Papel de los péptidos natriuréticos en la reversibilidad del daño miocárdico en el Síndrome de Takotsubo: una perspectiva fisiológica
dc.contributor.advisor | Mockus Sivickas, Ismena Vilte Ona | spa |
dc.contributor.author | Paternina Álvarez, Mariel Cecilia | spa |
dc.date.accessioned | 2024-05-27T21:14:31Z | |
dc.date.available | 2024-05-27T21:14:31Z | |
dc.date.issued | 2023-11-21 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El Síndrome de Takotsubo (ST) es un síndrome de falla cardíaca aguda con características similares al síndrome coronario agudo, salvo la mayor elevación de péptidos natriuréticos (NP) en sangre en la fase aguda y la recuperación completa de la función miocárdica en días posteriores al evento inicial. Su aparición se asocia con efectos directos e indirectos de las catecolaminas sobre las células miocárdicas, desencadenando aturdimiento miocárdico transitorio. Dada las características diferenciales, especialmente el aumento tres veces mayor de los péptidos natriuréticos, el objetivo de esta revisión narrativa es determinar a través de la revisión de información actual si los péptidos natriuréticos podrían estar implicados en la reversibilidad del daño miocárdico en pacientes adultos con Síndrome de Takotsubo y dilucidar las posibles vías moleculares implicadas en su acción cardioprotectora. Los péptidos natriuréticos, especialmente ANP y BNP, ejercen funciones cardioprotectoras sobre el miocardio en respuesta a cambios hemodinámicos cardíacos, presencia de hipoxia, isquemia y exceso de catecolaminas. De hecho, los péptidos natriuréticos no solamente disminuyen la cantidad de catecolaminas liberadas en respuesta a la activación simpática, sino que su uso como agente farmacológico bloquea la aparición de aturdimiento miocárdico, disfunción miocárdica parecida a ST y arritmias ventriculares en respuesta a un estímulo estresante o presencia de agonistas adrenérgicos; además, disminuyen el tamaño del infarto en SCA, y bloquean la inducción de isquemia irreversible durante la reperfusión. Los estudios sugieren a la vía de ANP-BNP/NPR-A/cGMP/PKG como la principal implicada en los efectos protectores de los péptidos natriuréticos sobre el miocardio. (Texto tomado de la fuente). | spa |
dc.description.abstract | The Takotsubo Syndrome (TS) is a syndrome of acute heart failure with characteristics similar to acute coronary syndrome, except for the higher elevation of natriuretic peptides (NP) in the blood during the acute phase and the complete recovery of myocardial function in the days following the initial event. Its onset is associated with direct and indirect effects of catecholamines on myocardial cells, triggering transient myocardial stunning. Given the differential characteristics, especially the threefold increase in natriuretic peptides, the aim of this narrative review is to determine through the examination of current information whether natriuretic peptides could be involved in the reversibility of myocardial damage in adult patients with Takotsubo Syndrome and to elucidate the possible molecular pathways involved in their cardioprotective action. Natriuretic peptides, especially ANP and BNP, exert cardioprotective functions on the myocardium in response to cardiac hemodynamic changes, hypoxia, ischemia, and excess catecholamines. In fact, natriuretic peptides not only reduce the amount of catecholamines released in response to sympathetic activation but also, when used as a pharmacological agent, block the occurrence of myocardial stunning, myocardial dysfunction similar to TS, and ventricular arrhythmias in response to a stressful stimulus or the presence of adrenergic agonists. Additionally, they reduce the infarct size in ACS and block the induction of irreversible ischemia during reperfusion. Studies suggest the ANP-BNP/NPR-A/cGMP/PKG pathway as the main player in the protective effects of natriuretic peptides on the myocardium. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Fisiología | spa |
dc.description.researcharea | Línea de profundización | spa |
dc.format.extent | x, 134 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86167 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Fisiología | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Gupta, S., & Gupta, M. M. (2018). Takotsubo syndrome. Indian heart journal, 70(1), 165–174. https://doi.org/10.1016/j.ihj.2017.09.005 | spa |
dc.relation.references | Ghadri, J. R., Wittstein, I. S., Prasad, A., Sharkey, S., Dote, K., Akashi, Y. J., Cammann, V. L., Crea, F., Galiuto, L., Desmet, W., Yoshida, T., Manfredini, R., Eitel, I., Kosuge, M., Nef, H. M., Deshmukh, A., Lerman, A., Bossone, E., Citro, R., Ueyama, T., … Templin, C. (2018). International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. European heart journal, 39(22), 2032–2046. https://doi.org/10.1093/eurheartj/ehy076 | spa |
dc.relation.references | Redfors, B., Shao, Y., & Omerovic, E. (2013). Stress-induced cardiomyopathy (Takotsubo)--broken heart and mind?. Vascular health and risk management, 9, 149–154. https://doi.org/10.2147/VHRM.S40163 | spa |
dc.relation.references | Wybraniec, M., Mizia-Stec, K., & Krzych, L. (2014). Stress cardiomyopathy: yet another type of neurocardiogenic injury: 'stress cardiomyopathy'. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology, 23(3), 113–120. https://doi.org/10.1016/j.carpath.2013.12.003 | spa |
dc.relation.references | Medina de Chazal, H., Del Buono, M. G., Keyser-Marcus, L., Ma, L., Moeller, F. G., Berrocal, D., & Abbate, A. (2018). Stress Cardiomyopathy Diagnosis and Treatment: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 72(16), 1955–1971. https://doi.org/10.1016/j.jacc.2018.07.072 | spa |
dc.relation.references | Stiermaier, T., Walliser, A., El-Battrawy, I., Pätz, T., Mezger, M., Rawish, E., Andrés, M., Almendro-Delia, M., Martinez-Sellés, M., Uribarri, A., Pérez-Castellanos, A., Guerra, F., Novo, G., Mariano, E., Musumeci, M. B., Arcari, L., Cacciotti, L., Montisci, R., Akin, I., Thiele, H., … Eitel, I. (2022). Happy Heart Syndrome: Frequency, Characteristics, and Outcome of Takotsubo Syndrome Triggered by Positive Life Events. JACC. Heart failure, 10(7), 459–466. https://doi.org/10.1016/j.jchf.2022.02.015 | spa |
dc.relation.references | Singh, T., Khan, H., Gamble, D. T., Scally, C., Newby, D. E., & Dawson, D. (2022). Takotsubo Syndrome: Pathophysiology, Emerging Concepts, and Clinical Implications. Circulation, 145(13), 1002–1019. https://doi.org/10.1161/CIRCULATIONAHA.121.055854 | spa |
dc.relation.references | Akhtar, M. M., Cammann, V. L., Templin, C., Ghadri, J. R., & Lüscher, T. F. (2023). Takotsubo syndrome: getting closer to its causes. Cardiovascular research, 119(7), 1480–1494. https://doi.org/10.1093/cvr/cvad053 | spa |
dc.relation.references | Scantlebury, D. C., & Prasad, A. (2014). Diagnosis of Takotsubo cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society, 78(9), 2129–2139. https://doi.org/10.1253/circj.cj-14-0859 | spa |
dc.relation.references | Pérez-Castellanos, A., Martínez-Sellés, M., Mejía-Rentería, H., Andrés, M., Sionis, A., Almendro-Delia, M., Martín-García, A., Aguilera, M. C., Pereyra, E., Linares Vicente, J. A., García de la Villa, B., & Núñez-Gil, I. J. (2018). Tako-tsubo Syndrome in Men: Rare, but With Poor Prognosis. Revista espanola de cardiologia (English ed.), 71(9), 703–708. https://doi.org/10.1016/j.rec.2017.07.021 | spa |
dc.relation.references | Lyon, A. R., Citro, R., Schneider, B., Morel, O., Ghadri, J. R., Templin, C., & Omerovic, E. (2021). Pathophysiology of Takotsubo Syndrome: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 77(7), 902–921. https://doi.org/10.1016/j.jacc.2020.10.060 | spa |
dc.relation.references | Al Houri, H. N., Jomaa, S., Jabra, M., Alhouri, A. N., & Latifeh, Y. (2022). Pathophysiology of stress cardiomyopathy: A comprehensive literature review. Annals of medicine and surgery (2012), 82, 104671. https://doi.org/10.1016/j.amsu.2022.104671 | spa |
dc.relation.references | Dias, A., Núñez Gil, I. J., Santoro, F., Madias, J. E., Pelliccia, F., Brunetti, N. D., Salmoirago-Blotcher, E., Sharkey, S. W., Eitel, I., Akashi, Y. J., El-Battrawy, I., Franco, E., Akin, I., Jaguszewski, M., Dawson, D., Figueredo, V. M., Napp, L. C., Christensen, T. E., Hebert, K., Ben-Dor, I., … Waksman, R. (2019). Takotsubo syndrome: State-of-the-art review by an expert panel - Part 1. Cardiovascular revascularization medicine : including molecular interventions, 20(1), 70–79. https://doi.org/10.1016/j.carrev.2018.11.015 | spa |
dc.relation.references | Nef, H. M., Möllmann, H., Akashi, Y. J., & Hamm, C. W. (2010). Mechanisms of stress (Takotsubo) cardiomyopathy. Nature reviews. Cardiology, 7(4), 187–193. https://doi.org/10.1038/nrcardio.2010.16 | spa |
dc.relation.references | Y-Hassan, S., & Tornvall, P. (2018). Epidemiology, pathogenesis, and management of takotsubo syndrome. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 28(1), 53–65. https://doi.org/10.1007/s10286-017-0465-z | spa |
dc.relation.references | Quanwei, P. (2022). Mechanisms of myocardial stunning in stress-induced cardiomyopathy. Cardiovascular innovations and applications | spa |
dc.relation.references | Yoshikawa T. (2015). Takotsubo cardiomyopathy, a new concept of cardiomyopathy: clinical features and pathophysiology. International journal of cardiology, 182, 297–303. https://doi.org/10.1016/j.ijcard.2014.12.116 | spa |
dc.relation.references | Williams, R., Arri, S., & Prasad, A. (2016). Current Concepts in the Pathogenesis of Takotsubo Syndrome. Heart failure clinics, 12(4), 473–484. https://doi.org/10.1016/j.hfc.2016.06.002 | spa |
dc.relation.references | Wang, T., Xiong, T., Yang, Y., Zuo, B., Chen, X., & Wang, D. (2022). Metabolic remodeling in takotsubo syndrome. Frontiers in cardiovascular medicine, 9, 1060070. https://doi.org/10.3389/fcvm.2022.1060070 | spa |
dc.relation.references | Lyon, A. R., Bossone, E., Schneider, B., Sechtem, U., Citro, R., Underwood, S. R., Sheppard, M. N., Figtree, G. A., Parodi, G., Akashi, Y. J., Ruschitzka, F., Filippatos, G., Mebazaa, A., & Omerovic, E. (2016). Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. European journal of heart failure, 18(1), 8–27. https://doi.org/10.1002/ejhf.424 | spa |
dc.relation.references | Moscatelli, S., Montecucco, F., Carbone, F., Valbusa, A., Massobrio, L., Porto, I., Brunelli, C., & Rosa, G. M. (2019). An Emerging Cardiovascular Disease: Takotsubo Syndrome. BioMed research international, 2019, 6571045. https://doi.org/10.1155/2019/6571045 | spa |
dc.relation.references | Chhabra, L., Butt, N., Ahmad, S. A., Kayani, W. T., Sangong, A., Patel, V., Bharaj, G., & Khalid, N. (2021). Electrocardiographic changes in Takotsubo cardiomyopathy. Journal of electrocardiology, 65, 28–33. https://doi.org/10.1016/j.jelectrocard.2020.12.006 | spa |
dc.relation.references | Schneider, B., & Sechtem, U. (2016). Influence of Age and Gender in Takotsubo Syndrome. Heart failure clinics, 12(4), 521–530. https://doi.org/10.1016/j.hfc.2016.06.001 | spa |
dc.relation.references | Watanabe, M., Izumo, M., & Akashi, Y. J. (2018). Novel Understanding of Takotsubo Syndrome. International heart journal, 59(2), 250–255. https://doi.org/10.1536/ihj.17-586 | spa |
dc.relation.references | Peters, M. N., George, P., & Irimpen, A. M. (2015). The broken heart syndrome: Takotsubo cardiomyopathy. Trends in cardiovascular medicine, 25(4), 351–357. https://doi.org/10.1016/j.tcm.2014.11.005 | spa |
dc.relation.references | Sharkey S. W. (2016). A Clinical Perspective of the Takotsubo Syndrome. Heart failure clinics, 12(4), 507–520. https://doi.org/10.1016/j.hfc.2016.06.003 | spa |
dc.relation.references | Sharkey, S. W., & Maron, B. J. (2014). Epidemiology and clinical profile of Takotsubo cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society, 78(9), 2119–2128. https://doi.org/10.1253/circj.cj-14-0770 | spa |
dc.relation.references | Budnik, M., Kochanowski, J., Piatkowski, R., Wojtera, K., Peller, M., Gaska, M., Glowacka, P., Karolczak, P., Ochijewicz, D., & Opolski, G. (2016). Simple markers can distinguish Takotsubo cardiomyopathy from ST segment elevation myocardial infarction. International journal of cardiology, 219, 417–420. https://doi.org/10.1016/j.ijcard.2016.06.015 | spa |
dc.relation.references | Stiermaier, T., Santoro, F., Graf, T., Guastafierro, F., Tarantino, N., De Gennaro, L., Caldarola, P., Di Biase, M., Thiele, H., Brunetti, N. D., Möller, C., & Eitel, I. (2018). Prognostic value of N-Terminal Pro-B-Type Natriuretic Peptide in Takotsubo syndrome. Clinical research in cardiology : official journal of the German Cardiac Society, 107(7), 597–606. https://doi.org/10.1007/s00392-018-1227-1 | spa |
dc.relation.references | Kazakauskaitė, E., Jankauskas, A., Lapinskas, T., Ordienė, R., & Ereminienė, E. (2014). Takotsubo cardiomyopathy: the challenging diagnosis in clinical routine. Medicina (Kaunas, Lithuania), 50(1), 1–7. https://doi.org/10.1016/j.medici.2014.05.009 | spa |
dc.relation.references | Dias, A., Núñez Gil, I. J., Santoro, F., Madias, J. E., Pelliccia, F., Brunetti, N. D., Salmoirago-Blotcher, E., Sharkey, S. W., Eitel, I., Akashi, Y. J., El-Battrawy, I., Franco, E., Akin, I., Jaguszewski, M., Dawson, D., Figueredo, V. M., Napp, L. C., Christensen, T. E., Hebert, K., Ben-Dor, I., … Waksman, R. (2019). Takotsubo syndrome: State-of-the-art review by an expert panel - Part 2. Cardiovascular revascularization medicine : including molecular interventions, 20(2), 153–166. https://doi.org/10.1016/j.carrev.2018.11.016 | spa |
dc.relation.references | Budnik, M., Piątkowski, R., Ochijewicz, D., Zaleska, M., Grabowski, M., & Opolski, G. (2021). Pathophysiology of Takotsubo Syndrome as A Bridge to Personalized Treatment. Journal of personalized medicine, 11(9), 879. https://doi.org/10.3390/jpm11090879 | spa |
dc.relation.references | Wang, X., Pei, J., & Hu, X. (2020). The Brain-Heart Connection in Takotsubo Syndrome: The Central Nervous System, Sympathetic Nervous System, and Catecholamine Overload. Cardiology research and practice, 2020, 4150291. https://doi.org/10.1155/2020/4150291 | spa |
dc.relation.references | Pereira, V. H., Marques, P., Magalhães, R., Português, J., Calvo, L., Cerqueira, J. J., & Sousa, N. (2016). Central autonomic nervous system response to autonomic challenges is altered in patients with a previous episode of Takotsubo cardiomyopathy. European heart journal. Acute cardiovascular care, 5(2), 152–163. https://doi.org/10.1177/2048872615568968 | spa |
dc.relation.references | Templin, C., Hänggi, J., Klein, C., Topka, M.S., Hiestand, T., Levinson, R.A., Jurisic, S., Lüscher, T.F., Ghadri, J.R., & Jäncke, L. (2019). Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. European Heart Journal, 40, 1183 - 1187. | spa |
dc.relation.references | Vancheri, F., Longo, G., Vancheri, E., & Henein, M. Y. (2022). Mental Stress and Cardiovascular Health-Part I. Journal of clinical medicine, 11(12), 3353. https://doi.org/10.3390/jcm11123353 | spa |
dc.relation.references | Helman, T. J., Headrick, J. P., Stapelberg, N. J. C., & Braidy, N. (2023). The sex-dependent response to psychosocial stress and ischaemic heart disease. Frontiers in cardiovascular medicine, 10, 1072042. https://doi.org/10.3389/fcvm.2023.1072042 | spa |
dc.relation.references | Wehrwein, E. A., Orer, H. S., & Barman, S. M. (2016). Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Comprehensive Physiology, 6(3), 1239–1278. https://doi.org/10.1002/cphy.c150037 | spa |
dc.relation.references | Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiological reviews, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006 | spa |
dc.relation.references | Pereira, V. H., Cerqueira, J. J., Palha, J. A., & Sousa, N. (2013). Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. International journal of cardiology, 166(1), 30–37. https://doi.org/10.1016/j.ijcard.2012.03.165 | spa |
dc.relation.references | Godoy, L. D., Rossignoli, M. T., Delfino-Pereira, P., Garcia-Cairasco, N., & de Lima Umeoka, E. H. (2018). A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Frontiers in behavioral neuroscience, 12, 127. https://doi.org/10.3389/fnbeh.2018.00127 | spa |
dc.relation.references | Adameova, A., Abdellatif, Y., & Dhalla, N. S. (2009). Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Canadian journal of physiology and pharmacology, 87(7), 493–514. https://doi.org/10.1139/y09-042 | spa |
dc.relation.references | Lugnier, C., Meyer, A., Charloux, A., Andrès, E., Gény, B., & Talha, S. (2019). The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. Journal of clinical medicine, 8(10), 1746. https://doi.org/10.3390/jcm8101746 | spa |
dc.relation.references | Zhao, J., & Pei, L. (2020). Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. JACC. Basic to translational science, 5(9), 949–960. https://doi.org/10.1016/j.jacbts.2020.05.007 | spa |
dc.relation.references | Pandey K. N. (2021). Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Frontiers in physiology, 12, 693099. https://doi.org/10.3389/fphys.2021.693099 | spa |
dc.relation.references | Nakagawa, Y., Nishikimi, T., & Kuwahara, K. (2019). Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides, 111, 18–25. https://doi.org/10.1016/j.peptides.2018.05.012 | spa |
dc.relation.references | Forte, M., Madonna, M., Schiavon, S., Valenti, V., Versaci, F., Zoccai, G. B., Frati, G., & Sciarretta, S. (2019). Cardiovascular Pleiotropic Effects of Natriuretic Peptides. International journal of molecular sciences, 20(16), 3874. https://doi.org/10.3390/ijms20163874 | spa |
dc.relation.references | Vanderheyden, M., Bartunek, J., & Goethals, M. (2004). Brain and other natriuretic peptides: molecular aspects. European journal of heart failure, 6(3), 261–268. https://doi.org/10.1016/j.ejheart.2004.01.004 | spa |
dc.relation.references | Dietz J. R. (2005). Mechanisms of atrial natriuretic peptide secretion from the atrium. Cardiovascular research, 68(1), 8–17. https://doi.org/10.1016/j.cardiores.2005.06.008 | spa |
dc.relation.references | Youm, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Hun Leem, C., Joon Kim, S., Cha, K. A., & Earm, Y. E. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in biophysics and molecular biology, 90(1-3), 186–206. https://doi.org/10.1016/j.pbiomolbio.2005.06.003 | spa |
dc.relation.references | Pandey K. N. (2005). Biology of natriuretic peptides and their receptors. Peptides, 26(6), 901–932. https://doi.org/10.1016/j.peptides.2004.09.024 | spa |
dc.relation.references | D'Souza, S. P., Davis, M., & Baxter, G. F. (2004). Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacology & therapeutics, 101(2), 113–129. https://doi.org/10.1016/j.pharmthera.2003.11.001 | spa |
dc.relation.references | Munagala, V. K., Burnett, J. C., Jr, & Redfield, M. M. (2004). The natriuretic peptides in cardiovascular medicine. Current problems in cardiology, 29(12), 707–769. https://doi.org/10.1016/j.cpcardiol.2004.07.002 | spa |
dc.relation.references | Moro, C., & Berlan, M. (2006). Cardiovascular and metabolic effects of natriuretic peptides. Fundamental & clinical pharmacology, 20(1), 41–49. https://doi.org/10.1111/j.1472-8206.2005.00379.x | spa |
dc.relation.references | Sarzani, R., Spannella, F., Giulietti, F., Balietti, P., Cocci, G., & Bordicchia, M. (2017). Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 24(2), 115–126. https://doi.org/10.1007/s40292-017-0196-1 | spa |
dc.relation.references | Martel, G., Hamet, P., & Tremblay, J. (2010). Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Molecular and cellular biochemistry, 334(1-2), 53–65. https://doi.org/10.1007/s11010-009-0326-8 | spa |
dc.relation.references | Pandey K. N. (2008). Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. Journal of the American Society of Hypertension : JASH, 2(4), 210–226. https://doi.org/10.1016/j.jash.2008.02.001 | spa |
dc.relation.references | Pandey K. N. (2018). Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiological genomics, 50(11), 913–928. https://doi.org/10.1152/physiolgenomics.00083.2018 | spa |
dc.relation.references | Stiermaier, T., Santoro, F., Graf, T., Guastafierro, F., Tarantino, N., De Gennaro, L., Caldarola, P., Di Biase, M., Thiele, H., Brunetti, N. D., Möller, C., & Eitel, I. (2018). Prognostic value of N-Terminal Pro-B-Type Natriuretic Peptide in Takotsubo syndrome. Clinical research in cardiology : official journal of the German Cardiac Society, 107(7), 597–606. https://doi.org/10.1007/s00392-018-1227-1 | spa |
dc.relation.references | Khan, H., Gamble, D., Mezincescu, A., Abbas, H., Rudd, A., & Dawson, D. (2021). A systematic review of biomarkers in Takotsubo syndrome: A focus on better understanding the pathophysiology. International journal of cardiology. Heart & vasculature, 34, 100795. https://doi.org/10.1016/j.ijcha.2021.100795 | spa |
dc.relation.references | Ahmed, K. A., Madhavan, M., & Prasad, A. (2012). Brain natriuretic peptide in apical ballooning syndrome (Takotsubo/stress cardiomyopathy): comparison with acute myocardial infarction. Coronary artery disease, 23(4), 259–264. https://doi.org/10.1097/MCA.0b013e3283526a57 | spa |
dc.relation.references | Nguyen, T. H., Neil, C. J., Sverdlov, A. L., Mahadavan, G., Chirkov, Y. Y., Kucia, A. M., Stansborough, J., Beltrame, J. F., Selvanayagam, J. B., Zeitz, C. J., Struthers, A. D., Frenneaux, M. P., & Horowitz, J. D. (2011). N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. The American journal of cardiology, 108(9), 1316–1321. https://doi.org/10.1016/j.amjcard.2011.06.047 | spa |
dc.relation.references | Ali, A., Redfors, B., Alkhoury, J., Oras, J., Henricsson, M., Boren, J., Björnson, E., Espinosa, A., Levin, M., Gan, L. M., & Omerovic, E. (2021). Sacubitril/valsartan decreases mortality in the rat model of the isoprenaline-induced takotsubo-like syndrome. ESC heart failure, 8(5), 4130–4138. https://doi.org/10.1002/ehf2.13530 | spa |
dc.relation.references | Buttgereit, J., Shanks, J., Li, D., Hao, G., Athwal, A., Langenickel, T. H., Wright, H., da Costa Goncalves, A. C., Monti, J., Plehm, R., Popova, E., Qadri, F., Lapidus, I., Ryan, B., Özcelik, C., Paterson, D. J., Bader, M., & Herring, N. (2016). C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovascular research, 112(3), 637–644. https://doi.org/10.1093/cvr/cvw184 | spa |
dc.relation.references | Li, D., Lu, C. J., Hao, G., Wright, H., Woodward, L., Liu, K., Vergari, E., Surdo, N. C., Herring, N., Zaccolo, M., & Paterson, D. J. (2015). Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons. Hypertension (Dallas, Tex. : 1979), 66(1), 190–198. https://doi.org/10.1161/HYPERTENSIONAHA.114.05054 | spa |
dc.relation.references | Hall, E. J., Pal, S., Glennon, M. S., Shridhar, P., Satterfield, S. L., Weber, B., Zhang, Q., Salama, G., Lal, H., & Becker, J. R. (2022). Cardiac natriuretic peptide deficiency sensitizes the heart to stress-induced ventricular arrhythmias via impaired CREB signalling. Cardiovascular research, 118(9), 2124–2138. https://doi.org/10.1093/cvr/cvab257 | spa |
dc.relation.references | Burley, D. S., Ferdinandy, P., & Baxter, G. F. (2007). Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. British journal of pharmacology, 152(6), 855–869. https://doi.org/10.1038/sj.bjp.0707409 | spa |
dc.relation.references | Baxter, G. (2004). Natriuretic peptides and myocardial ischaemia. Basic research in cardiology. 99: 90 – 93. DOI 10.1007/s00395-004-0458-7 | spa |
dc.relation.references | Yang, X. M., Philipp, S., Downey, J. M., & Cohen, M. V. (2006). Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic research in cardiology, 101(4), 311–318. https://doi.org/10.1007/s00395-006-0587-2 | spa |
dc.relation.references | Parviz, Y., Waleed, M., Vijayan, S., Adlam, D., Lavi, S., Al Nooryani, A., Iqbal, J., & Stone, G. W. (2019). Cellular and molecular approaches to enhance myocardial recovery after myocardial infarction. Cardiovascular revascularization medicine : including molecular interventions, 20(4), 351–364. https://doi.org/10.1016/j.carrev.2018.05.021 | spa |
dc.relation.references | Gorbe, A., Giricz, Z., Szunyog, A., Csont, T., Burley, D. S., Baxter, G. F., & Ferdinandy, P. (2010). Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic research in cardiology, 105(5), 643–650. https://doi.org/10.1007/s00395-010-0097-0 | spa |
dc.relation.references | Chang, A. Y., Kittle, J. T., & Wu, S. M. (2016). Regenerative Medicine: Potential Mechanisms of Cardiac Recovery in Takotsubo Cardiomyopathy. Current treatment options in cardiovascular medicine, 18(3), 20. https://doi.org/10.1007/s11936-016-0443-0 | spa |
dc.relation.references | Mezzasoma, L., Antognelli, C., & Talesa, V. N. (2016). Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells. Immunologic research, 64(1), 303–312. https://doi.org/10.1007/s12026-015-8751-0 | spa |
dc.relation.references | Weber, N. C., Blumenthal, S. B., Hartung, T., Vollmar, A. M., & Kiemer, A. K. (2003). ANP inhibits TNF-alpha-induced endothelial MCP-1 expression--involvement of p38 MAPK and MKP-1. Journal of leukocyte biology, 74(5), 932–941. https://doi.org/10.1189/jlb.0603254 | spa |
dc.relation.references | Li, X., Peng, H., Wu, J., & Xu, Y. (2018). Brain Natriuretic Peptide-Regulated Expression of Inflammatory Cytokines in Lipopolysaccharide (LPS)-Activated Macrophages via NF-κB and Mitogen Activated Protein Kinase (MAPK) Pathways. Medical science monitor : international medical journal of experimental and clinical research, 24, 3119–3126. https://doi.org/10.12659/MSM.905580 | spa |
dc.relation.references | Moalem, J., Davidov, T., Katz, E., Scholz, P. M., & Weiss, H. R. (2005). Atrial natriuretic peptide reverses the negative functional effects of stunning in rabbit myocardium. Regulatory peptides, 132(1-3), 47–52. https://doi.org/10.1016/j.regpep.2005.09.005 | spa |
dc.relation.references | Murakami, W., Kobayashi, S., Susa, T., Nanno, T., Ishiguchi, H., Myoren, T., Nishimura, S., Kato, T., Hino, A., Oda, T., Okuda, S., Yamamoto, T., & Yano, M. (2016). Recombinant Atrial Natriuretic Peptide Prevents Aberrant Ca2+ Leakage through the Ryanodine Receptor by Suppressing Mitochondrial Reactive Oxygen Species Production Induced by Isoproterenol in Failing Cardiomyocytes. PloS one, 11(9), e0163250. https://doi.org/10.1371/journal.pone.0163250 | spa |
dc.relation.references | Sun, Y., Deng, T., Lu, N., Yan, M., & Zheng, X. (2010). B-type natriuretic peptide protects cardiomyocytes at reperfusion via mitochondrial calcium uniporter. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 64(3), 170–176. https://doi.org/10.1016/j.biopha.2009.09.024 | spa |
dc.relation.references | Luongo, T. S., Lambert, J. P., Yuan, A., Zhang, X., Gross, P., Song, J., Shanmughapriya, S., Gao, E., Jain, M., Houser, S. R., Koch, W. J., Cheung, J. Y., Madesh, M., & Elrod, J. W. (2015). The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell reports, 12(1), 23–34. https://doi.org/10.1016/j.celrep.2015.06.017 | spa |
dc.relation.references | Kwong, J. Q., Lu, X., Correll, R. N., Schwanekamp, J. A., Vagnozzi, R. J., Sargent, M. A., York, A. J., Zhang, J., Bers, D. M., & Molkentin, J. D. (2015). The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell reports, 12(1), 15–22. https://doi.org/10.1016/j.celrep.2015.06.002 | spa |
dc.relation.references | Breivik, L., Jensen, A., Guvåg, S., Aarnes, E. K., Aspevik, A., Helgeland, E., Hovland, S., Brattelid, T., & Jonassen, A. K. (2015). B-type natriuretic peptide expression and cardioprotection is regulated by Akt dependent signaling at early reperfusion. Peptides, 66, 43–50. https://doi.org/10.1016/j.peptides.2015.01.011 | spa |
dc.relation.references | Hong, L., Xi, J., Zhang, Y., Tian, W., Xu, J., Cui, X., & Xu, Z. (2012). Atrial natriuretic peptide prevents the mitochondrial permeability transition pore opening by inactivating glycogen synthase kinase 3β via PKG and PI3K in cardiac H9c2 cells. European journal of pharmacology, 695(1-3), 13–19. https://doi.org/10.1016/j.ejphar.2012.07.053 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.decs | Cardiomiopatía de Takotsubo | spa |
dc.subject.decs | Takotsubo Cardiomyopathy | eng |
dc.subject.decs | Péptidos Natriuréticos/uso terapéutico | spa |
dc.subject.decs | Natriuretic Peptides/therapeutic use | eng |
dc.subject.decs | Aturdimiento Miocárdico/tratamiento farmacológico | spa |
dc.subject.decs | Myocardial Stunning/drug therapy | eng |
dc.subject.proposal | Síndrome de Takotsubo | spa |
dc.subject.proposal | cGMP | spa |
dc.subject.proposal | Takotsubo Syndrome | eng |
dc.subject.proposal | cGMP | eng |
dc.subject.proposal | myocardial stunning | eng |
dc.subject.proposal | Aturdimiento miocárdico | spa |
dc.subject.proposal | Péptidos natriuréticos | spa |
dc.subject.proposal | Natriuretic peptides | eng |
dc.title | Papel de los péptidos natriuréticos en la reversibilidad del daño miocárdico en el Síndrome de Takotsubo: una perspectiva fisiológica | spa |
dc.title.translated | Role of natriuretic peptides in the reversibility of myocardial damage in Takotsubo Syndrome: a physiological perspective | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1108765651.2023.pdf
- Tamaño:
- 3.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Fisiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: