Papel de los péptidos natriuréticos en la reversibilidad del daño miocárdico en el Síndrome de Takotsubo: una perspectiva fisiológica

dc.contributor.advisorMockus Sivickas, Ismena Vilte Onaspa
dc.contributor.authorPaternina Álvarez, Mariel Ceciliaspa
dc.date.accessioned2024-05-27T21:14:31Z
dc.date.available2024-05-27T21:14:31Z
dc.date.issued2023-11-21
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl Síndrome de Takotsubo (ST) es un síndrome de falla cardíaca aguda con características similares al síndrome coronario agudo, salvo la mayor elevación de péptidos natriuréticos (NP) en sangre en la fase aguda y la recuperación completa de la función miocárdica en días posteriores al evento inicial. Su aparición se asocia con efectos directos e indirectos de las catecolaminas sobre las células miocárdicas, desencadenando aturdimiento miocárdico transitorio. Dada las características diferenciales, especialmente el aumento tres veces mayor de los péptidos natriuréticos, el objetivo de esta revisión narrativa es determinar a través de la revisión de información actual si los péptidos natriuréticos podrían estar implicados en la reversibilidad del daño miocárdico en pacientes adultos con Síndrome de Takotsubo y dilucidar las posibles vías moleculares implicadas en su acción cardioprotectora. Los péptidos natriuréticos, especialmente ANP y BNP, ejercen funciones cardioprotectoras sobre el miocardio en respuesta a cambios hemodinámicos cardíacos, presencia de hipoxia, isquemia y exceso de catecolaminas. De hecho, los péptidos natriuréticos no solamente disminuyen la cantidad de catecolaminas liberadas en respuesta a la activación simpática, sino que su uso como agente farmacológico bloquea la aparición de aturdimiento miocárdico, disfunción miocárdica parecida a ST y arritmias ventriculares en respuesta a un estímulo estresante o presencia de agonistas adrenérgicos; además, disminuyen el tamaño del infarto en SCA, y bloquean la inducción de isquemia irreversible durante la reperfusión. Los estudios sugieren a la vía de ANP-BNP/NPR-A/cGMP/PKG como la principal implicada en los efectos protectores de los péptidos natriuréticos sobre el miocardio. (Texto tomado de la fuente).spa
dc.description.abstractThe Takotsubo Syndrome (TS) is a syndrome of acute heart failure with characteristics similar to acute coronary syndrome, except for the higher elevation of natriuretic peptides (NP) in the blood during the acute phase and the complete recovery of myocardial function in the days following the initial event. Its onset is associated with direct and indirect effects of catecholamines on myocardial cells, triggering transient myocardial stunning. Given the differential characteristics, especially the threefold increase in natriuretic peptides, the aim of this narrative review is to determine through the examination of current information whether natriuretic peptides could be involved in the reversibility of myocardial damage in adult patients with Takotsubo Syndrome and to elucidate the possible molecular pathways involved in their cardioprotective action. Natriuretic peptides, especially ANP and BNP, exert cardioprotective functions on the myocardium in response to cardiac hemodynamic changes, hypoxia, ischemia, and excess catecholamines. In fact, natriuretic peptides not only reduce the amount of catecholamines released in response to sympathetic activation but also, when used as a pharmacological agent, block the occurrence of myocardial stunning, myocardial dysfunction similar to TS, and ventricular arrhythmias in response to a stressful stimulus or the presence of adrenergic agonists. Additionally, they reduce the infarct size in ACS and block the induction of irreversible ischemia during reperfusion. Studies suggest the ANP-BNP/NPR-A/cGMP/PKG pathway as the main player in the protective effects of natriuretic peptides on the myocardium.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisiologíaspa
dc.description.researchareaLínea de profundizaciónspa
dc.format.extentx, 134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86167
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesGupta, S., & Gupta, M. M. (2018). Takotsubo syndrome. Indian heart journal, 70(1), 165–174. https://doi.org/10.1016/j.ihj.2017.09.005spa
dc.relation.referencesGhadri, J. R., Wittstein, I. S., Prasad, A., Sharkey, S., Dote, K., Akashi, Y. J., Cammann, V. L., Crea, F., Galiuto, L., Desmet, W., Yoshida, T., Manfredini, R., Eitel, I., Kosuge, M., Nef, H. M., Deshmukh, A., Lerman, A., Bossone, E., Citro, R., Ueyama, T., … Templin, C. (2018). International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. European heart journal, 39(22), 2032–2046. https://doi.org/10.1093/eurheartj/ehy076spa
dc.relation.referencesRedfors, B., Shao, Y., & Omerovic, E. (2013). Stress-induced cardiomyopathy (Takotsubo)--broken heart and mind?. Vascular health and risk management, 9, 149–154. https://doi.org/10.2147/VHRM.S40163spa
dc.relation.referencesWybraniec, M., Mizia-Stec, K., & Krzych, L. (2014). Stress cardiomyopathy: yet another type of neurocardiogenic injury: 'stress cardiomyopathy'. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology, 23(3), 113–120. https://doi.org/10.1016/j.carpath.2013.12.003spa
dc.relation.referencesMedina de Chazal, H., Del Buono, M. G., Keyser-Marcus, L., Ma, L., Moeller, F. G., Berrocal, D., & Abbate, A. (2018). Stress Cardiomyopathy Diagnosis and Treatment: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 72(16), 1955–1971. https://doi.org/10.1016/j.jacc.2018.07.072spa
dc.relation.referencesStiermaier, T., Walliser, A., El-Battrawy, I., Pätz, T., Mezger, M., Rawish, E., Andrés, M., Almendro-Delia, M., Martinez-Sellés, M., Uribarri, A., Pérez-Castellanos, A., Guerra, F., Novo, G., Mariano, E., Musumeci, M. B., Arcari, L., Cacciotti, L., Montisci, R., Akin, I., Thiele, H., … Eitel, I. (2022). Happy Heart Syndrome: Frequency, Characteristics, and Outcome of Takotsubo Syndrome Triggered by Positive Life Events. JACC. Heart failure, 10(7), 459–466. https://doi.org/10.1016/j.jchf.2022.02.015spa
dc.relation.referencesSingh, T., Khan, H., Gamble, D. T., Scally, C., Newby, D. E., & Dawson, D. (2022). Takotsubo Syndrome: Pathophysiology, Emerging Concepts, and Clinical Implications. Circulation, 145(13), 1002–1019. https://doi.org/10.1161/CIRCULATIONAHA.121.055854spa
dc.relation.referencesAkhtar, M. M., Cammann, V. L., Templin, C., Ghadri, J. R., & Lüscher, T. F. (2023). Takotsubo syndrome: getting closer to its causes. Cardiovascular research, 119(7), 1480–1494. https://doi.org/10.1093/cvr/cvad053spa
dc.relation.referencesScantlebury, D. C., & Prasad, A. (2014). Diagnosis of Takotsubo cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society, 78(9), 2129–2139. https://doi.org/10.1253/circj.cj-14-0859spa
dc.relation.referencesPérez-Castellanos, A., Martínez-Sellés, M., Mejía-Rentería, H., Andrés, M., Sionis, A., Almendro-Delia, M., Martín-García, A., Aguilera, M. C., Pereyra, E., Linares Vicente, J. A., García de la Villa, B., & Núñez-Gil, I. J. (2018). Tako-tsubo Syndrome in Men: Rare, but With Poor Prognosis. Revista espanola de cardiologia (English ed.), 71(9), 703–708. https://doi.org/10.1016/j.rec.2017.07.021spa
dc.relation.referencesLyon, A. R., Citro, R., Schneider, B., Morel, O., Ghadri, J. R., Templin, C., & Omerovic, E. (2021). Pathophysiology of Takotsubo Syndrome: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 77(7), 902–921. https://doi.org/10.1016/j.jacc.2020.10.060spa
dc.relation.referencesAl Houri, H. N., Jomaa, S., Jabra, M., Alhouri, A. N., & Latifeh, Y. (2022). Pathophysiology of stress cardiomyopathy: A comprehensive literature review. Annals of medicine and surgery (2012), 82, 104671. https://doi.org/10.1016/j.amsu.2022.104671spa
dc.relation.referencesDias, A., Núñez Gil, I. J., Santoro, F., Madias, J. E., Pelliccia, F., Brunetti, N. D., Salmoirago-Blotcher, E., Sharkey, S. W., Eitel, I., Akashi, Y. J., El-Battrawy, I., Franco, E., Akin, I., Jaguszewski, M., Dawson, D., Figueredo, V. M., Napp, L. C., Christensen, T. E., Hebert, K., Ben-Dor, I., … Waksman, R. (2019). Takotsubo syndrome: State-of-the-art review by an expert panel - Part 1. Cardiovascular revascularization medicine : including molecular interventions, 20(1), 70–79. https://doi.org/10.1016/j.carrev.2018.11.015spa
dc.relation.referencesNef, H. M., Möllmann, H., Akashi, Y. J., & Hamm, C. W. (2010). Mechanisms of stress (Takotsubo) cardiomyopathy. Nature reviews. Cardiology, 7(4), 187–193. https://doi.org/10.1038/nrcardio.2010.16spa
dc.relation.referencesY-Hassan, S., & Tornvall, P. (2018). Epidemiology, pathogenesis, and management of takotsubo syndrome. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 28(1), 53–65. https://doi.org/10.1007/s10286-017-0465-zspa
dc.relation.referencesQuanwei, P. (2022). Mechanisms of myocardial stunning in stress-induced cardiomyopathy. Cardiovascular innovations and applicationsspa
dc.relation.referencesYoshikawa T. (2015). Takotsubo cardiomyopathy, a new concept of cardiomyopathy: clinical features and pathophysiology. International journal of cardiology, 182, 297–303. https://doi.org/10.1016/j.ijcard.2014.12.116spa
dc.relation.referencesWilliams, R., Arri, S., & Prasad, A. (2016). Current Concepts in the Pathogenesis of Takotsubo Syndrome. Heart failure clinics, 12(4), 473–484. https://doi.org/10.1016/j.hfc.2016.06.002spa
dc.relation.referencesWang, T., Xiong, T., Yang, Y., Zuo, B., Chen, X., & Wang, D. (2022). Metabolic remodeling in takotsubo syndrome. Frontiers in cardiovascular medicine, 9, 1060070. https://doi.org/10.3389/fcvm.2022.1060070spa
dc.relation.referencesLyon, A. R., Bossone, E., Schneider, B., Sechtem, U., Citro, R., Underwood, S. R., Sheppard, M. N., Figtree, G. A., Parodi, G., Akashi, Y. J., Ruschitzka, F., Filippatos, G., Mebazaa, A., & Omerovic, E. (2016). Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. European journal of heart failure, 18(1), 8–27. https://doi.org/10.1002/ejhf.424spa
dc.relation.referencesMoscatelli, S., Montecucco, F., Carbone, F., Valbusa, A., Massobrio, L., Porto, I., Brunelli, C., & Rosa, G. M. (2019). An Emerging Cardiovascular Disease: Takotsubo Syndrome. BioMed research international, 2019, 6571045. https://doi.org/10.1155/2019/6571045spa
dc.relation.referencesChhabra, L., Butt, N., Ahmad, S. A., Kayani, W. T., Sangong, A., Patel, V., Bharaj, G., & Khalid, N. (2021). Electrocardiographic changes in Takotsubo cardiomyopathy. Journal of electrocardiology, 65, 28–33. https://doi.org/10.1016/j.jelectrocard.2020.12.006spa
dc.relation.referencesSchneider, B., & Sechtem, U. (2016). Influence of Age and Gender in Takotsubo Syndrome. Heart failure clinics, 12(4), 521–530. https://doi.org/10.1016/j.hfc.2016.06.001spa
dc.relation.referencesWatanabe, M., Izumo, M., & Akashi, Y. J. (2018). Novel Understanding of Takotsubo Syndrome. International heart journal, 59(2), 250–255. https://doi.org/10.1536/ihj.17-586spa
dc.relation.referencesPeters, M. N., George, P., & Irimpen, A. M. (2015). The broken heart syndrome: Takotsubo cardiomyopathy. Trends in cardiovascular medicine, 25(4), 351–357. https://doi.org/10.1016/j.tcm.2014.11.005spa
dc.relation.referencesSharkey S. W. (2016). A Clinical Perspective of the Takotsubo Syndrome. Heart failure clinics, 12(4), 507–520. https://doi.org/10.1016/j.hfc.2016.06.003spa
dc.relation.referencesSharkey, S. W., & Maron, B. J. (2014). Epidemiology and clinical profile of Takotsubo cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society, 78(9), 2119–2128. https://doi.org/10.1253/circj.cj-14-0770spa
dc.relation.referencesBudnik, M., Kochanowski, J., Piatkowski, R., Wojtera, K., Peller, M., Gaska, M., Glowacka, P., Karolczak, P., Ochijewicz, D., & Opolski, G. (2016). Simple markers can distinguish Takotsubo cardiomyopathy from ST segment elevation myocardial infarction. International journal of cardiology, 219, 417–420. https://doi.org/10.1016/j.ijcard.2016.06.015spa
dc.relation.referencesStiermaier, T., Santoro, F., Graf, T., Guastafierro, F., Tarantino, N., De Gennaro, L., Caldarola, P., Di Biase, M., Thiele, H., Brunetti, N. D., Möller, C., & Eitel, I. (2018). Prognostic value of N-Terminal Pro-B-Type Natriuretic Peptide in Takotsubo syndrome. Clinical research in cardiology : official journal of the German Cardiac Society, 107(7), 597–606. https://doi.org/10.1007/s00392-018-1227-1spa
dc.relation.referencesKazakauskaitė, E., Jankauskas, A., Lapinskas, T., Ordienė, R., & Ereminienė, E. (2014). Takotsubo cardiomyopathy: the challenging diagnosis in clinical routine. Medicina (Kaunas, Lithuania), 50(1), 1–7. https://doi.org/10.1016/j.medici.2014.05.009spa
dc.relation.referencesDias, A., Núñez Gil, I. J., Santoro, F., Madias, J. E., Pelliccia, F., Brunetti, N. D., Salmoirago-Blotcher, E., Sharkey, S. W., Eitel, I., Akashi, Y. J., El-Battrawy, I., Franco, E., Akin, I., Jaguszewski, M., Dawson, D., Figueredo, V. M., Napp, L. C., Christensen, T. E., Hebert, K., Ben-Dor, I., … Waksman, R. (2019). Takotsubo syndrome: State-of-the-art review by an expert panel - Part 2. Cardiovascular revascularization medicine : including molecular interventions, 20(2), 153–166. https://doi.org/10.1016/j.carrev.2018.11.016spa
dc.relation.referencesBudnik, M., Piątkowski, R., Ochijewicz, D., Zaleska, M., Grabowski, M., & Opolski, G. (2021). Pathophysiology of Takotsubo Syndrome as A Bridge to Personalized Treatment. Journal of personalized medicine, 11(9), 879. https://doi.org/10.3390/jpm11090879spa
dc.relation.referencesWang, X., Pei, J., & Hu, X. (2020). The Brain-Heart Connection in Takotsubo Syndrome: The Central Nervous System, Sympathetic Nervous System, and Catecholamine Overload. Cardiology research and practice, 2020, 4150291. https://doi.org/10.1155/2020/4150291spa
dc.relation.referencesPereira, V. H., Marques, P., Magalhães, R., Português, J., Calvo, L., Cerqueira, J. J., & Sousa, N. (2016). Central autonomic nervous system response to autonomic challenges is altered in patients with a previous episode of Takotsubo cardiomyopathy. European heart journal. Acute cardiovascular care, 5(2), 152–163. https://doi.org/10.1177/2048872615568968spa
dc.relation.referencesTemplin, C., Hänggi, J., Klein, C., Topka, M.S., Hiestand, T., Levinson, R.A., Jurisic, S., Lüscher, T.F., Ghadri, J.R., & Jäncke, L. (2019). Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. European Heart Journal, 40, 1183 - 1187.spa
dc.relation.referencesVancheri, F., Longo, G., Vancheri, E., & Henein, M. Y. (2022). Mental Stress and Cardiovascular Health-Part I. Journal of clinical medicine, 11(12), 3353. https://doi.org/10.3390/jcm11123353spa
dc.relation.referencesHelman, T. J., Headrick, J. P., Stapelberg, N. J. C., & Braidy, N. (2023). The sex-dependent response to psychosocial stress and ischaemic heart disease. Frontiers in cardiovascular medicine, 10, 1072042. https://doi.org/10.3389/fcvm.2023.1072042spa
dc.relation.referencesWehrwein, E. A., Orer, H. S., & Barman, S. M. (2016). Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Comprehensive Physiology, 6(3), 1239–1278. https://doi.org/10.1002/cphy.c150037spa
dc.relation.referencesKvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiological reviews, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006spa
dc.relation.referencesPereira, V. H., Cerqueira, J. J., Palha, J. A., & Sousa, N. (2013). Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. International journal of cardiology, 166(1), 30–37. https://doi.org/10.1016/j.ijcard.2012.03.165spa
dc.relation.referencesGodoy, L. D., Rossignoli, M. T., Delfino-Pereira, P., Garcia-Cairasco, N., & de Lima Umeoka, E. H. (2018). A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Frontiers in behavioral neuroscience, 12, 127. https://doi.org/10.3389/fnbeh.2018.00127spa
dc.relation.referencesAdameova, A., Abdellatif, Y., & Dhalla, N. S. (2009). Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Canadian journal of physiology and pharmacology, 87(7), 493–514. https://doi.org/10.1139/y09-042spa
dc.relation.referencesLugnier, C., Meyer, A., Charloux, A., Andrès, E., Gény, B., & Talha, S. (2019). The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. Journal of clinical medicine, 8(10), 1746. https://doi.org/10.3390/jcm8101746spa
dc.relation.referencesZhao, J., & Pei, L. (2020). Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. JACC. Basic to translational science, 5(9), 949–960. https://doi.org/10.1016/j.jacbts.2020.05.007spa
dc.relation.referencesPandey K. N. (2021). Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Frontiers in physiology, 12, 693099. https://doi.org/10.3389/fphys.2021.693099spa
dc.relation.referencesNakagawa, Y., Nishikimi, T., & Kuwahara, K. (2019). Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides, 111, 18–25. https://doi.org/10.1016/j.peptides.2018.05.012spa
dc.relation.referencesForte, M., Madonna, M., Schiavon, S., Valenti, V., Versaci, F., Zoccai, G. B., Frati, G., & Sciarretta, S. (2019). Cardiovascular Pleiotropic Effects of Natriuretic Peptides. International journal of molecular sciences, 20(16), 3874. https://doi.org/10.3390/ijms20163874spa
dc.relation.referencesVanderheyden, M., Bartunek, J., & Goethals, M. (2004). Brain and other natriuretic peptides: molecular aspects. European journal of heart failure, 6(3), 261–268. https://doi.org/10.1016/j.ejheart.2004.01.004spa
dc.relation.referencesDietz J. R. (2005). Mechanisms of atrial natriuretic peptide secretion from the atrium. Cardiovascular research, 68(1), 8–17. https://doi.org/10.1016/j.cardiores.2005.06.008spa
dc.relation.referencesYoum, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Hun Leem, C., Joon Kim, S., Cha, K. A., & Earm, Y. E. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in biophysics and molecular biology, 90(1-3), 186–206. https://doi.org/10.1016/j.pbiomolbio.2005.06.003spa
dc.relation.referencesPandey K. N. (2005). Biology of natriuretic peptides and their receptors. Peptides, 26(6), 901–932. https://doi.org/10.1016/j.peptides.2004.09.024spa
dc.relation.referencesD'Souza, S. P., Davis, M., & Baxter, G. F. (2004). Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacology & therapeutics, 101(2), 113–129. https://doi.org/10.1016/j.pharmthera.2003.11.001spa
dc.relation.referencesMunagala, V. K., Burnett, J. C., Jr, & Redfield, M. M. (2004). The natriuretic peptides in cardiovascular medicine. Current problems in cardiology, 29(12), 707–769. https://doi.org/10.1016/j.cpcardiol.2004.07.002spa
dc.relation.referencesMoro, C., & Berlan, M. (2006). Cardiovascular and metabolic effects of natriuretic peptides. Fundamental & clinical pharmacology, 20(1), 41–49. https://doi.org/10.1111/j.1472-8206.2005.00379.xspa
dc.relation.referencesSarzani, R., Spannella, F., Giulietti, F., Balietti, P., Cocci, G., & Bordicchia, M. (2017). Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 24(2), 115–126. https://doi.org/10.1007/s40292-017-0196-1spa
dc.relation.referencesMartel, G., Hamet, P., & Tremblay, J. (2010). Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Molecular and cellular biochemistry, 334(1-2), 53–65. https://doi.org/10.1007/s11010-009-0326-8spa
dc.relation.referencesPandey K. N. (2008). Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. Journal of the American Society of Hypertension : JASH, 2(4), 210–226. https://doi.org/10.1016/j.jash.2008.02.001spa
dc.relation.referencesPandey K. N. (2018). Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiological genomics, 50(11), 913–928. https://doi.org/10.1152/physiolgenomics.00083.2018spa
dc.relation.referencesStiermaier, T., Santoro, F., Graf, T., Guastafierro, F., Tarantino, N., De Gennaro, L., Caldarola, P., Di Biase, M., Thiele, H., Brunetti, N. D., Möller, C., & Eitel, I. (2018). Prognostic value of N-Terminal Pro-B-Type Natriuretic Peptide in Takotsubo syndrome. Clinical research in cardiology : official journal of the German Cardiac Society, 107(7), 597–606. https://doi.org/10.1007/s00392-018-1227-1spa
dc.relation.referencesKhan, H., Gamble, D., Mezincescu, A., Abbas, H., Rudd, A., & Dawson, D. (2021). A systematic review of biomarkers in Takotsubo syndrome: A focus on better understanding the pathophysiology. International journal of cardiology. Heart & vasculature, 34, 100795. https://doi.org/10.1016/j.ijcha.2021.100795spa
dc.relation.referencesAhmed, K. A., Madhavan, M., & Prasad, A. (2012). Brain natriuretic peptide in apical ballooning syndrome (Takotsubo/stress cardiomyopathy): comparison with acute myocardial infarction. Coronary artery disease, 23(4), 259–264. https://doi.org/10.1097/MCA.0b013e3283526a57spa
dc.relation.referencesNguyen, T. H., Neil, C. J., Sverdlov, A. L., Mahadavan, G., Chirkov, Y. Y., Kucia, A. M., Stansborough, J., Beltrame, J. F., Selvanayagam, J. B., Zeitz, C. J., Struthers, A. D., Frenneaux, M. P., & Horowitz, J. D. (2011). N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. The American journal of cardiology, 108(9), 1316–1321. https://doi.org/10.1016/j.amjcard.2011.06.047spa
dc.relation.referencesAli, A., Redfors, B., Alkhoury, J., Oras, J., Henricsson, M., Boren, J., Björnson, E., Espinosa, A., Levin, M., Gan, L. M., & Omerovic, E. (2021). Sacubitril/valsartan decreases mortality in the rat model of the isoprenaline-induced takotsubo-like syndrome. ESC heart failure, 8(5), 4130–4138. https://doi.org/10.1002/ehf2.13530spa
dc.relation.referencesButtgereit, J., Shanks, J., Li, D., Hao, G., Athwal, A., Langenickel, T. H., Wright, H., da Costa Goncalves, A. C., Monti, J., Plehm, R., Popova, E., Qadri, F., Lapidus, I., Ryan, B., Özcelik, C., Paterson, D. J., Bader, M., & Herring, N. (2016). C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovascular research, 112(3), 637–644. https://doi.org/10.1093/cvr/cvw184spa
dc.relation.referencesLi, D., Lu, C. J., Hao, G., Wright, H., Woodward, L., Liu, K., Vergari, E., Surdo, N. C., Herring, N., Zaccolo, M., & Paterson, D. J. (2015). Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons. Hypertension (Dallas, Tex. : 1979), 66(1), 190–198. https://doi.org/10.1161/HYPERTENSIONAHA.114.05054spa
dc.relation.referencesHall, E. J., Pal, S., Glennon, M. S., Shridhar, P., Satterfield, S. L., Weber, B., Zhang, Q., Salama, G., Lal, H., & Becker, J. R. (2022). Cardiac natriuretic peptide deficiency sensitizes the heart to stress-induced ventricular arrhythmias via impaired CREB signalling. Cardiovascular research, 118(9), 2124–2138. https://doi.org/10.1093/cvr/cvab257spa
dc.relation.referencesBurley, D. S., Ferdinandy, P., & Baxter, G. F. (2007). Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. British journal of pharmacology, 152(6), 855–869. https://doi.org/10.1038/sj.bjp.0707409spa
dc.relation.referencesBaxter, G. (2004). Natriuretic peptides and myocardial ischaemia. Basic research in cardiology. 99: 90 – 93. DOI 10.1007/s00395-004-0458-7spa
dc.relation.referencesYang, X. M., Philipp, S., Downey, J. M., & Cohen, M. V. (2006). Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic research in cardiology, 101(4), 311–318. https://doi.org/10.1007/s00395-006-0587-2spa
dc.relation.referencesParviz, Y., Waleed, M., Vijayan, S., Adlam, D., Lavi, S., Al Nooryani, A., Iqbal, J., & Stone, G. W. (2019). Cellular and molecular approaches to enhance myocardial recovery after myocardial infarction. Cardiovascular revascularization medicine : including molecular interventions, 20(4), 351–364. https://doi.org/10.1016/j.carrev.2018.05.021spa
dc.relation.referencesGorbe, A., Giricz, Z., Szunyog, A., Csont, T., Burley, D. S., Baxter, G. F., & Ferdinandy, P. (2010). Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic research in cardiology, 105(5), 643–650. https://doi.org/10.1007/s00395-010-0097-0spa
dc.relation.referencesChang, A. Y., Kittle, J. T., & Wu, S. M. (2016). Regenerative Medicine: Potential Mechanisms of Cardiac Recovery in Takotsubo Cardiomyopathy. Current treatment options in cardiovascular medicine, 18(3), 20. https://doi.org/10.1007/s11936-016-0443-0spa
dc.relation.referencesMezzasoma, L., Antognelli, C., & Talesa, V. N. (2016). Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunologic research, 64(1), 303–312. https://doi.org/10.1007/s12026-015-8751-0spa
dc.relation.referencesWeber, N. C., Blumenthal, S. B., Hartung, T., Vollmar, A. M., & Kiemer, A. K. (2003). ANP inhibits TNF-alpha-induced endothelial MCP-1 expression--involvement of p38 MAPK and MKP-1. Journal of leukocyte biology, 74(5), 932–941. https://doi.org/10.1189/jlb.0603254spa
dc.relation.referencesLi, X., Peng, H., Wu, J., & Xu, Y. (2018). Brain Natriuretic Peptide-Regulated Expression of Inflammatory Cytokines in Lipopolysaccharide (LPS)-Activated Macrophages via NF-κB and Mitogen Activated Protein Kinase (MAPK) Pathways. Medical science monitor : international medical journal of experimental and clinical research, 24, 3119–3126. https://doi.org/10.12659/MSM.905580spa
dc.relation.referencesMoalem, J., Davidov, T., Katz, E., Scholz, P. M., & Weiss, H. R. (2005). Atrial natriuretic peptide reverses the negative functional effects of stunning in rabbit myocardium. Regulatory peptides, 132(1-3), 47–52. https://doi.org/10.1016/j.regpep.2005.09.005spa
dc.relation.referencesMurakami, W., Kobayashi, S., Susa, T., Nanno, T., Ishiguchi, H., Myoren, T., Nishimura, S., Kato, T., Hino, A., Oda, T., Okuda, S., Yamamoto, T., & Yano, M. (2016). Recombinant Atrial Natriuretic Peptide Prevents Aberrant Ca2+ Leakage through the Ryanodine Receptor by Suppressing Mitochondrial Reactive Oxygen Species Production Induced by Isoproterenol in Failing Cardiomyocytes. PloS one, 11(9), e0163250. https://doi.org/10.1371/journal.pone.0163250spa
dc.relation.referencesSun, Y., Deng, T., Lu, N., Yan, M., & Zheng, X. (2010). B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 64(3), 170–176. https://doi.org/10.1016/j.biopha.2009.09.024spa
dc.relation.referencesLuongo, T. S., Lambert, J. P., Yuan, A., Zhang, X., Gross, P., Song, J., Shanmughapriya, S., Gao, E., Jain, M., Houser, S. R., Koch, W. J., Cheung, J. Y., Madesh, M., & Elrod, J. W. (2015). The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell reports, 12(1), 23–34. https://doi.org/10.1016/j.celrep.2015.06.017spa
dc.relation.referencesKwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., York, A. J., Zhang, J., Bers, D. M., & Molkentin, J. D. (2015). The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell reports, 12(1), 15–22. https://doi.org/10.1016/j.celrep.2015.06.002spa
dc.relation.referencesBreivik, L., Jensen, A., Guvåg, S., Aarnes, E. K., Aspevik, A., Helgeland, E., Hovland, S., Brattelid, T., & Jonassen, A. K. (2015). B-type natriuretic peptide expression and cardioprotection is regulated by Akt dependent signaling at early reperfusion. Peptides, 66, 43–50. https://doi.org/10.1016/j.peptides.2015.01.011spa
dc.relation.referencesHong, L., Xi, J., Zhang, Y., Tian, W., Xu, J., Cui, X., & Xu, Z. (2012). Atrial natriuretic peptide prevents the mitochondrial permeability transition pore opening by inactivating glycogen synthase kinase 3β via PKG and PI3K in cardiac H9c2 cells. European journal of pharmacology, 695(1-3), 13–19. https://doi.org/10.1016/j.ejphar.2012.07.053spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsCardiomiopatía de Takotsubospa
dc.subject.decsTakotsubo Cardiomyopathyeng
dc.subject.decsPéptidos Natriuréticos/uso terapéuticospa
dc.subject.decsNatriuretic Peptides/therapeutic useeng
dc.subject.decsAturdimiento Miocárdico/tratamiento farmacológicospa
dc.subject.decsMyocardial Stunning/drug therapyeng
dc.subject.proposalSíndrome de Takotsubospa
dc.subject.proposalcGMPspa
dc.subject.proposalTakotsubo Syndromeeng
dc.subject.proposalcGMPeng
dc.subject.proposalmyocardial stunningeng
dc.subject.proposalAturdimiento miocárdicospa
dc.subject.proposalPéptidos natriuréticosspa
dc.subject.proposalNatriuretic peptideseng
dc.titlePapel de los péptidos natriuréticos en la reversibilidad del daño miocárdico en el Síndrome de Takotsubo: una perspectiva fisiológicaspa
dc.title.translatedRole of natriuretic peptides in the reversibility of myocardial damage in Takotsubo Syndrome: a physiological perspectiveeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1108765651.2023.pdf
Tamaño:
3.65 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: