Feromona sexual como estrategia para el manejo integrado de Opsiphanes cassina Felder, 1862 en cultivos de palma de aceite

dc.contributor.advisorChegwin Angarita, Carolina
dc.contributor.advisorMorales Rodríguez, Anuar
dc.contributor.authorBustos Cortés, Jenifer Jhoana
dc.contributor.educationalvalidatorRomero Frías, Alicia
dc.contributor.orcidJenifer Jhoana Bustos Cortes [0000000155457866]spa
dc.contributor.researchgroupQuímica de Hongos Macromicetos Colombianosspa
dc.date.accessioned2023-07-21T19:41:20Z
dc.date.available2023-07-21T19:41:20Z
dc.date.issued2023-07-07
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractUno de los principales insectos-plaga que afecta actualmente al sector palmicultor de Colombia es Opsiphanes cassina Felder, 1862 (Lepidoptera: Nymphalidae). El alto consumo foliar del estadio larval de este lepidóptero lo convierte en una especie agresiva de difícil manejo, causante de pérdidas económicas significativas. Las características bioecológicas de O. cassina en el cultivo de palma de aceite indican que uno de los puntos clave para su manejo integrado es el monitoreo y control de las poblaciones de adultos. En este sentido, la modificación del comportamiento en respuesta al uso de estímulos de naturaleza química como las feromonas, resulta un escenario promisorio. El objetivo de este trabajo fue establecer las condiciones de extracción, análisis químico y evaluación de los semioquímicos que modulan la conducta sexual de O. cassina. Para ello, la investigación se desarrolló en tres etapas: en la primera se estudió el comportamiento de la especie bajo condiciones de laboratorio; en la segunda, se extrajeron e identificaron los VOCs liberados por los adultos y finalmente, en la tercera, se evaluó la respuesta electrofisiológica y comportamental de los insectos frente a los compuestos identificados. La separación de los individuos adultos, de acuerdo con las características de dimorfismo sexual de la especie, permitió establecer la presencia de estructuras glandulares en el abdomen y alas de los machos, las cuales se han asociado con la producción de la feromona sexual de insectos de la misma familia y género. Por su parte, las observaciones del comportamiento bajo condiciones de laboratorio sugirieron que el llamado de los machos hacia las hembras ocurre entre las 18:00 y las 20:00 h, horario en el cual el macho llena sus estructuras glandulares, tiembla, realiza movimientos de abdomen y expone los penachos de las alas posteriores, mientras libera la feromona sexual. El análisis por CG-EM de las muestras de extracción directa con solvente, head-space dinámico HSD y head-space estático con micro-extracción en fase sólida HS-MEFS, permitió identificar tres VOCs específicos de los machos como (E)-nerolidol, vainillina y (Z)-7-heptadeceno. La evaluación por electroantenografía EAG, mostró que las hembras son estimuladas por los compuestos, lo que sugiere su posible participación en la interacción intraespecífica de la especie; sin embargo, bajo las condiciones empleadas en la evaluación comportamental no fue posible confirmar su acción atrayente. Pese a ello, los semioquímicos identificados pueden constituir una alternativa para ser incorporados en el MIP de esta plaga en cultivos de palma de aceite, por lo que se recomienda su evaluación en campo. (Texto tomado de la fuente)spa
dc.description.abstractOne of the leading pest insects affecting the Colombian palm sector is Opsiphanes cassina Felder, 1862 (Lepidoptera: Nymphalidae). The high foliar consumption of the larval stage of this lepidopteran makes it an aggressive species that is difficult to manage, causing significant economic losses. The bioecological characteristics of O. cassina in oil palm cultivation indicate that one of the critical points for its integrated management is the monitoring and controlling of adult populations. In this sense, the modification of behavior in response to the use of stimuli of a chemical nature, such as pheromones, is a promising scenario. The objective of this work was to establish the extraction conditions, chemical analysis, and evaluation of the semiochemicals that modulate the sexual behavior of O. cassina. For this, the research involved three stages: in the first, the behavior of the specie was studied under laboratory conditions; in the second, the VOCs released by the adults were extracted and identified and finally, in the third, the electrophysiological and behavioral response of the insects against the identified compounds was evaluated. The separation of the adult individuals, according to the characteristics of sexual dimorphism of the species, allowed us to establish the presence of glandular structures in the abdomen and wings of the males, which are associated with the production of the sex pheromone of insects of the same family and genus. On the other hand, the observations of behavior under laboratory conditions suggested that the call of the males towards the females occurs between 18:00 and 20:00 h, a time in which the male fills his glandular structures, trembles, makes movements in the abdomen and exposes the tufts of the hind wings, while releasing the sex pheromone. The analysis by GC-MS of the samples of direct extraction with solvent, DHS, and HS-SPME, allowed to identify of three specific VOCs of the males as (E)-nerolidol, vanillin, and (Z)-7-heptadecene. The evaluation by EAG, showed the females are stimulated by the compounds, which suggests their possible participation in the intraspecific interaction of the species; however, under the conditions used in the behavioral evaluation, it was not possible to confirm its attracting action. Despite this, the identified semiochemicals may constitute an alternative to be incorporated into the IPM of this pest in oil palm crops, so their evaluation in the field is recommended.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentxxv, 111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84245
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedAgrosaviaspa
dc.relation.references(1) Sierra Márquez, J.; Sierra Márquez, L.; Olivero-Verbel, J. Potencial Económico de La Palma Aceitera (Elaeis Guineensis Jacq). Agron. Mesoam. 2017, 28 (2), 523. https://doi.org/10.15517/ma.v28i2.25927.spa
dc.relation.references(2) das Chagas, K. ESTUDO DO FEROMÔNIO DE OPSIPHANES INVIRAE (HUBNER, 1818) (LEPIDOPTERA: NYMPHALIDAE), Universidade Federal de Alagoas, Programa de Pós-Graduação da Rede Nordeste de Biotecnologia- Renorbio, 2018.spa
dc.relation.references(3) Mexzón, R. G.; Chinchilla, C. M. Opsiphanes Cassina Felder (Lepidoptera: Nymphalidae), Defoliator of the Oil Palm (Elaeis Guineensis Jacquin) in Central America. ASD Oil Palm Pap. 2011, 36, 14–33.spa
dc.relation.references(4) Matabanchoy, J. A.; Raigoza, D.; Bustillo, A. E. (PDF) Biología de Opsiphanes Cassina Defoliador Palma de Aceite En Colombia; 2018.spa
dc.relation.references(5) Eduardo Camperos Reyes, J.; Ignacio Barrera, E.; Hernandez, J. S.; Arias Gómez, H.; Mosquera Montoya, M. Propuesta Metodológica Para Estimar La Defoliación En La Palma de Aceite; 2020.spa
dc.relation.references(6) Aldana de La Torre, R. C.; Aldana de La Torre, J. A. Reconocimiento y Manejo de Insectos Defoliadores y Asociados a La Pestalotiopsis; Centro de Investigación en Palma de Aceite, C., Ed.; Centro de Investigación en Palma de Aceite, Cenipalma, 2011.spa
dc.relation.references(7) Rodríguez, G.; Silva, R.; Cásares, R.; Barrios, R.; Díaz, A.; Fariñas, J. Tecnología Agronómica de La Palma Aceitera (Elaeis Guineensis Jacq,) y Manejo Integrado de Su Defoliador Opsiphanes Cassina Felder (Lepidoptera: Brassolidae) En Plantaciones Comerciales Del Estado Monagas, Venezuela. Rev. Científica UDO Agrícola 2012, 3, 584–598.spa
dc.relation.references(8) Guo, J. M.; Liu, X. L.; Liu, S. R.; Wei, Z. Q.; Han, W. K.; Guo, Y.; Dong, S. L. Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm (Spodoptera Frugiperda). Insects 2020, 11 (3). https://doi.org/10.3390/insects11030193.spa
dc.relation.references(9) Wyatt, T. D. Pheromones. Current Biology. Cell Press August 7, 2017, pp R739–R743. https://doi.org/10.1016/j.cub.2017.06.039.spa
dc.relation.references(10) Schulz, S. The Chemistry of Pheromones and Other Semiochemicals I; 2004; Vol. 239.spa
dc.relation.references(11) Salas, J. Captura de Tuta Absoluta (Lepidoptera: Gelechiidae) En Trampas Cebadas Con Su Feromona Sexual. Rev. Colomb. Entomol. 2004, 30 (1).spa
dc.relation.references(12) Dou, X.; Liu, S.; Soroker, V.; Harari, A.; Jurenka, R. Pheromone Gland Transcriptome of the Pink Bollworm Moth, Pectinophora Gossypiella: Comparison between a Laboratory and Field Population. PLoS One 2019, 14 (7), e0220187. https://doi.org/10.1371/journal.pone.0220187.spa
dc.relation.references(13) Felipe Bosa, O.; Pablo Osorio, M.; Alba Marina Cotes, P.; Bengtsson, M.; Witzgall, P.; Fukumoto, T. Control of Tecia Solanivora (Lepidoptera: Gelechiidae) through Its Pheromone for Mating Disruption. Rev. Colomb. Entomol. 2008, 34 (1), 68–75.spa
dc.relation.references(14) Cotes Prado, A. M.; Moreno-Velandia, C. A.; Zapata, Y.; Beltrán-Acosta, C.; Kobayashi, S.; Uribe Gutiérrez, L. A.; Elad, Y.; Bettiol, W.; Jijakli, H.; Wisniewski, M.; Caro-Quintero, A.; González Almario, C.; Balbín-Suárez, A.; Berg, G.; Smalla, K.; Grijalba, E.; Hurst, M.; Ibarra, J.; Jurat-Fuentes, J. L.; Jackson, T.; Espinel Correal, C.; Torres Torres, L. A.; Villamizar Rivero, L. F.; Bustillo Pardey, A. E.; Zuluaga Mogollón, M. V.; Cuartas, P.; Gómez Valderrama, J. A.; Barrera Cubillos, G. P.; López-Ferber, M.; Borrero-Echeverry, F.; Barreto-Triana, N.; Aragón-Rodríguez, S. M.; Rivera-Trujillo, H. F.; Oehlschlager, C.; Kondo, T.; Rincón, D. F.; Pérez Álvarez, R.; Vásquez Ordóñez, A. A.; González, G. Control Biológico de Fitopatógenos, Insectos y Ácaros: Agentes de Control Biológico (Volumen 1 y 2), 1st ed.; Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 2018. https://doi.org/10.21930/agrosavia.investigation.7402537.spa
dc.relation.references(15) Pherobase :: Family Index - Nymphalidae https://www.pherobase.com/database/family/family-Nymphalidae.php (accessed Oct 25, 2021).spa
dc.relation.references(16) Hedenström, E.; Wallin, E. A.; Andersson, J.; Bång, J.; Wang, H.-L.; Löfstedt, C.; Brattström, O.; Baquet, P. Stereoisomeric Analysis of 6,10,14-Trimethylpentadecan-2-Ol and the Corresponding Ketone in Wing Extracts from African Bicyclus Butterfly Species. https://doi.org/10.1007/s10886-014-0539-5.spa
dc.relation.references(17) Wang, H.-L.; Brattström, O.; Brakefield, P. M.; Francke, W.; Löfstedt, C. Identification and Biosynthesis of Novel Male Specific Esters in the Wings of the Tropical Butterfly, Bicyclus Martius Sanaos. J. Chem. Ecol. 2014 406 2014, 40 (6), 549–559. https://doi.org/10.1007/S10886-014-0452-Y.spa
dc.relation.references(18) Liénard, M. A.; Wang, H. L.; Lassance, J. M.; Löfstedt, C. Sex Pheromone Biosynthetic Pathways Are Conserved between Moths and the Butterfly Bicyclus Anynana. Nat. Commun. 2014, 5. https://doi.org/10.1038/ncomms4957.spa
dc.relation.references(19) Schulz, S.; Steffensky, M.; Roisin, Y. Identification and Synthesis of Elymniafuran, a New Monoterpene from the Butterfly Elymnias Thryallis. Liebigs Ann. 1996, 94 (6), 941–946. https://doi.org/10.1002/jlac.199619960612.spa
dc.relation.references(20) Hayashi, N.; Kawaguchi, H.; Nishi, A.; Komae, H. γ-Decalactone, an Odoriferous Compound from the Male Butterfly, Lethe Marginalis Motschulsky. Zeitschrift für Naturforsch. C 1987, 42 (7–8), 1001–1002. https://doi.org/10.1515/ZNC-1987-7-846.spa
dc.relation.references(21) Stenberg, J. A. A Conceptual Framework for Integrated Pest Management. Trends Plant Sci. 2017, 22 (9), 759–769. https://doi.org/10.1016/j.tplants.2017.06.010.spa
dc.relation.references(22) Prokopy, R.; Kogan, M. Integrated Pest Management. In Encyclopedia of Insects; Academic Press, 2009; pp 523–528. https://doi.org/10.1016/B978-0-12-374144-8.00148-X.spa
dc.relation.references(23) Bergström, G. Chemical Ecology = Chemistry + Ecology! In Pure and Applied Chemistry; 2007; Vol. 79, pp 2305–2323. https://doi.org/10.1351/pac200779122305.spa
dc.relation.references(24) Smart, L. E.; Aradottir, G. I.; Bruce, T. J. A. Role of Semiochemicals in Integrated Pest Management. In Integrated Pest Management: Current Concepts and Ecological Perspective; Academic Press, 2014; pp 93–109. https://doi.org/10.1016/B978-0-12-398529-3.00007-5.spa
dc.relation.references(25) Brunetti, A. E.; Carnevale Neto, F.; Vera, M. C.; Taboada, C.; Pavarini, D. P.; Bauermeister, A.; Lopes, N. P. An Integrative Omics Perspective for the Analysis of Chemical Signals in Ecological Interactions. Chemical Society Reviews. Royal Society of Chemistry March 7, 2018, pp 1574–1591. https://doi.org/10.1039/c7cs00368d.spa
dc.relation.references(26) Dicke, M.; Sabelis, M. W. Infochemical Terminology: Based on Cost-Benefit Analysis Rather than Origin of Compounds? Funct. Ecol. 1988, 2 (2), 131. https://doi.org/10.2307/2389687.spa
dc.relation.references(27) Meiners, T. Chemical Ecology and Evolution of Plant-Insect Interactions: A Multitrophic Perspective. Current Opinion in Insect Science. Elsevier April 1, 2015, pp 22–28. https://doi.org/10.1016/j.cois.2015.02.003.spa
dc.relation.references(28) Liebig, J. Chemical Ecology: A New Royal Scent in a Small Insect Society. Curr. Biol. 2020, 30 (6), R280–R282. https://doi.org/10.1016/j.cub.2020.02.014.spa
dc.relation.references(29) DOUGHERTY, M. J.; GUERIN, P. M.; WARD, R. D. Identification of Oviposition Attractants for the Sandfly Lutzomyia Longipalpis (Diptera: Psychodidae) in Volatiles of Faeces from Vertebrates. Physiol. Entomol. 1995, 20 (1), 23–32. https://doi.org/10.1111/j.1365-3032.1995.tb00797.x.spa
dc.relation.references(30) Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Plant Responses to Herbivory, Wounding, and Infection. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute June 24, 2022, p 7031. https://doi.org/10.3390/ijms23137031.spa
dc.relation.references(31) Khan, Z. R.; James, D. G.; Midega, C. A. O.; Pickett, J. A. Chemical Ecology and Conservation Biological Control. Biol. Control 2008, 45 (2), 210–224. https://doi.org/10.1016/J.BIOCONTROL.2007.11.009.spa
dc.relation.references(32) Bezerra, R. H. S.; Sousa-Souto, L.; Santana, A. E. G.; Ambrogi, B. G. Indirect Plant Defenses: Volatile Organic Compounds and Extrafloral Nectar. Arthropod-Plant Interactions. Springer May 17, 2021, pp 467–489. https://doi.org/10.1007/s11829-021-09837-1.spa
dc.relation.references(33) Zhou (周绍群), S.; Jander, G. Molecular Ecology of Plant Volatiles in Interactions with Insect Herbivores. J. Exp. Bot. 2022, 73 (2), 449–462. https://doi.org/10.1093/JXB/ERAB413.spa
dc.relation.references(34) Veyrat, N.; Robert, C. A. M.; Turlings, T. C. J.; Erb, M. Herbivore Intoxication as a Potential Primary Function of an Inducible Volatile Plant Signal. J. Ecol. 2016, 104 (2), 591–600. https://doi.org/10.1111/1365-2745.12526.spa
dc.relation.references(35) Bonaventure, G.; VanDoorn, A.; Baldwin, I. T. Herbivore-Associated Elicitors: FAC Signaling and Metabolism. Trends in Plant Science. 2011, pp 294–299. https://doi.org/10.1016/j.tplants.2011.01.006.spa
dc.relation.references(36) Ingber, D. A.; Christensen, S. A.; Alborn, H. T.; Hiltpold, I. Detecting the Conspecific: Herbivory-Induced Olfactory Cues in the Fall Armyworm (Lepidoptera: Noctuidae). Metab. 2021, Vol. 11, Page 583 2021, 11 (9), 583. https://doi.org/10.3390/METABO11090583.spa
dc.relation.references(37) M. A. Ramos-López. Activity of the Main Fatty Acid Components of the Hexane Leaf Extract of Ricinus Communis against Spodoptera Frugiperda. AFRICAN J. Biotechnol. 2012, 11 (18), 4274–4278. https://doi.org/10.5897/ajb11.3727.spa
dc.relation.references(38) YOUSEF, H.; EL-LAKWAH, S. F.; EL SAYED, Y. A. INSECTICIDAL ACTIVITY OF LINOLEIC ACID AGAINST SPODOPTERA LITTORALIS (BOISD.). Egypt. J. Agric. Res. 2013, 91 (2), 573–580. https://doi.org/10.21608/ejar.2013.163516.spa
dc.relation.references(39) Sousa, T. C. da S.; Leite, N. A.; Sant’Ana, J. Responses of Trichogramma Pretiosum (Hymenoptera: Trichogrammatidae) to Rice and Corn Plants, Fed and Oviposited by Spodoptera Frugiperda (Lepidoptera: Noctuidae). Neotrop. Entomol. 2021, 50 (5), 697–705. https://doi.org/10.1007/s13744-021-00876-0.spa
dc.relation.references(40) Krieger, J.; Breer, H. Olfactory Reception in Invertebrates. Science (80-. ). 1999, 286 (5440), 720–723. https://doi.org/10.1126/science.286.5440.720.spa
dc.relation.references(41) Wyatt, T. D. Pheromones and Animal Behaviour Communication by Smell and Taste. 2003.spa
dc.relation.references(42) Karlson, P.; Lüscher, M. ‘Pheromones’: A New Term for a Class of Biologically Active Substances. Nat. 1959 1834653 1959, 183 (4653), 55–56. https://doi.org/10.1038/183055a0.spa
dc.relation.references(43) Rizvi, S. A. H.; George, J.; Reddy, G. V. P.; Zeng, X.; Guerrero, A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. Insects. Multidisciplinary Digital Publishing Institute May 23, 2021, p 484. https://doi.org/10.3390/insects12060484.spa
dc.relation.references(44) Bergmann, J.; Fuentes-Contreras, E.; Zaviezo, T. Feromonas y Su Uso En El Manejo de Plagas. In Bases Ecológicas para el Manejo de Plagas; 2021; pp 53–79.spa
dc.relation.references(45) Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100. https://doi.org/10.1007/s10886-009-9737-y.spa
dc.relation.references(46) Miller, J. R.; Gut, L. J. Mating Disruption for the 21st Century: Matching Technology with Mechanism. Environmental Entomology. Oxford Academic June 1, 2015, pp 427–453. https://doi.org/10.1093/ee/nvv052.spa
dc.relation.references(47) Hummel, H. E.; Langner, S. S.; Eisinger, M. T. Pheromone Dispensers, Including Organic Polymer Fibers, Described in the Crop Protection Literature: Comparison of Their Innovation Potential. Commun. Agric. Appl. Biol. Sci. 2013, 78 (2), 233–252.spa
dc.relation.references(48) Medina, V. V.; Solorzano, D. P.; Ávila, C. S.; Frías, A. R. Evaluation of a Synthetic Pheromone Dispensers to Control the Potato Moth, Tecia Solanivora (Lepidoptera: Gelechiidae). Int. J. Appl. Chem. 2019, 6 (1), 28–36. https://doi.org/10.14445/23939133/ijac-v6i1p105.spa
dc.relation.references(49) Caparros Megido, R.; Haubruge, E.; Verheggen, F. J. Pheromone-Based Management Strategies to Control the Tomato Leafminer, Tuta Absoluta (Lepidoptera: Gelechiidae). A Review. Biotechnol. Agron. Société Environ. = Biotechnol. Agron. Soc. Environ. [=BASE] 2013, 17 (3), 475–482.spa
dc.relation.references(50) International Pheromone Systems. Rubber Septum - International Pheromone Systems https://www.internationalpheromones.com/product/rubber-septum/ (accessed Dec 29, 2022).spa
dc.relation.references(51) Kovanci, O. B.; Schal, C.; Walgenbach, J. F.; Kennedy, G. G. Effects of Pheromone Loading, Dispenser Age, and Trap Height on Pheromone Trap Catches of the Oriental Fruit Moth in Apple Orchards. Phytoparasitica 2006, 34 (3), 252–260. https://doi.org/10.1007/BF02980952.spa
dc.relation.references(52) Zhang, A.; Leskey, T. C.; Bergh, J. C.; Walgenbach, J. F. Sex Pheromone Dispenser Type and Trap Design Affect Capture of Dogwood Borer. J. Chem. Ecol. 2013, 39 (3), 390–397. https://doi.org/10.1007/s10886-013-0251-x.spa
dc.relation.references(53) Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Computers and Electronics in Agriculture. Elsevier October 1, 2019, p 104943. https://doi.org/10.1016/j.compag.2019.104943.spa
dc.relation.references(54) Reddy, G. V. P.; Guerrero, A. New Pheromones and Insect Control Strategies; Academic Press, 2010; Vol. 83. https://doi.org/10.1016/S0083-6729(10)83020-1.spa
dc.relation.references(55) Flores, M. F.; Bergmann, J.; Ballesteros, C.; Arraztio, D.; Curkovic, T. Development of Monitoring and Mating Disruption against the Chilean Leafroller Proeulia Auraria (Lepidoptera: Tortricidae) in Orchards. Insects 2021, 12 (7), 625. https://doi.org/10.3390/insects12070625.spa
dc.relation.references(56) Bento, J. M. S.; Vilela, E. F.; Parra, J. R. P.; Leal, W. S. Monitoring of Citrus Fruit Borer with Sexual Pheromone: Behavioural Basis for Use of This New Approach. Laranja 2001, 22 (2), 351–366.spa
dc.relation.references(57) Leal, W. S.; Bento, J. M. S.; Murata, Y.; Ono, M.; Parra, J. R. P.; Vilela, E. F. Identification, Synthesis, and Field Evaluation of the Sex Pheromone of the Citrus Fruit Borer: Ecdytolopha Aurantiana. J. Chem. Ecol. 2001, 27 (10), 2041–2051. https://doi.org/10.1023/A:1012242904220/METRICS.spa
dc.relation.references(58) Bento, J. M. S.; Parra, J. R. P.; de Miranda, S. H. G.; Adami, A. C. O.; Vilela, E. F.; Leal, W. S. How Much Is a Pheromone Worth? [Version 1; Referees: 2 Approved]. F1000Research 2016, 5. https://doi.org/10.12688/F1000RESEARCH.9195.1.spa
dc.relation.references(59) Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100. https://doi.org/10.1007/s10886-009-9737-y.spa
dc.relation.references(60) Cardé, R. T.; Bau, J.; Elkinton, J. S. Comparison of Attraction and Trapping Capabilities of Bucket- and Delta-Style Traps with Different Pheromone Emission Rates for Gypsy Moths (Lepidoptera: Erebidae): Implications for Understanding Range of Attraction and Utility in Surveillance. Environ. Entomol. 2018, 47 (1), 107–113. https://doi.org/10.1093/ee/nvx185.spa
dc.relation.references(61) Williams, D. T.; Jonusas, G. The Influence of Tree Species and Edge Effects on Pheromone Trap Catches of Oak Processionary Moth Thaumetopoea Processionea (L.) in the U.K. Agric. For. Entomol. 2019, 21 (1), 28–37. https://doi.org/10.1111/afe.12300.spa
dc.relation.references(62) Cruz-Esteban, S.; Valencia-Botín, A. J.; Virgen, A.; Santiesteban, A.; Mérida-Torres, N. M.; Rojas, J. C. Performance and Efficiency of Trap Designs Baited with Sex Pheromone for Monitoring Spodoptera Frugiperda Males in Corn Crops. Int. J. Trop. Insect Sci. 2022, 42 (1), 715–722. https://doi.org/10.1007/s42690-021-00595-4.spa
dc.relation.references(63) Reddy, G. V. P.; Guerrero, A. New Pheromones and Insect Control Strategies; 2010; Vol. 83. https://doi.org/10.1016/S0083-6729(10)83020-1.spa
dc.relation.references(64) Jabamo, T.; Ayalew, G.; Goftishu, M.; Wakgari, M. Integrated Effect of Insecticide and Sex Pheromone on the Tomato Leafminer, Tuta Absoluta (Lepidoptera: Gelechiidae). SSRN Electron. J. 2022. https://doi.org/10.2139/ssrn.4225281.spa
dc.relation.references(65) Akutse, K. S.; Subramanian, S.; Khamis, F. M.; Ekesi, S.; Mohamed, S. A. Entomopathogenic Fungus Isolates for Adult Tuta Absoluta (Lepidoptera: Gelechiidae) Management and Their Compatibility with Tuta Pheromone. J. Appl. Entomol. 2020, 144 (9), 777–787. https://doi.org/10.1111/jen.12812.spa
dc.relation.references(66) Leal, W. S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu. Rev. Entomol. 2013, 58 (1), 373–391. https://doi.org/10.1146/annurev-ento-120811-153635.spa
dc.relation.references(67) Klassen, D.; Lennox, M. D.; Dumont, M. J.; Chouinard, G.; Tavares, J. R. Dispensers for Pheromonal Pest Control. Journal of Environmental Management. Academic Press January 1, 2023, p 116590. https://doi.org/10.1016/j.jenvman.2022.116590.spa
dc.relation.references(68) Haviland, D. R.; Rijal, J. P.; Rill, S. M.; Higbee, B. S.; Burks, C. S.; Gordon, C. A. Management of Navel Orangeworm (Lepidoptera: Pyralidae) Using Four Commercial Mating Disruption Systems in California Almonds. J. Econ. Entomol. 2021, 114 (1), 238–247. https://doi.org/10.1093/JEE/TOAA297.spa
dc.relation.references(69) Khan, Z.; Midega, C. A. O.; Hooper, A.; Pickett, J. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology. J. Chem. Ecol. 2016, 42 (7), 689–697. https://doi.org/10.1007/s10886-016-0730-y.spa
dc.relation.references(70) Cenipalma. Guía Para La Elaboración y Ubicación de Trampas Para La Captura de Rhynchophorus Palmarum L.; Cenipalma, 2017.spa
dc.relation.references(71) Medina, V. V. Señales Químicas Entre El Escarabajo-Plaga Strategus Aloeus (Coleoptera: Scarabaeidae: Dynastinae) y La Palma de Aceite (Elaeis Guineensis Jacq.), Universidad Nacional de Colombia, sede Bogotá. Tesis de Maestría en Ciencias-Química, 2021.spa
dc.relation.references(72) McNeil, J. N. Behavioral Ecology of Pheromone-Mediated Communication in Moths and Its Importance in the Use of Pheromone Traps. Annu. Rev. Entomol. 1991, 36 (1), 407–430. https://doi.org/10.1146/annurev.en.36.010191.002203.spa
dc.relation.references(73) Björn G. Johansson; Therésa M. Jones. The Role of Chemical Communication in Mate Choice. Biol. Rev. 2007, 82 (2), 265–289.spa
dc.relation.references(74) Romero Frías, A. Estudio de Los Semioquímicos Responsables de La Interacción Entre La Guayaba (Psidium Guajava L) y El Picudo de La Guayaba Conotrachelus Psidii Marshall, Universidad Nacional de Colombia, Tesis de Doctorado en Ciencias-Química, 2015.spa
dc.relation.references(75) Carey, A. F.; Carlson, J. R. Insect Olfaction from Model Systems to Disease Control. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (32), 12987–12995. https://doi.org/10.1073/pnas.1103472108.spa
dc.relation.references(76) Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front. Physiol. 2019, 10 (JUL), 972. https://doi.org/10.3389/fphys.2019.00972.spa
dc.relation.references(77) Haverkamp, A.; Hansson, B. S.; Knaden, M. Combinatorial Codes and Labeled Lines: How Insects Use Olfactory Cues to Find and Judge Food, Mates, and Oviposition Sites in Complex Environments. Front. Physiol. 2018, 9 (FEB). https://doi.org/10.3389/fphys.2018.00049.spa
dc.relation.references(78) Brito, N. F.; Moreira, M. F.; Melo, A. C. A. A Look inside Odorant-Binding Proteins in Insect Chemoreception. J. Insect Physiol. 2016, 95, 51–65. https://doi.org/10.1016/j.jinsphys.2016.09.008.spa
dc.relation.references(79) Syntech. Electroantennography: A Practical Introduction, 1st ed.; Ockenfels SYNTECH, Ed.; SYNTECH: Kirchzarten, 2004.spa
dc.relation.references(80) Park, K. C.; Ochieng, S. A.; Zhu, J.; Baker, T. C. Odor Discrimination Using Insect Electroantennogram Responses from an Insect Antennal Array. Chem. Senses 2002, 27 (4), 343–352. https://doi.org/10.1093/chemse/27.4.343.spa
dc.relation.references(81) Ando, T.; Yamakawa, R. Analyses of Lepidopteran Sex Pheromones by Mass Spectrometry. TrAC - Trends Anal. Chem. 2011, 30 (7), 990–1002. https://doi.org/10.1016/j.trac.2011.03.010.spa
dc.relation.references(82) Olsson, S. B.; Hansson, B. S. Electroantennogram and Single Sensillum Recording in Insect Antennae. Methods Mol. Biol. 2013, 1068, 157–177. https://doi.org/10.1007/978-1-62703-619-1_11.spa
dc.relation.references(83) Legros, S.; Mialet-Serra, I.; Caliman, J. P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M. Phenology, Growth and Physiological Adjustments of Oil Palm (Elaeis Guineensis) to Sink Limitation Induced by Fruit Pruning. Ann. Bot. 2009, 104 (6), 1183–1194. https://doi.org/10.1093/aob/mcp216.spa
dc.relation.references(84) Combres, J. C.; Pallas, B.; Rouan, L.; Mialet-Serra, I.; Caliman, J. P.; Braconnier, S.; Soulié, J. C.; Dingkuhn, M. Simulation of Inflorescence Dynamics in Oil Palm and Estimation of Environment-Sensitive Phenological Phases: A Model Based Analysis. Funct. Plant Biol. 2013, 40 (3), 263–279. https://doi.org/10.1071/FP12133.spa
dc.relation.references(85) Legros, S.; Mialet-Serra, I.; Caliman, J. P.; Siregar, F. A.; Clément-Vidal, A.; Dingkuhn, M. Phenology and Growth Adjustments of Oil Palm (Elaeis Guineensis) to Photoperiod and Climate Variability. Ann. Bot. 2009, 104 (6), 1171–1182. https://doi.org/10.1093/aob/mcp214.spa
dc.relation.references(86) McMorrow, J. Linear Regression Modelling for the Estimation of Oil Palm Age from Landsat TM. Int. J. Remote Sens. 2001, 22 (12), 2243–2264. https://doi.org/10.1080/01431160117188.spa
dc.relation.references(87) Mauricio Romero, H.; Diana Carolina Forero, C.; Hormaza, P.; Rueda Williamson, C. Estadios Fenológicos de Crecimiento de Palma de Aceite Africana (Elaeis Guineensis). Palmas 2012, 33 (1), 23–35.spa
dc.relation.references(88) Hernawati, R.; Wikantika, K.; Darmawan, S. Modeling of Oil Palm Phenology Based on Remote Sensing Data: Opportunities and Challenges. J. Appl. Remote Sens. 2022, 16 (02), 021501. https://doi.org/10.1117/1.jrs.16.021501.spa
dc.relation.references(89) Forero Hernández, D. C.; Martínez Paola, A. H. Generalidades Sobre La Morfología y Fenología de La Palma de Aceite; 2012.spa
dc.relation.references(90) Penagos, U.; Blanca, Y.; Cortés, G.; Camilo, A.; Lizarazo, L.; Cortés Gómez, C. A.; Penagos Ulloa, B. Y.; Lizarazo Leguizamón, G.; Toca Garzón, J. R. Corte y Recolección de Racimos de Palma de Aceite; 2017.spa
dc.relation.references(91) Mendoza-García, M.; Oliveros-Contreras, D.; Guzmán-Duque, A. P. La Eficiencia de Las Empresas Del Sector Palmicultor En Colombia. Rev. Esc. Adm. Negocios 2020, 88 (88), 33–48. https://doi.org/10.21158/01208160.n88.2020.2695.spa
dc.relation.references(92) Absalome, M. A.; Massara, C. C.; Alexandre, A. A.; Gervais, K.; Chantal, G. G. A.; Ferdinand, D.; Rhedoor, A. J.; Coulibaly, I.; George, T. G.; Brigitte, T.; Marion, M.; Jean-Paul, C. Biochemical Properties, Nutritional Values, Health Benefits and Sustainability of Palm Oil. Biochimie 2020, 178, 81–95. https://doi.org/10.1016/j.biochi.2020.09.019.spa
dc.relation.references(93) Goh, K. J.; Wong, C. K.; Ng, P. H. C. Oil Palm, 2nd ed.; Elsevier Inc., 2016; Vol. 3. https://doi.org/10.1016/B978-0-12-394807-6.00176-3.spa
dc.relation.references(94) Producción Agrícola Mundial, Aceite de Palma - Producción por País http://www.produccionagricolamundial.com/cultivos/aceitedepalma.aspx (accessed Oct 13, 2022).spa
dc.relation.references(95) Pertuz Martínez, A. P.; Santamaría Escobar, Á. E. LA PALMICULTURA COLOMBIANA: SOSTENIBILIDAD ECONÓMICA, SOCIAL Y AMBIENTAL. Tendencias (Revista la Fac. Ciencias Económicas y Adm. Univ. Nariño) 2014, 15 (1), 173. https://doi.org/10.22267/rtend.141501.55.spa
dc.relation.references(96) Fedepalma. Balance Económico Del Sector Palmero Colombiano En El Primer Trimestre de 2022; 2022.spa
dc.relation.references(97) Fedepalma. La Palma de Aceite En Colombia | Fedepalma. Fedepalma 2016, 2018.spa
dc.relation.references(98) Mosquera, M.; Lopez, D.; Ruiz, E.; Castro, L. Mano de Obra En Cultivos de Palma Aceitera de Colombia: Participación En El Costo de Producción y Demanda. Rev. Palmas 2019, 40 (1), 46–53.spa
dc.relation.references(99) Woittiez, L. S.; van Wijk, M. T.; Slingerland, M.; van Noordwijk, M.; Giller, K. E. Brechas de Rendimiento En El Cultivo de Palma de Aceite: Una Revisión Cuantitativa de Factores Determinantes | Revista Palmas. Rev. Palmas 2018, 39 (1), 16–68.spa
dc.relation.references(100) Díshington, J. M. La Palmicultura Colombiana de Cara Al 2020. Rev. Palmas 2000, 21 (especial,), 9–17.spa
dc.relation.references(101) Rodríguez, G.; Silva, R.; Cásares, R.; Barrios, R.; Díaz, A.; Fariñas, J. Tecnología Agronómica de La Palma Aceitera (Elaeis Guineessis Jacq,) y Manejo Integrado de Su Defoliador Opsiphanes Cassina Felder (Lepidoptera:Brassolidae) En Plantaciones Comerciales Del Estado Monagas, Venezuela. Rev. Científica UDO Agrícola 2012, 12 (3), 584–598.spa
dc.relation.references(102) Darus, A.; Wahid, M. B. MIP Intensivo Para El Manejo de Plagas En Palma de Aceite*. Rev. palmas 2001, 22 (4), 19–35.spa
dc.relation.references(103) Ortiz, Y. La Palma de Aceite Como Ejemplo Para La Agroindustria En Colombia, FUNDACIÓN UNIVERSIDAD DE AMÉRICA, Tesis de pregrado en Economía, 2019.spa
dc.relation.references(104) Cardenas, P. S. Asistencia Tecnica Dirigida En Instalacion y Manejo Integrado de Plagas En Palma Aceitera; 2012.spa
dc.relation.references(105) Dishington, J. M.; Ignacio, J.; Scovino, S.; Becerra, J.; Coordinador, -Encinales; De Manejo, N.; Leidy, F.; Morales, C.; Analista De Manejo, I.; Colaboradores, F.; Bustillo, A. E.; Greicy, P.; Sarria Villa, A.; Aldana De La, R.; Carlos, T.; Uribe, M. A.; Moreno Muñoz, Y.; Fotografía, E. M.; Fredy, D.; Ballesteros, J. E. GUÍA DE BOLSILLO Para El Reconocimiento y Manejo de Las Principales Enfermedades e Insectos Plaga En El Cultivo de La Palma de Aceite, 1st ed.; Fedepalma: Bogotá, 2016.spa
dc.relation.references(106) Henson, I. E. La Poda En Palma de Aceite y Relación Entre El Área Foliar y El Rendimiento . Una Breve Revisión de Experimentos Previos *. PALMAS 2002, 23 (1), 9–14.spa
dc.relation.references(107) Rojas, B. A. PRINCIPALES INSECTOS ASOCIADOS AL CULTIVO DE PALMA DE ACEITE EN EL DEPARTAMENTO DEL META, Universidad Nacional Abierta y a Distancia UNAD, Tesis de pregrado en Agronomía, 2019.spa
dc.relation.references(108) Aldana Jorge; Aldana Rosa; Calvache Hugo; Franco Pedro. Manual de Plagas de La Palma de Aceite En Colombia; Centro de Investigación en Palma de Aceite, Cenipalma, 2010.spa
dc.relation.references(109) Ribeiro, R. C.; Pikart, T. G.; Fouad, H. A.; Parreira, M. C.; Zanuncio, J. C.; Soares, M. A.; Castro, V. R. Trichospilus Diatraeae (Hymenoptera: Eulophidae): Development and Reproduction in Lepidoptera Palm Oil Pests. Brazilian J. Biol. 2019, 79 (3), 377–382. https://doi.org/10.1590/1519-6984.173211.spa
dc.relation.references(110) Daza, C. CORRELACIÓN DE LARVAS DE Opsiphanes Cassina, EN HOJA 9 Y 17 DE PALMA DE ACEITE, Universidad Nacional de Colombia, Tesis de Especialización en Cultivos perennes industriales, 2010.spa
dc.relation.references(111) Suckling, D. M.; Conlong, D. E.; Carpenter, J. E.; Bloem, K. A.; Rendon, P.; Vreysen, M. J. B. Global Range Expansion of Pest Lepidoptera Requires Socially Acceptable Solutions. Biol. Invasions 2017, 19 (4), 1107–1119. https://doi.org/10.1007/s10530-016-1325-9.spa
dc.relation.references(112) Britton, D. What are the differences between butterflies and moths? - Australian Museum https://australian.museum/learn/animals/insects/what-are-the-differences-between-butterflies-and-moths/ (accessed Dec 30, 2022).spa
dc.relation.references(113) Rutowski, R. L. Mate Choice and Lepidopteran Mating Behavior. Florida Entomol. 1982, 65 (1), 72. https://doi.org/10.2307/3494146.spa
dc.relation.references(114) Vane-Wright, R. I.; Boppre, M. Visual and Chemical Signalling in Butterflies: Functional and Phylogenetic Perspectives. Philos. Trans. - R. Soc. London, B 1993, 340 (1292), 197–205. https://doi.org/10.1098/rstb.1993.0058.spa
dc.relation.references(115) Birch, M. C.; Poppy, G. M.; Baker, T. C. Scents and Eversible Scent Structures of Male Moths. Annu. Rev. Entomol. Vol. 35 1990, 25–58. https://doi.org/10.1146/annurev.en.35.010190.000325.spa
dc.relation.references(116) Greendfield, M. . Signalers and Receiver: Mechanisms and Evolution of Arthropod Communication; 2002; Vol. 419.spa
dc.relation.references(117) Cannon, R. J. C. Courtship and Mating in Butterflies; The University of Chicago Press, 2020.spa
dc.relation.references(118) Wickman, P. C. The Influence of Temperature on the Territorial and Mate Locating Behaviour of the Small Heath Butterfly, Coenonympha Pamphilus (L.) (Lepidoptera: Satyridae). Behav. Ecol. Sociobiol. 1985, 16 (3), 233–238. https://doi.org/10.1007/BF00310985.spa
dc.relation.references(119) Carol L. Boggs, Ward B. Watt, Paul R. Ehrlich, P. R. E. Butterflies: Ecology and Evolution Taking Flight; 2003; Vol. 41. https://doi.org/10.5860/choice.41-2175.spa
dc.relation.references(120) Sarto Monteys, V. I.; Quero, C.; Santa-Cruz, M. C.; Rosell, G.; Guerrero, A. Sexual Communication in Day-Flying Lepidoptera with Special Reference to Castniids or “Butterfly-Moths.” Bull. Entomol. Res. 2016, 106 (4), 421–431. https://doi.org/10.1017/S0007485316000158.spa
dc.relation.references(121) Kristensen, N. P. Lepidoptera, Moths and Butterflies: Volume 2: Morphology, Physiology, and Development; De Gruyter, 2012. https://doi.org/10.1515/9783110893724.spa
dc.relation.references(122) Foster, S. P.; Anderson, K. G. Differential Pheromone Sampling of the Gland of Female Heliothis Virescens Moths Reveals Glandular Differences in Composition and Quantity. J. Chem. Ecol. 2018, 44 (5), 452–462. https://doi.org/10.1007/s10886-018-0954-0.spa
dc.relation.references(123) Comprehensive Natural Products Chemistry. Choice Rev. Online 1999, 37 (02), 37-0939-37–0939. https://doi.org/10.5860/choice.37-0939.spa
dc.relation.references(124) Tillman, J. A.; Seybold, S. J.; Jurenka, R. A.; Blomquist, G. J. Insect Pheromones - An Overview of Biosynthesis and Endocrine Regulation. Insect Biochem. Mol. Biol. 1999, 29 (6), 481–514. https://doi.org/10.1016/S0965-1748(99)00016-8.spa
dc.relation.references(125) Pliske, T. E.; Eisner, T. Sex Pheromone of the Queen Butterfly: Biology. Science (80-. ). 1969, 164 (3884), 1170–1172. https://doi.org/10.1126/SCIENCE.164.3884.1170.spa
dc.relation.references(126) Nishida, R.; Schulz, S.; Kim, C. S.; Fukami, H.; Kuwahara, Y.; Honda, K.; Hayashi, N. Male Sex Pheromone of a Giant Danaine Butterfly,Idea Leuconoe. J. Chem. Ecol. 1996 225 1996, 22 (5), 949–972. https://doi.org/10.1007/BF02029947.spa
dc.relation.references(127) Andersson, J.; Borg-Karlson, A.-K.; Vongvanich, N.; Wiklund, C. Male Sex Pheromone Release and Female Mate Choice in a Butterfly. J. Exp. Biol. 2007, 210 (6), 964–970. https://doi.org/10.1242/JEB.02726.spa
dc.relation.references(128) Taylor, L. R.; Vane-Wright, R. I.; Ackery, P. R. The Biology of Butterflies. J. Anim. Ecol. 1986, 55 (2), 752. https://doi.org/10.2307/4754.spa
dc.relation.references(129) Burdfield-Steel, E.; Pakkanen, H.; Rojas, B.; Galarza, J. A.; Mappes, J. De Novo Synthesis of Chemical Defenses in an Aposematic Moth. J. Insect Sci. 2018, 18 (2). https://doi.org/10.1093/JISESA/IEY020.spa
dc.relation.references(130) Trigo, J. R. The Chemistry of Antipredator Defense by Secondary Compounds in Neotropical Lepidoptera: Facts, Perspectives and Caveats. J. Braz. Chem. Soc. 2000, 11 (6), 551–561. https://doi.org/10.1590/S0103-50532000000600002.spa
dc.relation.references(131) Trigo, J. R. The Chemistry of Antipredator Defense by Secondary Compounds in Neotropical Lepidoptera: Facts, Perspectives and Caveats. J. Braz. Chem. Soc. 2000, 11 (6), 551–561. https://doi.org/10.1590/S0103-50532000000600002.spa
dc.relation.references(132) Larsen, E.; Calabrese, J. M.; Rhainds, M.; Fagan, W. F. How Protandry and Protogyny Affect Female Mating Failure: A Spatial Population Model. Entomol. Exp. Appl. 2013, 146 (1), 130–140. https://doi.org/10.1111/eea.12003.spa
dc.relation.references(133) Allen, C. E.; Zwaan, B. J.; Brakefield, P. M. Evolution of Sexual Dimorphism in the Lepidoptera. Annu. Rev. Entomol. 2011, 56, 445–464. https://doi.org/10.1146/annurev-ento-120709-144828.spa
dc.relation.references(134) Bento, J. M. S.; Parra, J. R. P.; Vilela, E. F.; Walder, J. M.; Leal, W. S. Sexual Behavior and Diel Activity of Citrus Fruit Borer: Ecdytolopha Aurantiana. J. Chem. Ecol. 2001, 27 (10), 2053–2065. https://doi.org/10.1023/A:1012294921058.spa
dc.relation.references(135) Srygley, R. B. Shivering and Its Cost during Reproductive Behaviour in Neotropical Owl Butterflies, Caligo and Opsiphanes (Nymphalidae: Brassolinae). Anim. Behav. 1994, 47 (1), 23–32. https://doi.org/10.1006/anbe.1994.1004.spa
dc.relation.references(136) Srygley, R. B.; Penz, C. M. Lekking in Neotropical Owl Butterflies, Caligo Illioneus and C. Oileus (Lepidoptera: Brassolinae). J. Insect Behav. 1999 121 1999, 12 (1), 81–103. https://doi.org/10.1023/A:1020981215501.spa
dc.relation.references(137) Felton, A.; Alford, R. A.; Felton, A. M.; Schwarzkopf, L. Multiple Mate Choice Criteria and the Importance of Age for Male Mating Success in the Microhylid Frog, Cophixalus Ornatus. Behav. Ecol. Sociobiol. 2006, 59 (6), 786–795. https://doi.org/10.1007/s00265-005-0124-6.spa
dc.relation.references(138) Sandoval, Y. Comportamiento Sexual y Éxito Reproductivo Del Barrenador de La Caña Diatraea Saccharalis (Fabricius 1794) (Lepidoptera: Crambidae) En Laboratorio, 2020.spa
dc.relation.references(139) Vanjari, S.; Mann, F.; Merrill, R. M.; Schulz, S.; Jiggins, C. D. Male Sex Pheromone Components in the Butterfly Heliconius Melpomene. bioRxiv 2015, 033506. https://doi.org/10.1101/033506.spa
dc.relation.references(140) Fagerström, T.; Wiklund, C. Why Do Males Emerge before Females? Protandry as a Mating Strategy in Male and Female Butterflies. Oecologia 1982, 52 (2), 164–166. https://doi.org/10.1007/BF00363830.spa
dc.relation.references(141) ZONNEVELD, C. Polyandry and Protandry in Butterflies. Bull. Math. Biol. 1992, 54 (6), 957–976. https://doi.org/10.1016/s0092-8240(05)80090-4.spa
dc.relation.references(142) Penz, C. M.; Williams, S. F. Wing Morphology and Body Design in Opsiphanes and Caligo Butterflies Match the Demands of Male Mating Displays (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 2020, 113 (3), 207–215. https://doi.org/10.1093/AESA/SAZ073.spa
dc.relation.references(143) Benson, W. W.; Marini-filho, O. J.; Carvalho, R. M. De. Territoriality by the Dawn’s Early Light: The Neotropical Owl Butter Y. October 1997, 1995 (June 1994), 14–20.spa
dc.relation.references(144) Crees, L. D.; Devries, P.; Penz, C. M. Do Hind Wing Eyespots of Caligo Butterflies Function in Both Mating Behavior and Antipredator Defense? (Lepidoptera, Nymphalidae). Ann. Entomol. Soc. Am. 2021, 114 (3), 329–337. https://doi.org/10.1093/aesa/saaa050.spa
dc.relation.references(145) Rhainds, M. Female Mating Failures in Insects. Entomologia Experimentalis et Applicata. 2010, pp 211–226. https://doi.org/10.1111/j.1570-7458.2010.01032.x.spa
dc.relation.references(146) Shapiro, A. M. The Role of Sexual Behavior in Density-Related Dispersal of Pierid Butterflies. Am. Nat. 1970, 104 (938), 367–372. https://doi.org/10.1086/282670.spa
dc.relation.references(147) Solensky, M. J. The Effect of Behavior and Ecology on Male Mating Success in Overwintering Monarch Butterflies (Danaus Plexippus). J. Insect Behav. 2004, 17 (6), 723–743. https://doi.org/10.1023/B:JOIR.0000048985.58159.0d.spa
dc.relation.references(148) Cameron, P. J.; Wallace, A. R.; Madhusudhan, V. V.; Wigley, P. J.; Qureshi, M. S.; Walker, G. P. Mating Frequency in Dispersing Potato Tuber Moth, Phthorimaea Operculella, and Its Influence on the Design of Refugia to Manage Resistance in Bt Transgenic Crops. Entomol. Exp. Appl. 2005, 115 (2), 323–332. https://doi.org/10.1111/j.1570-7458.2005.00256.x.spa
dc.relation.references(149) Kvedaras, O. L.; Gregg, P. C.; Del Socorro, A. P. Techniques Used to Determine the Mating Behaviour of Helicoverpa Armigera (Hubner) (Lepidoptera: Noctuidae) in Relation to Host Plants. Aust. J. Entomol. 2000, 39 (3), 188–194. https://doi.org/10.1046/j.1440-6055.2000.00156.x.spa
dc.relation.references(150) Zeng, B.; Zhu, W.; Fu, Y.; Zhou Id, S. Influence of High-Temperature Exposure on the Mating, Oviposition and Thermotaxis of Bactrocera Cucurbitae (Coquillet) (Diptera: Tephritidae). 2018. https://doi.org/10.1371/journal.pone.0204065.spa
dc.relation.references(151) Mbata, G. N. Combined Effect of Temperature and Relative Humidity on Mating Activities and Commencement of Oviposition in Plodia Interpunctella (Hubner) (Lepidoptera: Phycitidae). Int. J. Trop. Insect Sci. 1986, 7 (05), 623–628. https://doi.org/10.1017/S1742758400011553.spa
dc.relation.references(152) Wu, S.; Refinetti, R.; Kok, L. T.; Youngman, R. R.; Reddy, G. V. P.; Xue, F.-S. Photoperiod and Temperature Effects on the Adult Eclosion and Mating Rhythms in Pseudopidorus Fasciata (Lepidoptera: Zygaenidae). Environ. Entomol. 2014, 43 (6), 1650–1655. https://doi.org/10.1603/EN14164.spa
dc.relation.references(153) Royer, L.; McNeil, J. N. Effect of Relative Humidity Conditions on Responsiveness of European Corn Borer (Ostrinia Nubilalis) Males to Female Sex Pheromone in a Wind Tunnel. J. Chem. Ecol. 1993, 19 (1), 61–69. https://doi.org/10.1007/BF00987471.spa
dc.relation.references(154) WELLINGTON, W. G. The Effects of Variations in Atmospheric Pressure upon Insects. Can. J. Res. 1946, 24 (Sect D), 51–70. https://doi.org/10.1139/cjr46d-006.spa
dc.relation.references(155) Pellegrino, A. C.; Gomes, M. F.; Peñ Aflor, V.; Nardi, C.; Bezner-Kerr, W.; Guglielmo, C. G.; Simõ Es Bento, J. M.; Mcneil, J. N. Weather Forecasting by Insects: Modified Sexual Behaviour in Response to Atmospheric Pressure Changes. 2013. https://doi.org/10.1371/journal.pone.0075004.spa
dc.relation.references(156) Miao, J.; Guo, P.; Li, H.; Wei, C.; Liu, Q.; Gong, Z.; Duan, Y.; Li, T.; Jiang, Y.; Feng, H.; Wu, Y. Low Barometric Pressure Enhances Tethered-Flight Performance and Reproductive of the Oriental Armyworm, Mythimna Separata (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114 (2), 620–626. https://doi.org/10.1093/JEE/TOAA291.spa
dc.relation.references(157) Climate-Data.org. Clima Puerto Gaitán: Temperatura, Climograma y Tabla climática para Puerto Gaitán https://es.climate-data.org/america-del-sur/colombia/meta/puerto-gaitan-49962/ (accessed Aug 30, 2021).spa
dc.relation.references(158) Baker, R. R. Insect Territoriality. Annu. Rev. Entomol. Vol. 28 1983, 65–89. https://doi.org/10.1146/annurev.en.28.010183.000433.spa
dc.relation.references(159) Stepien, T. L.; Zmurchok, C.; Hengenius, J. B.; Rivera, R. M. C.; D’Orsogna, M. R.; Lindsay, A. E. Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success. Appl. Sci. 2020, 10 (18), 6543. https://doi.org/10.3390/APP10186543.spa
dc.relation.references(160) Advances in Insect Chemical Ecology; Carde, R. T., Millar, J. G., Eds.; Cambridge University Press, 2004. https://doi.org/10.1017/cbo9780511542664.spa
dc.relation.references(161) Cardé, R. T.; Baker, T. C. Sexual Communication with Pheromones. In Chemical Ecology of Insects; Springer, Boston, MA, 1984; pp 355–383. https://doi.org/10.1007/978-1-4899-3368-3_13.spa
dc.relation.references(162) Saveer, A. M.; Becher, P. G.; Birgersson, G.; Hansson, B. S.; Witzgall, P.; Bengtsson, M. Mate Recognition and Reproductive Isolation in the Sibling Species Spodoptera Littoralis and Spodoptera Litura. Front. Ecol. Evol. 2014, 2 (MAY), 18. https://doi.org/10.3389/FEVO.2014.00018/BIBTEX.spa
dc.relation.references(163) Guo, J. M.; Liu, X. L.; Liu, S. R.; Wei, Z. Q.; Han, W. K.; Guo, Y.; Dong, S. L. Functional Characterization of Sex Pheromone Receptors in the Fall Armyworm (Spodoptera Frugiperda). Insects 2020, 11 (3). https://doi.org/10.3390/insects11030193.spa
dc.relation.references(164) Fitzpatrick, S. M.; McNeil, J. N. MALE SCENT IN LEPIDOPTERAN COMMUNICATION: THE ROLE OF MALE PHEROMONE IN MATING BEHAVIOUR OF PSEUDALETIA UNIPUNCTA (HAW.) (LEPIDOPTERA: NOCTUIDAE). Mem. Entomol. Soc. Canada 1988, 120 (S146), 131–151. https://doi.org/10.4039/ENTM120146131-1.spa
dc.relation.references(165) Lee, M. S.; Albajes, R.; Eizaguirre, M. Mating Behaviour of Female Tuta Absoluta (Lepidoptera: Gelechiidae): Polyandry Increases Reproductive Output. J. Pest Sci. 2014 873 2014, 87 (3), 429–439. https://doi.org/10.1007/S10340-014-0576-4.spa
dc.relation.references(166) McNeil, J. N. Behavioral Ecology of Pheromone-Mediated Communication in Moths and Its Importance in the Use of Pheromone Traps. https://doi.org/10.1146/annurev.en.36.010191.002203 2003, 36 (1), 407–430. https://doi.org/10.1146/ANNUREV.EN.36.010191.002203.spa
dc.relation.references(167) Dion, E.; Monteiro, A.; Nieberding, C. M. The Role of Learning on Insect and Spider Sexual Behaviors, Sexual Trait Evolution, and Speciation. Front. Ecol. Evol. 2019, 6 (JAN), 225. https://doi.org/10.3389/FEVO.2018.00225/BIBTEX.spa
dc.relation.references(168) Symonds, M. R. E.; Elgar, M. A. The Evolution of Pheromone Diversity. Trends in Ecology and Evolution. April 2008, pp 220–228. https://doi.org/10.1016/j.tree.2007.11.009.spa
dc.relation.references(169) Domínguez, A.; López, S.; Bernabé, A.; Guerrero, Á.; Quero, C. Influence of Age, Host Plant and Mating Status in Pheromone Production and New Insights on Perception Plasticity in Tuta Absoluta. Insects 2019, Vol. 10, Page 256 2019, 10 (8), 256. https://doi.org/10.3390/INSECTS10080256.spa
dc.relation.references(170) Nieberding, C. M.; de Vos, H.; Schneider, M. V.; Lassance, J. M.; Estramil, N.; Andersson, J.; Bång, J.; Hedenström, E.; Löfstedt, C.; Brakefield, P. M. The Male Sex Pheromone of the Butterfly Bicyclus Anynana: Towards an Evolutionary Analysis. PLoS One 2008, 3 (7), e2751. https://doi.org/10.1371/journal.pone.0002751.spa
dc.relation.references(171) Yan, Q.; Fujino, A.; Naka, H.; Dong, S. L.; Ando, T. Chemical Analysis of the Female Sex Pheromone in Palpita Nigropunctalis (Lepidoptera: Crambidae). J. Asia. Pac. Entomol. 2018, 21 (4), 1283–1288. https://doi.org/10.1016/j.aspen.2018.10.001.spa
dc.relation.references(172) Choi, K. S.; Lee, J. M.; Park, J. H.; Cho, J. R.; Song, J. H.; Kim, D. S.; Boo, K. S. Sex Pheromone Composition of the Cotton Caterpillar, Palpita Indica (Lepidoptera: Pyralidae), in Korea. J. Asia. Pac. Entomol. 2009, 12 (4), 269–275. https://doi.org/10.1016/j.aspen.2009.07.003.spa
dc.relation.references(173) van Den Dool, H.; Dec. Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11 (C), 463–471. https://doi.org/10.1016/s0021-9673(01)80947-x.spa
dc.relation.references(174) Kartika, T.; Shimizu, N.; Himmi, S. K.; Guswenrivo, I.; Tarmadi, D.; Yusuf, S.; Yoshimura, T. Influence of Age and Mating Status on Pheromone Production in a Powderpost Beetle Lyctus Africanus (Coleoptera: Lyctinae). Insects 2021, Vol. 12, Page 8 2020, 12 (1), 8. https://doi.org/10.3390/INSECTS12010008.spa
dc.relation.references(175) TURGEON, J. J.; McNEIL, J. N.; ROELOFSt, W. L. Responsiveness of Pseudaletia Unipuncta Males to the Female Sex Pheromone. Physiol. Entomol. 1983, 8 (3), 339–344. https://doi.org/10.1111/J.1365-3032.1983.TB00366.X.spa
dc.relation.references(176) Rodriguez, S. A.; Paliza, M. L.; Nazareno, M. A. Influence of Adsorbent Nature on the Dynamic Headspace Study of Insect Semiochemicals. Aust. J. Chem. 2017, 70 (8), 902–907. https://doi.org/10.1071/CH17064.spa
dc.relation.references(177) Rebouças, L. M. C.; Caraciolo, M. do S. B.; Sant’Ana, A. E. G.; Pickett, J. A.; Wadhams, L. J.; Pow, E. M. Composição Química Da Glândula Abdominal Da Fêmea Da Mariposa Castnia Licus (Drury) (Lepidoptera:Castniidae): Possíveis Feromônios e Precursores. Quim. Nova 1999, 22 (5), 645–648. https://doi.org/10.1590/S0100-40421999000500003.spa
dc.relation.references(178) Phelan, P. L.; Roelofs, C. J.; Youngman, R. R.; Baker, T. C. Characterization of Chemicals Mediating Ovipositional Host-Plant Finding ByAmyelois Transitella Females. J. Chem. Ecol. 1991 173 1991, 17 (3), 599–613. https://doi.org/10.1007/BF00982129.spa
dc.relation.references(179) Pherobase. Semiochemicals of Genus Amauris https://www.pherobase.com/database/genus/genus-Amauris.php (accessed Apr 4, 2022).spa
dc.relation.references(180) Moritz, R. F. A.; Kirchner, W. H.; Crewe, R. M. Chemical Camouflage of the Death’s Head Hawkmoth (Acherontia Atropos L.) in Honeybee Colonies. Naturwissenschaften 1991 784 1991, 78 (4), 179–182. https://doi.org/10.1007/BF01136209.spa
dc.relation.references(181) Paré, P. W.; Tumlinson, J. H. Plant Volatiles as a Defense against Insect Herbivores. Plant Physiology. Oxford Academic October 1, 1999, pp 325–331. https://doi.org/10.1104/pp.121.2.325.spa
dc.relation.references(182) Andersson, S.; Nilsson, L. A. A.; Groth, I.; Bergström, G. Floral Scents in Butterfly-Pollinated Plants: Possible Convergence in Chemical Composition. Bot. J. Linn. Soc. 2002, 140 (2), 129–153. https://doi.org/10.1046/j.1095-8339.2002.00068.x.spa
dc.relation.references(183) Schulz, S.; Estrada, C.; Yildizhan, S.; Boppré, M.; Gilbert, L. E. An Antiaphrodisiac in Heliconius Melpomene Butterflies. J. Chem. Ecol. 2008, 34 (1), 82–93. https://doi.org/10.1007/s10886-007-9393-z.spa
dc.relation.references(184) Böröczky, K. Pheromone Communication in Moths: Evolution, Behavior, and Application. Am. Entomol. 2017, 63 (4), 260–261. https://doi.org/10.1093/ae/tmx069.spa
dc.relation.references(185) Chan, W. K.; Tan, L. T. H.; Chan, K. G.; Lee, L. H.; Goh, B. H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21 (5), 529. https://doi.org/10.3390/molecules21050529.spa
dc.relation.references(186) Fraser, A. M.; Mechaber, W. L.; Hildebrand, J. G. Electroantennographic and Behavioral Responses of the Sphinx Moth Manduca Sexta to Host Plant Headspace Volatiles. J. Chem. Ecol. 2003 298 2003, 29 (8), 1813–1833. https://doi.org/10.1023/A:1024898127549.spa
dc.relation.references(187) Ramachandran, R.; Khan, Z. R.; Caballero, P.; Juliano, B. O. Olfactory Sensitivity of Two Sympatric Species of Rice Leaf Folders (Lepidoptera: Pyralidae) to Plant Volatiles. J. Chem. Ecol. 1990 169 1990, 16 (9), 2647–2666. https://doi.org/10.1007/BF00988076.spa
dc.relation.references(188) Tabacchi, R.; Saturnin, C.; Porret, C. L.; Biedermann, M.; Sponsler, S.; Bitzer, L. A Guide to the Analysis of Chiral Compounds by GC. Restek Cor 2010, 1–23.spa
dc.relation.references(189) Raoul, S.; Dall, X.; Nelson, X. J.; Wyatt, T. D.; Elgar, M. A.; Henneken, J.; Goodger, J. Q. D.; Jones, T. M. Diet-Mediated Pheromones and Signature Mixtures Can Enforce Signal Reliability. Front. Ecol. Evol. | www.frontiersin.org 2017, 1, 145. https://doi.org/10.3389/fevo.2016.00145.spa
dc.relation.references(190) South, S. H.; House, C. M.; Moore, A. J.; Simpson, S. J.; Hunt, J. Male Cockroaches Prefer a High Carbohydrate Diet That Makes Them More Attractive to Females: Implications for the Study of Condition Dependence. Evolution (N. Y). 2011, 65 (6), 1594–1606. https://doi.org/10.1111/j.1558-5646.2011.01233.x.spa
dc.relation.references(191) Kopena, R.; Martín, J.; López, P.; Herczeg, G. Vitamin E Supplementation Increases the Attractiveness of Males’ Scent for Female European Green Lizards. PLoS One 2011, 6 (4), e19410. https://doi.org/10.1371/journal.pone.0019410.spa
dc.relation.references(192) Liedo, P.; Orozco, D.; Cruz-López, L.; Quintero, J. L.; Becerra-Pérez, C.; del Refugio Hernández, M.; Oropeza, A.; Toledo, J. Effect of Post-Teneral Diets on the Performance of Sterile Anastrepha Ludens and Anastrepha Obliqua Fruit Flies. J. Appl. Entomol. 2013, 137 (SUPPL.1), 49–60. https://doi.org/10.1111/j.1439-0418.2010.01568.x.spa
dc.relation.references(193) Blaul, B.; Steinbauer, R.; Merkl, P.; Merkl, R.; Tschochner, H.; Ruther, J. Oleic Acid Is a Precursor of Linoleic Acid and the Male Sex Pheromone in Nasonia Vitripennis. Insect Biochem. Mol. Biol. 2014, 51 (1), 33–40. https://doi.org/10.1016/j.ibmb.2014.05.007.spa
dc.relation.references(194) Eisner, T.; Meinwald, J. Alkaloid-Derived Pheromones and Sexual Selection in Lepidoptera. In Insect Pheromone Biochemistry and Molecular Biology; Elsevier Inc., 2003; pp 341–368. https://doi.org/10.1016/B978-012107151-6/50014-1.spa
dc.relation.references(195) Buczkowski, G.; Kumar, R.; Suib, S. L.; Silverman, J. Diet-Related Modification of Cuticular Hydrocarbon Profiles of the Argentine Ant, Linepithema Humile, Diminishes Intercolony Aggression. J. Chem. Ecol. 2005, 31 (4), 829–843. https://doi.org/10.1007/s10886-005-3547-7.spa
dc.relation.references(196) Frérot, B.; Leppik, E.; Groot, A. T.; Unbehend, M.; Holopainen, J. K. Chemical Signatures in Plant–Insect Interactions. Adv. Bot. Res. 2017, 81, 139–177. https://doi.org/10.1016/bs.abr.2016.10.003.spa
dc.relation.references(197) Ono, T. Effect of Rearing Temperature on Pheromone Component Ratio in Potato Tuberworm Moth, Phthorimaea Operculella, (Lepidoptera: Gelechiidae). J. Chem. Ecol. 1993, 19 (1), 71–81. https://doi.org/10.1007/BF00987472.spa
dc.relation.references(198) Hock, V.; Chouinard, G.; Lucas, É.; Cormier, D.; Leskey, T.; Wright, S.; Zhang, A.; Pichette, A. Establishing Abiotic and Biotic Factors Necessary for Reliable Male Pheromone Production and Attraction to Pheromones by Female Plum Curculios Conotrachelus Nenuphar (Coleoptera: Curculionidae). Can. Entomol. 2014, 146 (5), 528–547. https://doi.org/10.4039/tce.2014.1.spa
dc.relation.references(199) Anderbrant, O.; Schlyter, F.; Birgersson, G.; Birgersson, G. Intraspecific Competition Affecting Parents and Offspring in the Bark Beetle Ips Typographus. Oikos 1985, 45 (1), 89. https://doi.org/10.2307/3565226.spa
dc.relation.references(200) MILLER, J. Y. THE TAXONOMY, PHYLOGENY, AND ZOOGEOGRAPHY OF THE NEOTROPICAL MOTH SUBFAMILY CASTNIINAE (LEPIDOPTERA: CASTNIOIDEA: CASTNIIDAE) (CLADISTICS); 1986.spa
dc.relation.references(201) i Monteys, V.; Acín, P.; Rosell, G.; Quero, C.; Jiménez, M. A.; Guerrero, A. Moths Behaving like Butterflies. Evolutionary Loss of Long Range Attractant Pheromones in Castniid Moths: A Paysandisia Archon Model. PLoS One 2012, 7 (1), e29282. https://doi.org/10.1371/journal.pone.0029282.spa
dc.relation.references(202) Agostini-Costa, T. da S. Bioactive Compounds and Health Benefits of Some Palm Species Traditionally Used in Africa and the Americas – A Review. J. Ethnopharmacol. 2018, 224, 202–229. https://doi.org/10.1016/J.JEP.2018.05.035.spa
dc.relation.references(203) Walton, N. J.; Mayer, M. J.; Narbad, A. Vanillin. Phytochemistry. Pergamon July 1, 2003, pp 505–515. https://doi.org/10.1016/S0031-9422(03)00149-3.spa
dc.relation.references(204) Sasaerila, Y.; Gries, R.; Gries, G.; Khaskin, G.; King, S.; Takács, S.; Hardi. Sex Pheromone Components of Male Tirathaba Mundella (Lepidoptera: Pyralidae). Chemoecology 2003, 13 (2), 89–93. https://doi.org/10.1007/s00049-003-0233-5.spa
dc.relation.references(205) Sugisawa, H.; Nakamura, K.; Tamura, H. The Aroma Profile of the Volatiles in Marine Green Algae (Ulva Pertusa). Food Rev. Int. 1990, 6 (4), 573–589. https://doi.org/10.1080/87559129009540893.spa
dc.relation.references(206) SAKATA, T.; TAGAMI, K.; KUWAHARA, Y. Chemical Ecology of Oribatid Mites. I. Oil Gland Components of Hydronothrus Crispus Aoki. J. Acarol. Soc. Japan 1995, 4 (2), 69–75. https://doi.org/10.2300/acari.4.69.spa
dc.relation.references(207) Eisner, T.; Pliske, T. E.; Ikeda, M.; Owen, D. F.; Vázquez, L.; Pérez, H.; Franclemont, J. G.; Meinwald, J. Defense Mechanisms of Arthropods. XXVII. Osmeterial Secretions of Papilionid Caterpillars (Baronia, Papilio, Eurytides)1. Ann. Entomol. Soc. Am. 1970, 63 (3), 914–915. https://doi.org/10.1093/aesa/63.3.914.spa
dc.relation.references(208) Schmera, D.; Guerin, P. M. Plant Volatile Compounds Shorten Reaction Time and Enhance Attraction of the Codling Moth (Cydia Pomonella) to Codlemone. Pest Manag. Sci. 2012, 68 (3), 454–461. https://doi.org/10.1002/ps.2292.spa
dc.relation.references(209) Ring T. Cardé, J. G. M. Advances in Insect Chemical Ecology; 2004. https://doi.org/10.1017/cbo9780511542664.spa
dc.relation.references(210) De Pasqual, C.; Groot, A. T.; Mappes, J.; Burdfield-Steel, E. Evolutionary Importance of Intraspecific Variation in Sex Pheromones. Trends in Ecology and Evolution. Elsevier Current Trends September 1, 2021, pp 848–859. https://doi.org/10.1016/j.tree.2021.05.005.spa
dc.relation.references(211) McElfresh, J. S.; Millar, J. G. Geographic Variation in the Pheromone System of the Saturniid Moth Hemileuca Eglanterina. Ecology 2001, 82 (12), 3505–3518. https://doi.org/10.2307/2680168.spa
dc.relation.references(212) Palacio Cortés, A. M.; Zarbin, P. H. G.; Takiya, D. M.; Bento, J. M. S.; Guidolin, A. S.; Consoli, F. L. Geographic Variation of Sex Pheromone and Mitochondrial DNA in Diatraea Saccharalis (Fab., 1794) (Lepidoptera: Crambidae). J. Insect Physiol. 2010, 56 (11), 1624–1630. https://doi.org/10.1016/j.jinsphys.2010.06.005.spa
dc.relation.references(213) Cruz-Esteban, S.; Rojas, J. C.; Sánchez-Guillén, D.; Cruz-López, L.; Malo, E. A. Geographic Variation in Pheromone Component Ratio and Antennal Responses, but Not in Attraction, to Sex Pheromones among Fall Armyworm Populations Infesting Corn in Mexico. J. Pest Sci. (2004). 2018, 91 (3), 973–983. https://doi.org/10.1007/S10340-018-0967-Z/FIGURES/2.spa
dc.relation.references(214) Noorbakhsh, S.; Saber, M.; Farazmand, H.; Heidary Alizadeh, B. Intraspecific Geographic Variation in Sex Pheromone of the Carob Moth, Ectomyelois Ceratoniae (Lepidoptera: Pyralidae). J. Crop Prot. 2021, 10 (4), 771–786.spa
dc.relation.references(215) Barah, P.; Bones, A. M. Multidimensional Approaches for Studying Plant Defence against Insects: From Ecology to Omics and Synthetic Biology. J. Exp. Bot. 2015, 66 (2), 479–493. https://doi.org/10.1093/JXB/ERU489.spa
dc.relation.references(216) Zvereva, E. L.; Kozlov, M. V. The Costs and Effectiveness of Chemical Defenses in Herbivorous Insects: A Meta-Analysis. Ecol. Monogr. 2016, 86 (1), 107–124. https://doi.org/10.1890/15-0911.1.spa
dc.relation.references(217) Beran, F.; Petschenka, G. Sequestration of Plant Defense Compounds by Insects: From Mechanisms to Insect-Plant Coevolution. Annual Review of Entomology. 2022, pp 163–180. https://doi.org/10.1146/annurev-ento-062821-062319.spa
dc.relation.references(218) Groot, A. T.; Inglis, O.; Bowdridge, S.; Santangelo, R. G.; Blanco, C.; López, J. D.; Vargas, A. T.; Gould, F.; Schal, C. Geographic and Temporal Variation in Moth Chemical Communication. Evolution (N. Y). 2009, 63 (8), 1987–2003. https://doi.org/10.1111/j.1558-5646.2009.00702.x.spa
dc.relation.references(219) Nojima, S.; Classen, A.; Groot, A. T.; Schal, C. Qualitative and Quantitative Analysis of Chemicals Emitted from the Pheromone Gland of Individual Heliothis Subflexa Females. PLoS One 2018, 13 (8). https://doi.org/10.1371/journal.pone.0202035.spa
dc.relation.references(220) Hansson, B.; Wicher, D. Chemical Ecology in Insects. In Chemosensory Transduction: The Detection of Odors, Tastes, and Other Chemostimuli; Academic Press, 2016; pp 29–45. https://doi.org/10.1016/B978-0-12-801694-7.00002-0.spa
dc.relation.references(221) Allison, J. D.; Cardé, R. T. Male Pheromone Blend Preference Function Measured in Choice and No-Choice Wind Tunnel Trials with Almond Moths, Cadra Cautella. Anim. Behav. 2008, 75 (1), 259–266. https://doi.org/10.1016/j.anbehav.2007.04.033.spa
dc.relation.references(222) Malo, E. A.; Renou, M.; Guerrero, A. Analytical Studies of Spodoptera Littoralis Sex Pheromone Components by Electroantennography and Coupled Gas Chromatography-Electroantennographic Detection. Talanta 2000, 52 (3), 525–532. https://doi.org/10.1016/S0039-9140(00)00401-X.spa
dc.relation.references(223) Malo, E. A.; Renou, M.; Guerrero, A. Analytical Studies of Spodoptera Littoralis Sex Pheromone Components by Electroantennography and Coupled Gas Chromatography-Electroantennographic Detection. Talanta 2000, 52 (3), 525–532. https://doi.org/10.1016/S0039-9140(00)00401-X.spa
dc.relation.references(224) Eiras, Á. E. Calling Behaviour and Evaluation of Sex Pheromone Glands Extract of Neoleucinodes Elegantalis Guenée (Lepidoptera: Crambidae) in Wind Tunnel. An. da Soc. Entomológica do Bras. 2000, 29 (3), 453–460. https://doi.org/10.1590/s0301-80592000000300007.spa
dc.relation.references(225) Fouad, H. A.; Faroni, L. R. D. A.; Vilela, E. F.; de Lima, E. R. Flight Responses of Sitotroga Cerealella (Lepidoptera: Gelechiidae) to Corn Kernel Volatiles in a Wind Tunnel. Arthropod. Plant. Interact. 2013, 7 (6), 651–658. https://doi.org/10.1007/S11829-013-9275-Y/TABLES/2.spa
dc.relation.references(226) Carlsson, M. A.; Schäpers, A.; Nässel, D. R.; Janz, N. Organization of the Olfactory System of Nymphalidae Butterflies. Chem. Senses 2013, 38 (4), 355–367. https://doi.org/10.1093/chemse/bjt008.spa
dc.relation.references(227) Roelofs, W. L. Electroantennogram Assays: Rapid and Convenient Screening Procedures for Pheromones; Springer, New York, NY, 1984; pp 131–159. https://doi.org/10.1007/978-1-4612-5220-7_5.spa
dc.relation.references(228) Cork, A.; Beevor, P. S.; Gough, A. J. E.; Hall, D. R. Gas Chromatography Linked to Electroantennography: A Versatile Technique for Identifying Insect Semiochemicals. In Chromatography and Isolation of Insect Hormones and Pheromones; Springer, New York, NY, 1990; pp 271–279. https://doi.org/10.1007/978-1-4684-8062-7_26.spa
dc.relation.references(229) Cardé, R. T. Navigation along Windborne Plumes of Pheromone and Resource-Linked Odors. Annual Review of Entomology. 2021, pp 317–336. https://doi.org/10.1146/annurev-ento-011019-024932.spa
dc.relation.references(230) Conchou, L.; Lucas, P.; Deisig, N.; Demondion, E.; Ren, M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. Insects 2021, 12 (5), 409. https://doi.org/10.3390/insects12050409.spa
dc.relation.references(231) Renou, M.; Anton, S. Insect Olfactory Communication in a Complex and Changing World. Current Opinion in Insect Science. Elsevier December 1, 2020, pp 1–7. https://doi.org/10.1016/j.cois.2020.04.004.spa
dc.relation.references(232) Kamimura, M.; Tatsuki, S. Effects of Photoperiodic Changes on Calling Behavior and Pheromone Production in the Oriental Tobacco Budworm Moth, Helicoverpa Assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 1994, 40 (8), 731–734. https://doi.org/10.1016/0022-1910(94)90101-5.spa
dc.relation.references(233) Gemeno, C.; Haynes, K. F. Impact of Photoperiod on the Sexual Behavior of the Black Cutworm Moth (Lepidoptera: Noctuidae). Environ. Entomol. 2001, 30 (2), 189–195. https://doi.org/10.1603/0046-225X-30.2.189.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocLepidoptera
dc.subject.agrovocNymphalidae
dc.subject.agrovocFeromonas sexualesspa
dc.subject.agrovocSex pheromoneseng
dc.subject.agrovocElaeis guineensis
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalOpsiphanes cassinaspa
dc.subject.proposalOpsiphanes cassinaeng
dc.subject.proposalPalma de aceitespa
dc.subject.proposalOil palmeng
dc.subject.proposalFeromonaspa
dc.subject.proposalPheromoneeng
dc.subject.proposalManejo integrado de plagasspa
dc.subject.proposalIntegrated pest managementeng
dc.subject.proposalControl etológicospa
dc.subject.proposalEthological controleng
dc.titleFeromona sexual como estrategia para el manejo integrado de Opsiphanes cassina Felder, 1862 en cultivos de palma de aceitespa
dc.title.translatedSex pheromone as a strategy for the integrated management of Opsiphanes cassina Felder, 1862 in oil palm cropseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFederación Nacional de Cultivadores de Palma (Fedepalma). Fondo de Fomento Palmero.spa
oaire.fundernameCentro de Investigación en Palma de Aceite (Cenipalma). Programa de Plagas y Enfermedades.spa
oaire.fundernameGrupo de Investigación en Química de Hongos Macromicetos, Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá.spa
oaire.fundernameGrupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073247391.2023.pdf
Tamaño:
5.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: