Nanoesferas de carbono: Una mirada desde el proceso de síntesis

dc.contributor.advisorRomero Malagón, Eduard Ricardo
dc.contributor.authorRamírez Moreno, David Ricardo
dc.contributor.researchgrouplaboratorio de Investigación en Combustibles y Energíaspa
dc.date.accessioned2023-08-16T20:44:23Z
dc.date.available2023-08-16T20:44:23Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractLas nanoesferas de carbono son un campo de exploración potencial, pues su formación y propiedades permiten encontrar en ellos soluciones o alternativas a problemáticas ambientales. Por su parte, las nanoesferas de carbono y su gran versatilidad en forma, textura y tamaño, son un material que posee características de uso potencial en la industrial y, pueden ser sintetizados a partir de diferentes métodos sin embargo, el método de carbonización hidrotermal (HTC por sus siglas en inglés, Hydrothermal Carbonization), es promisorio en términos económicos y ambientales, por su ventaja en el uso de reactivos, condiciones como temperatura, presión, tiempo de residencia y pH, generan cambios notorios en los materiales que, a partir de su estudio, pueden ser utilizados en la remoción de contaminantes, como catalizadores y otras aplicaciones. Finalmente, la biomasa ha demostrado tener buenos rendimientos en el proceso de síntesis de nanoesferas de carbono, pues, su contenido en agua es utilizado en el proceso de HTC, formando entonces una relación productiva y viable, entre la biomasa residual y el método HTC. Aquí se presenta una revisión del rendimiento de algunas biomasas y la caracterización de sus nanomateriales, con un propósito de resaltar el método HTC como una alternativa sostenible y promisoria. (Texto tomado de la fuente)spa
dc.description.abstractCarbon nanospheres are a field of potential exploration since their formation and properties allow them to be used in solutions or alternatives to environmental problems. On the other hand, these nanospheres and their great versatility in shape, texture and size, are a material that has characteristics of potential use in industry and can be synthesized from different methods, however, the hydrothermal carbonization method (HTC), is promising in economic and environmental terms, due to its advantage in the use of reagents, conditions such as temperature, pressure, residence time and pH, generate notorious changes in the materials that, from their study, they can be used in the removal of contaminants, as catalysts and other applications. Finally, biomass has shown to have good yields in the carbon nanosphere synthesis process, since its water content is used in the HTC process, thus forming a productive and viable relationship between the residual biomass and the HTC method. Here we present a review of the performance of some biomasses and the characterization of their nanomaterials, with the purpose of highlighting the HTC method as a sustainable and promising alternativeeng
dc.description.degreelevelMaestríaspa
dc.description.researchareaMateriales y energíaspa
dc.format.extent74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84574
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesY. Gong, H. Wang, Z. Wei, L. Xie, and Y. Wang, “An E ffi cient Way To Introduce Hierarchical Structure into Biomass- Based Hydrothermal Carbonaceous Materials,” ACS Sustain. Chem. Eng., vol. 2, pp. 2435–2441, 2014.spa
dc.relation.referencesG. García-Rosales, L. C. Longoria-Gándara, S. Martínez-Gallegos, and J. González-Juárez, “Synthesis and Characterization of Carbon Conditioned with Iron Nanoparticles Using Pineapple-Peel,” Adv. Nanoparticles, vol. 02, no. 04, pp. 384– 390, 2013.spa
dc.relation.referencesC. Chen et al., “Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass,” J. Am. Chem. Soc., vol. 139, no. 7, pp. 2657–2663, 2017.spa
dc.relation.referencesP. Zhang, X. Song, C. Yu, J. Gui, and J. Qiu, “Biomass-Derived Carbon Nanospheres with Turbostratic Structure as Metal-Free Catalysts for Selective Hydrogenation of o-Chloronitrobenzene,” ACS Sustain. Chem. Eng., vol. 5, no. 9, pp. 7481–7485, 2017.spa
dc.relation.referencesE. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H. J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, no. September. Elsevier, p. 122386, 2020.spa
dc.relation.referencesA. L. Cazetta et al., “Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes,” ACS Sustain. Chem. Eng., vol. 4, no. 3, pp. 1058–1068, 2016.spa
dc.relation.referencesH. Wan and X. Hu, “Nitrogen doped biomass-derived porous carbon as anode materials of lithium ion batteries,” Solid State Ionics, vol. 341, no. May, p. 115030, 2019.spa
dc.relation.referencesA. Muscat, E. M. de Olde, I. J. M. de Boer, and R. Ripoll-Bosch, “The battle for biomass: A systematic review of food-feed-fuel competition,” Glob. Food Sec., no. April, p. 100330, 2019.spa
dc.relation.referencesS. Acevedo et al., “Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa,” vol. 23, no. 2, pp. 81– 88, 2015.spa
dc.relation.referencesY. Xia et al., “Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium-Ion Batteries Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium- Ion Batteries,” vol. 7, no. 8, pp. 7083–7092, 2013.spa
dc.relation.referencesC. Guo, W. Liao, Z. Li, and C. Chen, “Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium,” Carbon N. Y., vol. 85, pp. 279–288, 2015.spa
dc.relation.referencesB. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici, “Engineering carbon materials from the hydrothermal carbonization process of biomass,” Adv. Mater., vol. 22, no. 7, pp. 813–828, 2010.spa
dc.relation.referencesN. N. Anshits, O. A. Mikhailova, A. N. Salanov, and A. G. Anshits, “Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia),” Fuel, vol. 89, no. 8, pp. 1849–1862, 2010.spa
dc.relation.referencesE. García-Bordejé, E. Pires, and J. M. Fraile, “Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions,” Carbon N. Y., vol. 123, pp. 421–432, 2017.spa
dc.relation.referencesH. Li et al., “Direct preparation of hollow nanospheres with kraft lignin: A facile strategy for effective utilization of biomass waste,” BioResources, vol. 11, no. 2, pp. 3073–3083, 2016.spa
dc.relation.referencesY. Li, M. Wu, B. Wang, Y. Wu, M. Ma, and X. Zhang, “Synthesis of Magnetic Lignin-Based Hollow Microspheres: A Highly Adsorptive and Reusable Adsorbent Derived from Renewable Resources,” ACS Sustain. Chem. Eng., vol. 4, no. 10, pp. 5523–5532, 2016.spa
dc.relation.referencesF. Xiong et al., “Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly,” Ind. Crops Prod., vol. 100, pp. 146–152, 2017.spa
dc.relation.referencesT. A. Khan, A. S. Saud, S. S. Jamari, M. H. A. Rahim, J.-W. Park, and H.-J. Kim, “Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review,” Biomass and Bioenergy, vol. 130, no. October 2018, p. 105384, 2019.spa
dc.relation.referencesA. A. Arie, H. Kristianto, M. Halim, and J. K. Lee, “Biomass based carbon nanospheres as electrode materials in lithium ion batteries,” ECS Trans., vol. 66, no. 11, pp. 13–19, 2015.spa
dc.relation.referencesP. Veerakumar, P. Thanasekaran, K. C. Lin, and S. Bin Liu, “Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium,” ACS Sustain. Chem. Eng., vol. 5, no. 6, pp. 5302–5312, 2017.spa
dc.relation.referencesK. Tang, R. J. White, X. Mu, M. M. Titirici, P. A. Van Aken, and J. Maier, “Hollow carbon nanospheres with a high rate capability for lithium-based batteries,” ChemSusChem, vol. 5, no. 2, pp. 400–403, 2012.spa
dc.relation.referencesP. Liu, X. Wang, and Y. Wang, “Design of carbon black/polypyrrole composite hollow nanospheres and performance evaluation as electrode materials for supercapacitors,” ACS Sustain. Chem. Eng., vol. 2, no. 7, pp. 1795–1801, 2014.spa
dc.relation.referencesN. Ranjbar and C. Kuenzel, “Cenospheres: A review,” Fuel, vol. 207, pp. 1–12, 2017.spa
dc.relation.referencesM.-M. Titirici and M. Antonietti, “Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization,” Chem. Soc. Rev., vol. 39, no. 1, pp. 103–116, 2010.spa
dc.relation.referencesR. J. White, K. Tauer, M. Antonietti, and M. M. Titirici, “Functional hollow carbon nanospheres by latex templating,” J. Am. Chem. Soc., vol. 132, no. 49, pp. 17360– 17363, 2010.spa
dc.relation.referencesJ. Delgado and M. Herranz, “Nanoestructuras de carbono : un nuevo desafío científico,” An. la Real, vol. 103, no. 4, pp. 5–13, 2007.spa
dc.relation.referencesM. Klose et al., “Hierarchically nanostructured hollow carbon nanospheres for ultra- fast and long-life energy storage,” Carbon N. Y., vol. 106, no. May, pp. 306–313, 2016.spa
dc.relation.referencesJ. Bartelmess and S. Giordani, “Carbon nano-onions (multi-layer fullerenes): Chemistry and applications,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 1980– 1998, 2014.spa
dc.relation.referencesH. Qu, X. Zhang, J. Zhan, W. Sun, Z. Si, and H. Chen, “Biomass-Based Nitrogen- Doped Hollow Carbon Nanospheres Derived Directly from Glucose and Glucosamine: Structural Evolution and Supercapacitor Properties,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7380–7389, 2018.spa
dc.relation.referencesG. Wang et al., “Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction,” Int. J. Hydrogen Energy, vol. 41, no. 32, pp. 14101–14110, 2016.spa
dc.relation.referencesZ. Han, Z. Du, X. Cong, and L. Zhao, “A new easy method to synthesize hollow carbon nanospheres,” Synth. Met., vol. 187, no. 1, pp. 91–93, 2014.spa
dc.relation.referencesC. Zhang et al., “Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage,” Carbon N. Y., vol. 50, no. 10, pp. 3513–3521, 2012.spa
dc.relation.referencesC. Mo, J. Zhang, and G. Zhang, “Hierarchical porous carbon with three dimensional nanonetwork from water hyacinth leaves for energy storage,” J. Energy Storage, vol. 32, no. July, p. 101848, 2020.spa
dc.relation.referencesS. Yallappa et al., “Fabrication of carbon nanospheres using natural resources and their voltametric studies of dopamine,” Mater. Today Proc., vol. 5, no. 1, pp. 3093– 3098, 2018.spa
dc.relation.referencesH. Kristianto, C. D. Putra, A. A. Arie, M. Halim, and J. K. Lee, “Synthesis and Characterization of Carbon Nanospheres Using Cooking Palm Oil as Natural Precursors onto Activated Carbon Support,” Procedia Chem., vol. 16, pp. 328–333, 2015.spa
dc.relation.referencesX. Cai et al., “Heteroatom-doped carbon nanospheres derived from cuttlefish ink: A bifunctional electrocatalyst for oxygen reduction and evolution,” Int. J. Hydrogen Energy, vol. 43, no. 37, pp. 17708–17717, 2018.spa
dc.relation.referencesS. Supriya, A. Divyashree, S. Yallappa, and G. Hegde, “Carbon nanospheres obtained from carbonization of bio-resource: A catalyst free synthesis,” Mater. Today Proc., vol. 5, no. 1, pp. 2907–2911, 2018.spa
dc.relation.referencesK. Yu, J. Li, H. Qi, and C. Liang, “Cellulose-Derived Hollow Carbonaceous Nanospheres from Rice Husks as Anode for Lithium-Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance,” ChemistrySelect, vol. 2, no. 13, pp. 3627–3632, 2017.spa
dc.relation.referencesM. Saxena and S. Sarkar, “Synthesis of carbogenic nanosphere from peanut skin,” Diam. Relat. Mater., vol. 24, pp. 11–14, 2012.spa
dc.relation.referencesD. A., S. A. B. A. Manaf, Y. S., C. K., K. N., and G. Hegde, “Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach,” J. Energy Chem., vol. 25, no. 5, pp. 880–887, 2016.spa
dc.relation.referencesY. Weng, S. Guan, L. Wang, X. Qu, and S. Zhou, “Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers,” J. Mater. Chem. B, vol. 7, no. 11, pp. 1920–1925, 2019.spa
dc.relation.referencesV. S. Bhat et al., “Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste,” J. Energy Storage, vol. 32, no. July, p. 101829, 2020.spa
dc.relation.referencesX. Lu, J. Chen, J. Lu, S. Wang, and T. Xia, “Monosaccharides and carbon nanosphere obtained by acidic concentrated LiBr treatment of raw crop residues via optimizing the synthesis process,” Bioresour. Technol., vol. 310, no. May, p. 123522, 2020.spa
dc.relation.referencesL. Xie et al., “Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures,” Green Chem., vol. 20, no. 20, pp. 4596–4601, 2018.spa
dc.relation.referencesH. Zhang, X. Yong, J. Zhou, J. Deng, and Y. Wu, “Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent,” ACS Appl. Mater. Interfaces, vol. 8, no. 4, pp. 2753–2763, 2016.spa
dc.relation.referencesM.-M. Titirici, M. Antonietti, and N. Baccile, “Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses,” Green Chem., vol. 10, no. 11, p. 1204, 2008.spa
dc.relation.referencesP. N. Bhagat, K. R. Patil, D. S. Bodas, and K. M. Paknikar, “Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight,” RSC Adv., vol. 5, no. 73, pp. 59491–59494, 2015.spa
dc.relation.referencesR. R. Gaddam, D. Yang, R. Narayan, K. V. S. N. Raju, N. A. Kumar, and X. S. Zhao, “Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries,” Nano Energy, vol. 26, pp. 346–352, 2016.spa
dc.relation.referencesS. D. Pengfei Zhang, Zhen-An Qiao, “Recent Advances in Carbon Nanospheres: Synthetic Routes and Applications,” Chem. Commun., vol. 51, pp. 9246–9256, 2015.spa
dc.relation.referencesP. Liu, Y. Wang, and J. Liu, “Biomass-derived porous carbon materials for advanced lithium sulfur batteries,” J. Energy Chem., vol. 34, pp. 171–185, 2019.spa
dc.relation.referencesH. Yang, S. Ye, J. Zhou, and T. Liang, “Biomass-derived porous carbon materials for supercapacitor,” Front. Chem., vol. 7, no. APR, pp. 1–17, 2019.spa
dc.relation.referencesY. Gao, X. H. Wang, H. P. Yang, and H. P. Chen, “Characterization of products from hydrothermal treatments of cellulose,” Energy, vol. 42, no. 1, pp. 457–465, 2012.spa
dc.relation.referencesM. Wilk, A. Magdziarz, I. Kalemba-Rec, and M. Szymańska-Chargot, “Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia,” Energy, vol. 202, 2020.spa
dc.relation.referencesY. Lei, H. Su, and R. Tian, “Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk,” RSC Adv., vol. 6, no. 109, pp. 107829–107835, 2016.spa
dc.relation.referencesM. T. Reza et al., “Hydrothermal Carbonization of Biomass for Energy and Crop Production,” Appl. Bioenergy, vol. 1, no. 1, pp. 11–29, 2014.spa
dc.relation.referencesJ. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, “Recent progress of biomass-derived carbon materials for supercapacitors,” J. Power Sources, vol. 451, no. October 2019, p. 227794, 2020.spa
dc.relation.referencesW. Chen and D. Deng, “Deflated carbon nanospheres encapsulating tin cores decorated on layered 3-d carbon structures for low-cost sodium ion batteries,” ACS Sustain. Chem. Eng., vol. 3, no. 1, pp. 63–70, 2015.spa
dc.relation.referencesM. Klug, “Pirólisis, un proceso para derretir la biomasa,” Rev. Química, vol. 26, no. 1–2, pp. 37–40, 2012.spa
dc.relation.referencesN. Afanasjeva, L. C. Castillo, and J. C. Sinisterra, “Lignocellulosic biomass. Part II: Tendence in the biomass pyrolysis.,” J. Sci. with Technol. Appl., vol. 5, no. 2018, pp. 4–22, 2018.spa
dc.relation.referencesV. Benavente, E. Calabuig, and A. Fullana, “Upgrading of moist agro-industrial wastes by hydrothermal carbonization,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 89–98, 2015.spa
dc.relation.referencesD. He et al., “One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications,” J. Colloid Interface Sci., vol. 581, pp. 238–250, 2021.spa
dc.relation.referencesM. M. Titirici, A. Thomas, S. H. Yu, J. O. Müller, and M. Antonietti, “A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization,” Chem. Mater., vol. 19, no. 17, pp. 4205–4212, 2007.spa
dc.relation.referencesH. Bamdad, K. Hawboldt, and S. MacQuarrie, “A review on common adsorbents for acid gases removal: Focus on biochar,” Renew. Sustain. Energy Rev., vol. 81, no. May, pp. 1705–1720, 2018.spa
dc.relation.referencesA. Pistone and C. Espro, “Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications,” Curr. Opin. Green Sustain. Chem., vol. 26, p. 100374, 2020.spa
dc.relation.referencesR. Hashaikeh, Z. Fang, I. S. Butler, J. Hawari, and J. A. Kozinski, “Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion,” Fuel, vol. 86, no. 10–11, pp. 1614–1622, 2007.spa
dc.relation.referencesX. Lu, K. Xiang, W. Zhou, Y. Zhu, and H. Chen, “Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors,” Bull. Mater. Sci., vol. 41, no. 6, pp. 1–7, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembCompuestos de carbonospa
dc.subject.lembCarbon compoundseng
dc.subject.lembMateriales compuestosspa
dc.subject.lembComposite materialseng
dc.subject.proposalBiomasaspa
dc.subject.proposalNanoesfera de carbonospa
dc.subject.proposalMétodo de carbonización hidrotermal (CHT)spa
dc.titleNanoesferas de carbono: Una mirada desde el proceso de síntesisspa
dc.title.translatedCarbon nanospheres: A look from the synthesis methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013628219.2023.pdf
Tamaño:
14.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: