bone mass at diagnosis in children with acute lymphoblastic leukemia. J Pediatr, 126(4), 557-564. https://doi.org/10.1016/S0022-3476(95)70349-7spa
dc.relation.referencesHamidi, H. y Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer., 18(9), 533-548. https://doi.org/10.1038/s41568-018-0038-zspa
dc.relation.referencesHartl, D., Latzin, P., Hordijk, P., Marcos, V., Rudolph, C., Woischnik, M., Krauss-Etschmann, S., Koller, B., Reinhardt, D., Roscher, A. A., Roos, D., y Griese, M. (2007). Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med., 13(12), 1423-1430. https://doi.org/10.1038/nm1690spa
dc.relation.referencesHayden, M. S. y Ghosh, S. (2008). Shared Principles in NF-κB Signaling. Cell, 132(3), 344-362. https://doi.org/10.1016/j.cell.2008.01.020spa
dc.relation.referencesHellmich, C., Moore, J. A., Bowles, K. M., y Rushworth, S. A. (2020). Bone Marrow Senescence and the Microenvironment of Hematological Malignancies. En Frontiers in Oncology (Vol. 10). https://doi.org/10.3389/fonc.2020.00230spa
dc.relation.referencesHo, A. D., Wagner, W., y Franke, W. (2008). Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 10(4), 320-330. https://doi.org/10.1080/14653240802217011spa
dc.relation.referencesHoughten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U.S.A, 82(15), 5131-5135. https://doi.org/10.1073/pnas.82.15.5131spa
dc.relation.referencesHu, D., Yuan, S., Zhong, J., Liu, Z., Wang, Y., Liu, L., Li, J., Wen, F., Liu, J., y Zhang, J. (2021). Cellular senescence and hematological malignancies: From pathogenesis to therapeutics. En Pharmacology andspa
dc.relation.referencesHunger, S. P. y Mullighan, C. G. (2015). Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood, 125(26), 3977-3987. https://doi.org/10.1182/blood-2015-02-580043spa
dc.relation.referencesIannetti, A., Ledoux, A. C., Tudhope, S. J., Sellier, H., Zhao, B., Mowla, S., Moore, A., Hummerich, H., Gewurz, B. E., Cockell, S. J., Jat, P. S., Willmore, E., y Perkins, N. D. (2014). Regulation of p53 and Rb Links the Alternative NF-κB Pathway to EZH2 Expression and Cell Senescence. PLoS Genetics, 10(9). https://doi.org/10.1371/journal.pgen.1004642spa
dc.relation.referencesImbert, V. y Peyron, J.-F. (2017). NF-κB in Hematological Malignancies. Biomedicines, 5(4), 27. https://doi.org/10.3390/biomedicines5020027spa
dc.relation.referencesIoanou, K., Cheng, K. F., Crichlow, G. V., Birmpilis, A. I., Lolis, E. J., Tsitsilonis, O. E., y Al-Abed, Y. (2014). ISO-66, a novel inhibitor of macrophage migration inhibitory factor, shows efficacy in melanoma and colon cancer models. International Journal of Oncology, 45(4). https://doi.org/10.3892/ijo.2014.2551spa
dc.relation.referencesIwamoto, S., Mihara, K., Downing, J. R., Pui, C.-H., y Campana, D. (2007). Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest, 117(4), 1049-1057. https://doi.org/10.1172/JCI30235spa
dc.relation.referencesIzadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J., y Bunnell, B. A. (2008). Long-term In vitro Expansion Alters the Biology of Adult Mesenchymal Stem Cells. Cancer Res., 68(11), 4229-4238. https://doi.org/10.1158/0008-5472.CAN-07-5272spa
dc.relation.referencesJacamo, R., Chen, Y., Wang, Z., Ma, W., Zhang, M., Spaeth, E. L., Wang, Y., Battula, V. L., Mak, P. Y., Schallmoser, K., Ruvolo, P., Schober, W. D., Shpall, E. J., Nguyen, M. H., Strunk, D., Bueso-Ramos, C. E., Konoplev, S., Davis, R. E., Konopleva, M., y Andreeff, M. (2014). Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 123(17), 2691-2702. https://doi.org/10.1182/blood-2013-06-511527spa
dc.relation.referencesJiffar, T., Kurinna, S., Suck, G., Carlson-Bremer, D., Ricciardi, M. R., Konopleva, M., Andreeff, M., y Ruvolo, P. P. (2004). PKC α mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia. https://doi.org/10.1038/sj.leu.2403275spa
dc.relation.referencesJin, H. J., Lee, H. J., Heo, J., Lim, J., Kim, M., Kim, M. K., Nam, H. Y., Hong, G. H., Cho, Y. S., Choi, S. J., Kim, I. G., Shin, D. M., y Kim, S. W. (2016). Senescence-Associated MCP-1 Secretion Is Dependent on a Decline in BMI1 in Human Mesenchymal Stromal Cells. Antioxidants and Redox Signaling. https://doi.org/10.1089/ars.2015.6359spa
dc.relation.referencesJin, X.-T., Chen, M.-L., Li, R.-J., An, Q., Song, L., Zhao, Y., Xiao, H., Cheng, L., y Li, Z.-Y. (2016). Progression and inflammation of human myeloid leukemia induced by ambient PM2.5 exposure. Arch. Toxicol, 90(8), 1929-1938. https://doi.org/10.1007/s00204-015-1610-xspa
dc.relation.referencesJohmura, Y. y Nakanishi, M. (2016). Multiple facets of p53 in senescence induction and maintenance. Cancer Sci., 107(11), 1550-1555. https://doi.org/10.1111/cas.13060spa
dc.relation.referencesJohnson, S. M., Dempsey, C., Chadwick, A., Harrison, S., Liu, J., Di, Y., McGinn, O. J., Fiorillo, M., Sotgia, F., Lisanti, M. P., Parihar, M., Krishnan, S., y Saha, V. (2016). Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia. Blood, 128(3), 453-456. https://doi.org/10.1182/blood-2015-12-688051spa
dc.relation.referencesJoyce, D., Albanese, C., Steer, J., Fu, M., Bouzahzah, B., y Pestell, R. G. (2001). NF-κB and cell-cycle regulation: The cyclin connection. En Cytokine Growth Factor Rev. https://doi.org/10.1016/S1359-6101(00)00018-6spa
dc.relation.referencesJuneja, H. S., Schmalsteig, F. C., Lee, S., y Chen, J. (1993). Vascular cell adhesion molecule-1 and VLA-4 are obligatory adhesion proteins in the heterotypic adherence between human leukemia/lymphoma cells and marrow stromal cells. Experimental Hematology, 21(3).spa
dc.relation.referencesKarin, M. (2006). Nuclear factor-κB in cancer development and progression. Nature, 441(7092), 431-436. https://doi.org/10.1038/nature04870spa
dc.relation.referencesKeenan, C., Thompson, S., Knox, K., y Pears, C. (1999). Protein Kinase C-α Is Essential for Ramos-BL B Cell Survival. Cell. Immunol., 196(2), 104-109. https://doi.org/10.1006/cimm.1999.1549spa
dc.relation.referencesKfoury, Y. y Scadden, D. T. (2015). Mesenchymal Cell Contributions to the Stem Cell Niche. Cell Stem Cell, 16(3), 239-253. https://doi.org/10.1016/j.stem.2015.02.019spa
dc.relation.referencesKim, J.-A., Shim, J.-S., Lee, G.-Y., Yim, H. W., Kim, T.-M., Kim, M., Leem, S.-H., Lee, J.-W., Min, C.-K., y Oh, I.-H. (2015). Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia. Cancer Res, 75(11), 2222-2231. https://doi.org/10.1158/0008-5472.CAN-14-3379spa
dc.relation.referencesKim, J.-H., Lee, H.-S., Choi, H.-K., Kim, J.-A., Chu, I.-S., Leem, S.-H., y Oh, I.-H. (2016). Heterogeneous Niche Activity of Ex-Vivo Expanded MSCs as Factor for Variable Outcomes in Hematopoietic Recovery. PLOS ONE, 11(12), e0168036. https://doi.org/10.1371/journal.pone.0168036spa
dc.relation.referencesKleppe, M., Koche, R., Zou, L., van Galen, P., Hill, C. E., Dong, L., De Groote, S., Papalexi, E., Hanasoge Somasundara, A. V., Cordner, K., Keller, M., Farnoud, N., Medina, J., McGovern, E., Reyes, J., Roberts, J., Witkin, M., Rapaport, F., Teruya-Feldstein, J., … Levine, R. L. (2018). Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell, 33(1), 29-43.e7. https://doi.org/10.1016/j.ccell.2017.11.009spa
dc.relation.referencesKlopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., y Marini, F. (2011). Concise Review: Dissecting a Discrepancy in the Literature: Do Mesenchymal Stem Cells Support or Suppress Tumor Growth? STEM CELLS, 29(1), 11-19. https://doi.org/10.1002/stem.559spa
dc.relation.referencesKonopleva, M., Konoplev, S., Hu, W., Zaritskey, A., Afanasiev, B., y Andreeff, M. (2002). Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia, 16(9), 1713-1724. https://doi.org/10.1038/sj.leu.2402608spa
dc.relation.referencesKrevvata, M., Silva, B. C., Manavalan, J. S., Galan-Diez, M., Kode, A., Matthews, B. G., Park, D., Zhang, C. A., Galili, N., Nickolas, T. L., Dempster, D. W., Dougall, W., Teruya-Feldstein, J., Economides, A. N., Kalajzic, I., Raza, A., Berman, E., Mukherjee, S., Bhagat, G., y Kousteni, S. (2014). Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood, 124(18). https://doi.org/10.1182/blood-2013-07-517219spa
dc.relation.referencesKrtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y., y Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc Natl Acad Sci U S A, 98(21), 12072-12077. https://doi.org/10.1073/pnas.211053698spa
dc.relation.referencesKumar, A., Anand, T., Bhattacharyya, J., Sharma, A., y Jaganathan, B. G. (2018). K562 chronic myeloid leukemia cells modify osteogenic differentiation and gene expression of bone marrow stromal cells. J Cell Commun Signal, 12(2), 441-450. https://doi.org/10.1007/s12079-017-0412-8spa
dc.relation.referencesKurtova, A. V., Balakrishnan, K., Chen, R., Ding, W., Schnabl, S., Quiroga, M. P., Sivina, M., Wierda, W. G., Estrov, Z., Keating, M. J., Shehata, M., Jäger, U., Gandhi, V., Kay, N. E., Plunkett, W., y Burger, J. A. (2009). Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood, 114(20), 4441-4450. https://doi.org/10.1182/blood-2009-07-233718spa
dc.relation.referencesLagneaux, L., Delforge, A., Bron, D., De Bruyn, C., y Stryckmans, P. (1998). Chronic Lymphocytic Leukemic B Cells But Not Normal B Cells Are Rescued From Apoptosis by Contact With Normal Bone Marrow Stromal Cells. Blood, 91(7), 2387-2396. https://doi.org/10.1182/blood.V91.7.2387.2387_2387_2396spa
dc.relation.referencesLašťovička, J., Rataj, M., y Bartůňková, J. (2016). Assessment of lymphocyte proliferation for diagnostic purpose: Comparison of CFSE staining, Ki-67 expression and 3H-thymidine incorporation. Human Immunology. https://doi.org/10.1016/j.humimm.2016.08.012spa
dc.relation.referencesLawrence, T. (2009). The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harb. Perspect. Biol., 1(6), a001651-a001651. https://doi.org/10.1101/cshperspect.a001651spa
dc.relation.referencesLee, G.-Y., Jeong, S.-Y., Lee, H.-R., y Oh, I.-H. (2019). Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells. Sci Rep, 9(1), 1007. https://doi.org/10.1038/s41598-018-36999-5spa
dc.relation.referencesLemmon, M. A. y Schlessinger, J. (2010). Cell Signaling by Receptor Tyrosine Kinases. Cell, 141(7), 1117-1134. https://doi.org/10.1016/j.cell.2010.06.011spa
dc.relation.referencesLerrer, S., Liubomirski, Y., Bott, A., Abnaof, K., Oren, N., Yousaf, A., Körner, C., Meshel, T., Wiemann, S., y Ben-Baruch, A. (2017). Co-Inflammatory Roles of TGFβ1 in the Presence of TNFα Drive a Pro-inflammatory Fate in Mesenchymal Stem Cells. Front Immunol, 8, 479. https://doi.org/10.3389/fimmu.2017.00479spa
dc.relation.referencesLim, M., Pang, Y., Ma, S., Hao, S., Shi, H., Zheng, Y., Hua, C., Gu, X., Yang, F., Yuan, W., y Cheng, T. (2016). Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia, 30(1), 154-162. https://doi.org/10.1038/leu.2015.210spa
dc.relation.referencesLiu, W. . y Heckman, C. . (1998). The Sevenfold Way of PKC Regulation. Cell. Signal., 10(8), 529-542. https://doi.org/10.1016/S0898-6568(98)00012-6spa
dc.relation.referencesLoi, T. H., Dai, P., Carlin, S., Melo, J. V, y Ma, D. D. F. (2016). Pro-survival role of protein kinase C epsilon in Philadelphia chromosome positive acute leukemia. Leuk. Lymphoma, 57(2), 411-418. https://doi.org/10.3109/10428194.2015.1043545spa
dc.relation.referencesLutzny, G., Kocher, T., Schmidt-Supprian, M., Rudelius, M., Klein-Hitpass, L., Finch, A. J., Dürig, J., Wagner, M., Haferlach, C., Kohlmann, A., Schnittger, S., Seifert, M., Wanninger, S., Zaborsky, N., Oostendorp, R., Ruland, J., Leitges, M., Kuhnt, T., Schäfer, Y., … Ringshausen, I. (2013). Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell, 23(1), 77-92. https://doi.org/10.1016/j.ccr.2012.12.003spa
dc.relation.referencesLwin, T., Hazlehurst, L. A., Li, Z., Dessureault, S., Sotomayor, E., Moscinski, L. C., Dalton, W. S., y Tao, J. (2007). Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-κB (RelB/p52) in non-Hodgkin’s lymphoma cells. Leukemia, 21(7), 1521-1531. https://doi.org/10.1038/sj.leu.2404723spa
dc.relation.referencesMacanas-Pirard, P., Quezada, T., Navarrete, L., Broekhuizen, R., Leisewitz, A., Nervi, B., y Ramírez, P. A. (2017). The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0168888spa
dc.relation.referencesMacip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W., y Aaronson, S. A. (2003). Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. https://doi.org/10.1128/MCB.23.23.8576-8585.2003spa
dc.relation.referencesMahindra, A., Hideshima, T., y Anderson, K. C. (2010). Multiple myeloma: Biology of the disease. En Blood Reviews (Vol. 24, Número SUPPL. 1). https://doi.org/10.1016/S0268-960X(10)70003-5spa
dc.relation.referencesManabe, A., Coustan-Smith, E., Behm, F. G., Raimondi, S. C., y Campana, D. (1992). Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood, 79(9), 2370-2377. http://www.ncbi.nlm.nih.gov/pubmed/1373973spa
dc.relation.referencesManabe, A., Murti, K., Coustan-Smith, E., Kumagai, M., Behm, F., Raimondi, S., y Campana, D. (1994). Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood, 83(3), 758-766. https://doi.org/10.1182/blood.V83.3.758.bloodjournal833758spa
dc.relation.referencesMangolini, M., Götte, F., Moore, A., Ammon, T., Oelsner, M., Lutzny-Geier, G., Klein-Hitpass, L., Williamson, J. C., Lehner, P. J., Dürig, J., Möllmann, M., Rásó-Barnett, L., Hughes, K., Santoro, A., Méndez-Ferrer, S., Oostendorp, R. A. J., Zimber-Strobl, U., Peschel, C., Hodson, D. J., … Ringshausen, I. (2018). Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat. Commun., 9(1), 3839. https://doi.org/10.1038/s41467-018-06069-5spa
dc.relation.referencesMangolini, M. y Ringshausen, I. (2020). Bone Marrow Stromal Cells Drive Key Hallmarks of B Cell Malignancies. Int. J. Mol. Sci., 21(4), 1466. https://doi.org/10.3390/ijms21041466spa
dc.relation.referencesMarlein, C. R., Piddock, R. E., Mistry, J. J., Zaitseva, L., Hellmich, C., Horton, R. H., Zhou, Z., Auger, M. J., Bowles, K. M., y Rushworth, S. A. (2019). CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Research, 79(9), 2285-2297. https://doi.org/10.1158/0008-5472.CAN-18-0773spa
dc.relation.referencesMas-Bargues, C., Sanz-Ros, J., Román-Domínguez, A., Inglés, M., Gimeno-Mallench, L., El Alami, M., Viña-Almunia, J., Gambini, J., Viña, J., y Borrás, C. (2019). Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int. J. Mol. Sci., 20(5), 1195. https://doi.org/10.3390/ijms20051195spa
dc.relation.referencesMedina, D. J., Goodell, L., Glod, J., Gelinas, C., Rabson, A. B., y Strair, R. K. (2012). Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor B pathways. Haematologica, 97(8), 1255-1263. https://doi.org/10.3324/haematol.2011.040659spa
dc.relation.referencesMeggio, F., Deana, A. D., Ruzzene, M., Brunati, A. M., Cesaro, L., Guerra, B., Meyer, T., Mett, H., Fabbro, D., Furet, P., Dobrowolska, G., y Pinna, L. A. (1995). Different Susceptibility of Protein Kinases to Staurosporine Inhibition: Kinetic Studies and Molecular Bases for the Resistance of Protein Kinase CK2. Eur. j. biochem., 234(1). https://doi.org/10.1111/j.1432-1033.1995.317_c.xspa
dc.relation.referencesMinsalud y Colciencias. (2013). Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. En Centro Nacional de Investigacion en Evidencia y Tecnologia en Salud CINETS (Número 9).spa
dc.relation.referencesMiranda-Filho, A., Piñeros, M., Ferlay, J., Soerjomataram, I., Monnereau, A., y Bray, F. (2018). Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol., 5(1), e14-e24. https://doi.org/10.1016/S2352-3026(17)30232-6spa
dc.relation.referencesMöricke, A., Reiter, A., Zimmermann, M., Gadner, H., Stanulla, M., Dördelmann, M., Löning, L., Beier, R., Ludwig, W. D., Ratei, R., Harbott, J., Boos, J., Mann, G., Niggli, F., Feldges, A., Henze, G., Welte, K., Beck, J. D., Klingebiel, T., … Schrappe, M. (2008). Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: Treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood, 111(9). https://doi.org/10.1182/blood-2007-09-112920spa
dc.relation.referencesMullighan, C. G. (2013). Genomic Characterization of Childhood Acute Lymphoblastic Leukemia. Sem Hematol, 50(4), 314-324. https://doi.org/10.1053/j.seminhematol.2013.10.001spa
dc.relation.referencesMuto, T., Walker, C. S., Choi, K., Hueneman, K., Smith, M. A., Gul, Z., Garcia-Manero, G., Ma, A., Zheng, Y., y Starczynowski, D. T. (2020). Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat. Immunol., 21(5), 535-545. https://doi.org/10.1038/s41590-020-0663-zspa
dc.relation.referencesNakagawa, R., Soh, J. W., y Michie, A. M. (2006). Subversion of protein kinase Cα signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Research, 66(1). https://doi.org/10.1158/0008-5472.CAN-05-0841spa
dc.relation.referencesNakagawa, R., Vukovic, M., Tarafdar, A., Cosimo, E., Dunn, K., McCaig, A. M., Holroyd, A., McClanahan, F., Ramsay, A. G., Gribben, J. G., y Michie, A. M. (2015). Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKCα subversion induces up-regulation of PKCβII expression in B lymphocytes. Haematologica, 100(4). https://doi.org/10.3324/haematol.2014.112276spa
dc.relation.referencesNomellini, V., Brubaker, A. L., Mahbub, S., Palmer, J. L., Gomez, C. R., y Kovacs, E. J. (2012). Dysregulation of neutrophil CXCR2 and pulmonary endothelial ICAM-1 promotes age-related pulmonary inflammation. Aging Dis., 3(3).spa
dc.relation.referencesOh, I.-H., Jeong, S.-Y., y Kim, J.-A. (2019). Normal and leukemic stem cell niche interactions. Curr Opin Hematol, 26(4), 249-257. https://doi.org/10.1097/MOH.0000000000000508spa
dc.relation.referencesOliver, L., Hue, E., Séry, Q., Lafargue, A., Pecqueur, C., Paris, F., y Vallette, F. M. (2013). Differentiation-Related Response to DNA Breaks in Human Mesenchymal Stem Cells. Stem Cells, 31(4), 800-807. https://doi.org/10.1002/stem.1336spa
dc.relation.referencesOrtiz-Montero, P., Londoño-Vallejo, A., y Vernot, J.-P. (2017). Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal., 15(1), 17. https://doi.org/10.1186/s12964-017-0172-3spa
dc.relation.referencesPaggetti, J., Haderk, F., Seiffert, M., Janji, B., Distler, U., Ammerlaan, W., Kim, Y. J., Adam, J., Lichter, P., Solary, E., Berchem, G., y Moussay, E. (2015). Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 126(9), 1106-1117. https://doi.org/10.1182/blood-2014-12-618025spa
dc.relation.referencesPardo, C. y Cendales, R. (2015). Incidencia, mortalidad y prevalencia de cáncer en Colombia, 2007-2011. Primera edición. Bogotá. D.C. Instituto Nacional de Cancerología (Vol. 1).spa
dc.relation.referencesPark, E., Chen, J., Moore, A., Mangolini, M., Santoro, A., Boyd, J. R., Schjerven, H., Ecker, V., Buchner, M., Williamson, J. C., Lehner, P. J., Gasparoli, L., Williams, O., Bloehdorn, J., Stilgenbauer, S., Leitges, M., Egle, A., Schmidt-Supprian, M., Frietze, S., y Ringshausen, I. (2020). Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance. Sci. Transl. Med., 12(526), eaax9340. https://doi.org/10.1126/scitranslmed.aax9340spa
dc.relation.referencesPatel, V., Chen, L. S., Wierda, W. G., Balakrishnan, K., y Gandhi, V. (2014). Impact of bone marrow stromal cells on Bcl-2 family members in chronic lymphocytic leukemia. Leuk. Lymphoma, 55(4). https://doi.org/10.3109/10428194.2013.819573spa
dc.relation.referencesPeled, A., Klein, S., Beider, K., Burger, J. A., y Abraham, M. (2018). Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine, 109, 11-16. https://doi.org/10.1016/j.cyto.2018.02.020spa
dc.relation.referencesPerdomo-Arciniegas, A. M., Patarroyo, M. E., y Vernot, J.-P. (2008). Novel Chimeric Peptide Inhibits Protein Kinase C and Induces Apoptosis in Human Immune Cells. Int J Pept Res Ther., 14(1), 64-74. https://doi.org/10.1007/s10989-007-9118-8spa
dc.relation.referencesPietras, K. y Östman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res., 316(8), 1324-1331. https://doi.org/10.1016/j.yexcr.2010.02.045spa
dc.relation.referencesPleyer, L., Valent, P., y Greil, R. (2016). Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis—Masters of survival and clonality? En International Journal of Molecular Sciences (Vol. 17, Número 7). https://doi.org/10.3390/ijms17071009spa
dc.relation.referencesPolak, R., de Rooij, B., Pieters, R., y den Boer, M. L. (2015). B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood, 126(21), 2404-2414. https://doi.org/10.1182/blood-2015-03-634238spa
dc.relation.referencesPui, C.-H. y Evans, W. E. (2006). Treatment of Acute Lymphoblastic Leukemia. N Engl J Med, 354(2), 166-178. https://doi.org/10.1056/NEJMra052603spa
dc.relation.referencesQuintarelli, C., De Angelis, B., Errichiello, S., Caruso, S., Esposito, N., Colavita, I., Raia, M., Pagliuca, S., Pugliese, N., Risitano, A. M., Picardi, M., Luciano, L., Saglio, G., Martinelli, G., y Pane, F. (2014). Selective strong synergism of Ruxolitinib and second generation tyrosine kinase inhibitors to overcome bone marrow stroma related drug resistance in chronic myelogenous leukemia. Leuk. Res., 38(2), 236-242. https://doi.org/10.1016/j.leukres.2013.11.006spa
dc.relation.referencesRaaijmakers, M. H. G. P., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., Ebert, B. L., Al-Shahrour, F., Hasserjian, R. P., Scadden, E. O., Aung, Z., Matza, M., Merkenschlager, M., Lin, C., Rommens, J. M., y Scadden, D. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852-857. https://doi.org/10.1038/nature08851spa
dc.relation.referencesRaffaghello, L., Vacca, A., Pistoia, V., y Ribatti, D. (2015). Cancer associated fibroblasts in hematological malignancies. Oncotarget, 6(5), 2589-2603. https://doi.org/10.18632/oncotarget.2661spa
dc.relation.referencesRaposo, G. y Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. Int. J. Cell Biol., 200(4), 373-383. https://doi.org/10.1083/jcb.201211138spa
dc.relation.referencesRedig, A. J. y Platanias, L. C. (2008). Protein kinase C signalling in leukemia. Leukemia & Lymphoma, 49(7), 1255-1262. https://doi.org/10.1080/10428190802007726spa
dc.relation.referencesReikvam, H., Brenner, A. K., Hagen, K. M., Liseth, K., Skrede, S., Hatfield, K. J., y Bruserud, Ø. (2015). The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res., 15(3), 530-541. https://doi.org/10.1016/j.scr.2015.09.008spa
dc.relation.referencesReikvam, H., Fredly, H., Kittang, A., y Bruserud, Ø. (2013). The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins, 5(2), 336-362. https://doi.org/10.3390/toxins5020336spa
dc.relation.referencesRuiz-Aparicio, P. F., Vanegas, N.-D. P., Uribe, G. I., Ortiz-Montero, P., Cadavid-Cortés, C., Lagos, J., Flechas-Afanador, J., Linares-Ballesteros, A., y Vernot, J.-P. (2020). Dual Targeting of Stromal Cell Support and Leukemic Cell Growth by a Peptidic PKC Inhibitor Shows Effectiveness against B-ALL. Int. J. Mol. Sci., 21(10), 3705. https://doi.org/10.3390/ijms21103705spa
dc.relation.referencesRustom, A., Saffrich, R., Markovic, I., Walther, P., y Gerdes, H. H. (2004). Nanotubular Highways for Intercellular Organelle Transport. Science, 303(5660). https://doi.org/10.1126/science.1093133spa
dc.relation.referencesSchepers, K., Pietras, E. M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., Wagers, A. J., Hsiao, E. C., y Passegué, E. (2013). Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell, 13(3), 285-299. https://doi.org/10.1016/j.stem.2013.06.009spa
dc.relation.referencesSchinke, C., Giricz, O., Li, W., Shastri, A., Gordon, S., Barreyro, L., Bhagat, T., Bhattacharyya, S., Ramachandra, N., Bartenstein, M., Pellagatti, A., Boultwood, J., Wickrema, A., Yu, Y., Will, B., Wei, S., Steidl, U., y Verma, A. (2015). IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood, 125(20), 3144-3152. https://doi.org/10.1182/blood-2015-01-621631spa
dc.relation.referencesSchultz, K. R., Pullen, D. J., Sather, H. N., Shuster, J. J., Devidas, M., Borowitz, M. J., Carroll, A. J., Heerema, N. A., Rubnitz, J. E., Loh, M. L., Raetz, E. A., Winick, N. J., Hunger, S. P., Carroll, W. L., Gaynon, P. S., y Camitta, B. M. (2007). Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood, 109(3), 926-935. https://doi.org/10.1182/blood-2006-01-024729spa
dc.relation.referencesSevere, N., Karabacak, N. M., Gustafsson, K., Baryawno, N., Courties, G., Kfoury, Y., Kokkaliaris, K. D., Rhee, C., Lee, D., Scadden, E. W., Garcia-Robledo, J. E., Brouse, T., Nahrendorf, M., Toner, M., y Scadden, D. T. (2019). Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 25(4), 570-583.e7. https://doi.org/10.1016/j.stem.2019.06.003spa
dc.relation.referencesShain, K. H., Yarde, D. N., Meads, M. B., Huang, M., Jove, R., Hazlehurst, L. A., y Dalton, W. S. (2009). β1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: Implications for microenvironment influence on tumor survival and proliferation. Cancer Res., 69(3). https://doi.org/10.1158/0008-5472.CAN-08-2419spa
dc.relation.referencesShchemelinin, I., Sefc, L., y Necas, E. (2006). Protein kinases, their function and implication in cancer and other diseases. Folia biologica, 52(3), 81-100. http://www.ncbi.nlm.nih.gov/pubmed/17089919spa
dc.relation.referencesShiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H., y Takeyama, H. (2015). Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. En Cancers (Vol. 7, Número 4). https://doi.org/10.3390/cancers7040902spa
dc.relation.referencesShih, V. F.-S., Tsui, R., Caldwell, A., y Hoffmann, A. (2011). A single NFκB system for both canonical and non-canonical signaling. Cell Res., 21(1), 86-102. https://doi.org/10.1038/cr.2010.161spa
dc.relation.referencesSteinberg, S. F. (2008). Structural Basis of Protein Kinase C Isoform Function. Physiol. Rev., 88(4), 1341-1378. https://doi.org/10.1152/physrev.00034.2007spa
dc.relation.referencesStrzyz, P. (2019). The unusual SASPects. Nat. Rev. Mol. Cell Biol., 20(4), 195-195. https://doi.org/10.1038/s41580-019-0111-9spa
dc.relation.referencesSun, X. y Kaufman, P. D. (2018). Ki-67: more than a proliferation marker. En Chromosoma. https://doi.org/10.1007/s00412-018-0659-8spa
dc.relation.referencesTakami, M., Katayama, K., Noguchi, K., y Sugimoto, Y. (2018). Protein kinase C alpha-mediated phosphorylation of PIM-1L promotes the survival and proliferation of acute myeloid leukemia cells. Biochemical and Biophysical Research Communications, 503(3). https://doi.org/10.1016/j.bbrc.2018.07.049spa
dc.relation.referencesTamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M., y Tomita, F. (1986). Staurosporine, a potent inhibitor of phospholipidCa++dependent protein kinase. Biochem. Biophys. Res. Commun., 135(2), 397-402. https://doi.org/10.1016/0006-291X(86)90008-2spa
dc.relation.referencesTasian, S. K. y Loh, M. L. (2011). Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia. Crit Rev Oncog. https://doi.org/10.1615/CritRevOncog.v16.i1-2.30spa
dc.relation.referencesTeicher, B. A. y Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. En Clinical Cancer Research (Vol. 16, Número 11). https://doi.org/10.1158/1078-0432.CCR-09-2329spa
dc.relation.referencesTobler, A., Moser, B., Dewald, B., Geiser, T., Studer, H., Baggiolini, M., y Fey, M. (1993). Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood, 82(8), 2517-2525. https://doi.org/10.1182/blood.V82.8.2517.bloodjournal8282517spa
dc.relation.referencesTraer, E., MacKenzie, R., Snead, J., Agarwal, A., Eiring, A. M., O’Hare, T., Druker, B. J., y Deininger, M. W. (2012). Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia, 26(5), 1140-1143. https://doi.org/10.1038/leu.2011.325spa
dc.relation.referencesTurinetto, V., Vitale, E., y Giachino, C. (2016). Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int. J. Mol. Sci., 17(7), 1164. https://doi.org/10.3390/ijms17071164spa
dc.relation.referencesVan Etten, R. A. (2007). Aberrant cytokine signaling in leukemia. Oncogene, 26(47), 6738-6749. https://doi.org/10.1038/sj.onc.1210758spa
dc.relation.referencesVanegas, N.-D. P. y Vernot, J.-P. (2017). Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp. Hematol. Oncol., 6(1), 2. https://doi.org/10.1186/s40164-016-0062-1spa
dc.relation.referencesVernot, J.-P., Bonilla, X., Rodriguez-Pardo, V., y Vanegas, N.-D. P. (2017). Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int. J. Mol. Sci., 18(2), 199. https://doi.org/10.3390/ijms18020199spa
dc.relation.referencesVilchis-Ordoñez, A., Contreras-Quiroz, A., Vadillo, E., Dorantes-Acosta, E., Reyes-López, A., Quintela-Nuñez Del Prado, H. M., Venegas-Vázquez, J., Mayani, H., Ortiz-Navarrete, V., López-Martínez, B., y Pelayo, R. (2015). Bone marrow cells in acute lymphoblastic leukemia create a proinflammatory microenvironment influencing normal hematopoietic differentiation fates. Biomed Res. Int. https://doi.org/10.1155/2015/386165spa
dc.relation.referencesVitale, I., Manic, G., De Maria, R., Kroemer, G., y Galluzzi, L. (2017). DNA Damage in Stem Cells. Mol Cell, 66(3), 306-319. https://doi.org/10.1016/j.molcel.2017.04.006spa
dc.relation.referencesWagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., y Ho, A. D. (2008). Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE, 3(5), e2213. https://doi.org/10.1371/journal.pone.0002213spa
dc.relation.referencesWalkley, C. R., Olsen, G. H., Dworkin, S., Fabb, S. A., Swann, J., McArthur, G. A., Westmoreland, S. V., Chambon, P., Scadden, D. T., y Purton, L. E. (2007). A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor γ Deficiency. Cell, 129(6), 1097-1110. https://doi.org/10.1016/j.cell.2007.05.014spa
dc.relation.referencesWallace, S. R., Oken, M. M., Lunetta, K. L., Panoskaltsis-Mortari, A., y Masellis, A. M. (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91(7), 1219-1230. https://doi.org/10.1002/1097-0142(20010401)91:7<1219::AID-CNCR1122>3.0.CO;2-1spa
dc.relation.referencesWeisberg, E., Azab, A. K., Manley, P. W., Kung, A. L., Christie, A. L., Bronson, R., Ghobrial, I. M., y Griffin, J. D. (2012). Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia, 26(5), 985-990. https://doi.org/10.1038/leu.2011.360spa
dc.relation.referencesWindisch, R., Pirschtat, N., Kellner, C., Chen-Wichmann, L., Lausen, J., Humpe, A., Krause, D., y Wichmann, C. (2019). Oncogenic Deregulation of Cell Adhesion Molecules in Leukemia. Cancers, 11(3), 311. https://doi.org/10.3390/cancers11030311spa
dc.relation.referencesXu, S., De Veirman, K., De Becker, A., Vanderkerken, K., y Van Riet, I. (2018). Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia, 32(7), 1500-1514. https://doi.org/10.1038/s41375-018-0061-9spa
dc.relation.referencesZambetti, N. A., Ping, Z., Chen, S., Kenswil, K. J. G., Mylona, M. A., Sanders, M. A., Hoogenboezem, R. M., Bindels, E. M. J., Adisty, M. N., Van Strien, P. M. H., van der Leije, C. S., Westers, T. M., Cremers, E. M. P., Milanese, C., Mastroberardino, P. G., van Leeuwen, J. P. T. M., van der Eerden, B. C. J., Touw, I. P., Kuijpers, T. W., … Raaijmakers, M. H. G. P. (2016). Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell, 19(5). https://doi.org/10.1016/j.stem.2016.08.021spa
dc.relation.referencesZhang, B., Ho, Y. W., Huang, Q., Maeda, T., Lin, A., Lee, S., Hair, A., Holyoake, T. L., Huettner, C., y Bhatia, R. (2012). Altered Microenvironmental Regulation of Leukemic and Normal Stem Cells in Chronic Myelogenous Leukemia. Cancer Cell, 21(4), 577-592. https://doi.org/10.1016/j.ccr.2012.02.018spa
dc.relation.referencesZhang, B., Li, M., McDonald, T., Holyoake, T. L., Moon, R. T., Campana, D., Shultz, L., y Bhatia, R. (2013). Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt–β-catenin signaling. Blood, 121(10), 1824-1838. https://doi.org/10.1182/blood-2012-02-412890spa
dc.relation.referencesZhao, Z.-G., Liang, Y., Li, K., Li, W.-M., Li, Q.-B., Chen, Z.-C., y Zou, P. (2007). Phenotypic and Functional Comparison of Mesenchymal Stem Cells Derived from the Bone Marrow of Normal Adults and Patients with Hematologic Malignant Diseases. Stem Cells Dev., 16(4), 637-648. https://doi.org/10.1089/scd.2007.0008spa
dc.relation.referencesZheng, Y., Tu, C., Zhang, J., y Wang, J. (2019). Inhibition of multiple myeloma‑derived exosomes uptake suppresses the functional response in bone marrow stromal cell. Int. J. Oncol., 54(3). https://doi.org/10.3892/ijo.2019.4685spa
dc.relation.referencesZhou, D., Shao, L., y Spitz, D. R. (2014). Reactive Oxygen Species in Normal and Tumor Stem Cells. En Adv. Cancer Res. (pp. 1-67). https://doi.org/10.1016/B978-0-12-420117-0.00001-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc570 - Biologíaspa
dc.subject.proposalLeucemia linfoblástica aguda de células B (LLA-B)spa
dc.subject.proposalMSC del co-cultivo (MSC-CO)spa
dc.subject.proposalProteína quinasa C (PKC)spa
dc.subject.proposalMesenchymal stem cells (MSC)eng
dc.subject.proposalNicho leucémico (NL)spa
dc.subject.proposalMicroambiente de la médula ósea (MO)spa
dc.subject.proposalSenescencia reversiblespa
dc.subject.proposalPro-inflamatoriospa
dc.subject.proposalB-cell acute lymphoblastic leukemia (B-ALL)eng
dc.subject.proposalLeukemic niche (LN)eng
dc.subject.proposalMSC from co-culture (MSC-CO)eng
dc.subject.proposalProtein kinase C (PKC)eng
dc.subject.proposalBone marrow (BM) microenvironmenteng
dc.subject.proposalReversible senescenceeng
dc.subject.proposalPro-inflammatoryeng
dc.titlePapel de la proteína quinasa C (PKC) en el crecimiento de células de leucemia linfoide aguda tipo B, en el soporte que les proporcionan las células stem mesenquimales y en su funcionalidad en un modelo in vitro de nicho leucémicospa
dc.title.translatedRole of protein kinase C (PKC) in the growth of B-cell acute lymphoblastic leukemia cells, in the support provided by mesenchymal stem cells and in their functionality in an in vitro model of leukemic niche.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación Contrato No. 58257spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010195476.2021.pdf
Tamaño:
135.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Ciencias Biomédicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: