Evaluación de la capacidad antibacterial de péptidos anfipáticos catiónicos antimicrobianos en diferentes bacterias patógenas y su correlación con el contenido helical

dc.contributor.advisorUrquiza Martínez, Urquiza
dc.contributor.authorBarbosa Nieves, Yulima Andrea
dc.contributor.cvlacBarbosa Nieves, Yulima Andrea [0000134286]
dc.contributor.orcidBarbosa Nieves, Yulima Andrea [0009-0005-6994-5349]
dc.contributor.researchgroupGrupo de Investigación en Hormonas
dc.date.accessioned2026-01-23T19:51:06Z
dc.date.available2026-01-23T19:51:06Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografías, gráficosspa
dc.description.abstractEn los últimos años, el surgimiento de cepas patógenas resistentes a antibióticos —incluidos los betalactámicos y las cefalosporinas de tercera generación, con reportes crecientes de fallas incluso en tratamientos con cefalosporinas de cuarta y quinta generación— ha generado una gran preocupación en salud pública a nivel nacional e internacional. En este contexto, los péptidos catiónicos antimicrobianos se han planteado como alternativas terapéuticas prometedoras debido a su papel en la respuesta inmune innata y a su mecanismo de acción dirigido a la membrana, lo que dificulta que las bacterias desarrollen resistencia frente a ellos. En la literatura se reportó previamente un péptido antimicrobiano de amplio espectro —denominado en este trabajo como péptido 43— con estructura de hélice α anfipática. Sin embargo, la presencia de ciertos residuos poco frecuentes en hélices sugería la posibilidad de estabilizar su conformación y, de esta manera, potenciar su actividad. A partir de esta secuencia, el Grupo de Investigación de Hormonas y el Semillero de Bioquímica, Biofísica y Biología Molecular de la Universidad Nacional de Colombia diseñaron seis péptidos análogos, los cuales fueron sintetizados en fase sólida en la Universidad Pontificia Católica de Chile, purificados por HPLC y caracterizados mediante espectrometría de masas y dicroísmo circular. La actividad antimicrobiana de los péptidos se evaluó frente a bacterias incluidas en la lista prioritaria de la Organización Mundial de la Salud. Se encontró que varias cepas fueron sensibles, en particular al péptido 37, que presentó los valores más bajos de IC₅₀: Enterococcus faecalis (10.39 μM), Staphylococcus aureus (8.29 μM, aunque esta última especie fue más sensible al péptido 38 con 7.49 μM), Pseudomonas aeruginosa (6.08 μM) y Escherichia coli O157:H7 (9.75 μM), mientras que Klebsiella pneumoniae mostró la mayor resistencia (12.66 μM). Los análisis fisicoquímicos indicaron que la actividad de los péptidos depende del entorno y del medio en el que se encuentren, en relación con sus cargas, el carácter anfipático y la helicidad, lo que revela una clara afinidad por la membrana bacteriana y aporta información sobre su posible mecanismo de acción. Asimismo, se confirmó su especificidad hacia membranas bacterianas, ya que no inducen hemólisis significativa a las concentraciones correspondientes a su IC₅₀ ni citotoxicidad en células humanas. Finalmente, se observó que las modificaciones en la secuencia de aminoácidos influyeron en la actividad antimicrobiana, aunque la mayor estabilización de la hélice α no se correlacionó necesariamente con una mayor eficacia biológica. En conjunto, estos resultados sugieren que los péptidos más promisorios presentan un alto potencial para su desarrollo como agentes terapéuticos, formulaciones tópicas o recubrimientos antimicrobianos, constituyéndose en candidatos seguros y eficaces frente a bacterias multirresistentes. (Texto tomado de la fuente)spa
dc.description.abstractIn recent years, the emergence of pathogenic strains resistant to antibiotics—including βlactams and third-generation cephalosporins, with increasing reports of treatment failures even with fourth- and fifth-generation cephalosporins—has generated major public health concerns at both national and international levels. In this context, cationic antimicrobial peptides have been proposed as promising therapeutic alternatives due to their role in the innate immune response and their membrane-targeting mechanism of action, which makes it more difficult for bacteria to develop resistance against them. Previous literature reported a broad-spectrum antimicrobial peptide—referred to in this work as peptide 43—with an amphipathic α-helical structure. However, the presence of certain residues that are uncommon in helices suggested the possibility of stabilizing its conformation and thereby enhancing its activity. Based on this sequence, the Hormones Research Group and the Biochemistry, Biophysics, and Molecular Biology Student Research Team at the National University of Colombia designed six analog peptides. These were synthesized via solid-phase peptide synthesis at the Pontifical Catholic University of Chile, purified by HPLC, and characterized by mass spectrometry and circular dichroism. The antimicrobial activity of these peptides was evaluated against bacteria included on the World Health Organization’s priority pathogen list. Several strains were found to be sensitive, particularly to peptide 37, which displayed the lowest IC₅₀ values: Enterococcus faecalis (10.39 μM), Staphylococcus aureus (8.29 μM, although this species was even more sensitive to peptide 38 with 7.49 μM), Pseudomonas aeruginosa (6.08 μM), and Escherichia coli O157:H7 (9.75 μM), whereas Klebsiella pneumoniae showed the greatest resistance (12.66 μM). Physicochemical analyses indicated that peptide activity depends on the surrounding environment and medium, in association with their charge distribution, amphipathic character, and helicity. These features demonstrate a clear affinity for bacterial membranes and provide insight into their potential mechanism of action. Additionally, their specificity toward bacterial membranes was confirmed, as they did not induce significant hemolysis at their IC₅₀ concentrations nor cytotoxicity in human cells. Finally, modifications in amino acid sequence were shown to influence antimicrobial activity; however, stabilization of the α-helix did not necessarily correlate with increased biological efficacy. Overall, these results suggest that the most promising peptides exhibit high potential for development as therapeutic agents, topical formulations, or antimicrobial coatings, representing safe and effective candidates against multidrug-resistant bacteria.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias-Bioquímica
dc.description.methodsMetodología experimental
dc.description.researchareaPéptidos antimicrobianos
dc.format.extentxv, 141 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89314
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.relation.referencesWorld Health Organization. WHO Bacterial Priority Pathogens List: bacterial payhogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance [Internet]. 2024 May [cited 2024 Sep 20]. Available from: https://www.who.int/publications/i/item/9789240093461
dc.relation.referencesMurray CJL, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. The Lancet [Internet]. 1997 May 24 [cited 2024 Jan 17];349(9064):1498–504. Available from: https://www.sciencedirect.com/science/article/pii/S0140673696074922
dc.relation.referencesIkuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T, Gray AP, et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet [Internet]. 2022 Dec 17;400(10369):2221–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673622021857
dc.relation.referencesECDC: European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARSNet) AER for 2021: Annual Epidemiological Report [Internet]. Stockholm; 2022 Nov. Available from: https://atlas.ecdc.europa.eu/
dc.relation.referencesWORLD BANK GROUP. DRUG-RESISTANT INFECTIONS A Threat to Our Economic Future [Internet]. 2017 Mar. Available from: www.worldbank.org
dc.relation.referencesDirección de Medicamentos y Tecnologías en Salud. PLAN NACIONAL DE RESPUESTA A LA RESISTENCIA A LOS ANTIMICROBIANOS: Plan estratégico [Internet]. 2018 Jun [cited 2024 Mar 21]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuestaresistencia-antimicrobianos.pdf
dc.relation.referencesGómez-Sequeda N, Ruiz J, Ortiz C, Urquiza M, Torres R. Potent and specific antibacterial activity against escherichia coli o157:H7 and methicillin resistant staphylococcus aureus (mrsa) of g17 and g19 peptides encapsulated into poly-lactic-co-glycolic acid (plga) nanoparticles. Antibiotics. 2020 Jul 1;9(7):1–14.
dc.relation.referencesXuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates [Internet]. 2023 May;68:100954. Available from: https://www.sciencedirect.com/science/article/pii/S1368764623000377
dc.relation.referencesTiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel PeptideBased Therapeutics in Plant Systems. Vol. 13, Life. Multidisciplinary Digital Publishing Institute (MDPI); 2023. p. 1875–97.
dc.relation.referencesINS: Instituto Nacional de la Salud. Dos de cada cinco muertes por infecciones en Latinoamérica se relacionan con la resistencia antimicrobiana [Internet]. [cited 2024 May 17]. Available from: Bibliografía 139 Página | 139 https://www.ins.gov.co/Noticias/Paginas/Dos-de-cada-cinco-muertes-por-infecciones-enLatinoam%C3%A9rica-se-relacionan-con-la-resistencia-antimicrobiana.aspx
dc.relation.referencesDe La Hoz F, Durán MB, Enrique M, Duran M, Pacheco García OE, Díaz MH, et al. Protocolo de Vigilancia en Salud Pública RESISTENCIA BACTERIANA A LOS ANTIMICROBIANOS EN EL ÁMBITO HOSPITALARIO. Colombia; Dec 17, 2014 p. 1–26.
dc.relation.referencesJames K. Martin II JPSBPBGMMAMSHJLHKJDRATMMSMZWZG. A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance. Cell [Internet]. 2020 Jun 25;181(7):1518–32. Available from: https://doi.org/10.1016/j.
dc.relation.referencesMelo MCR, Maasch JRMA, de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence [Internet]. Vol. 4, Communications Biology. Nature Research; 2021 [cited 2024 Jun 22]. p. 1–13. Available from: www.nature.com/commsbio
dc.relation.referencesWong F, Zheng EJ, Valeri JA, Donghia NM, Anahtar MN, Omori S, et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature. 2024 Feb 1;626(7997):177–85.
dc.relation.referencesXiong M, Lee MW, Mansbach RA, Song Z, Bao Y, Peek RM, et al. Helical antimicrobial polypeptides with radial amphiphilicity. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13155–60.
dc.relation.referencesTossi A, Sandri L, Giangaspero A. Amphipathic,-Helical Antimicrobial Peptides [Internet]. Vol. 55, Biopoly. 2000. Available from: http://www.expasy.ch/prosite
dc.relation.referencesTakahashi D, Shukla SK, Prakash O, Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Vol. 92, Biochimie. 2010. p. 1236–41.
dc.relation.referencesZelezetsky I, Tossi A. Alpha-helical antimicrobial peptides-Using a sequence template to guide structure-activity relationship studies. Vol. 1758, Biochimica et Biophysica Acta - Biomembranes. 2006. p. 1436–49.
dc.relation.referencesKenneth M Huttner CLB. Antimicrobial Peptides as Mediators of Epithelial Host Defense. Pediatr Res [Internet]. 1999 Jan 21 [cited 2024 Oct 2];45:785–94. Available from: https://www.nature.com/articles/pr19992475#citeas
dc.relation.referencesRivas Santiago Bruno SEHPR y TV. Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas [Internet]. 2006 Feb [cited 2024 Mar 5]. Available from: https://www.redalyc.org/articulo.oa?id=10648109
dc.relation.referencesMorales H. Bayas M. Simulaciones de dinamica molecular del peptido antimicrobiano Bactenecin en las cercanias de una membrana lipidica. Revista Politécnica [Internet]. 2013 Jul [cited 2024 May 20];32:45–51. Available from: https://www.redalyc.org/articulo.oa?id=688773657003
dc.relation.referencesRocha GF, Kise F, Rosso AM, Parisi MG. Péptidos con actividad antimicrobiana obtenidos de proteínas lácteas con extractos de salpichroa origanifolia. Informacion Tecnologica. 2013;24(2):23–30.
dc.relation.referencesMant CT, Jiang Z, Gera L, Davis T, Hodges RS. Design of Novel Amphipathic α-Helical Antimicrobial Peptides with No Toxicity as Therapeutics against the Antibiotic-Resistant Gram-Negative Bacterial Pathogen, Acinetobacter Baumannii HHS Public Access. Vol. 2, J Med Chem Drug Des. 2019.
dc.relation.referencesCruz J, Flórez J, Torres R, Urquiza M, Gutiérrez JA, Guzmán F, et al. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology [Internet]. 2017 Mar 7 [cited 2024 Apr 8];28(13). Available from: http://iopscience.iop.org/0957-4484/28/13/135102
dc.relation.referencesGuzmán F, Gauna A, Roman T, Luna O, Álvarez C, Pareja-Barrueto C, et al. Tea bags for Fmoc solid-phase peptide synthesis: An example of circular economy. Molecules. 2021 Aug 2;26(16).
dc.relation.referencesLee Ventola C. The Antibiotic Resistance Crisis Part 1: Causes and Threats. Vol. 40. 2015.
dc.relation.referencesBush K, Bradford PA. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8)
dc.relation.referencesCabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, et al. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Vol. 8, Frontiers in Molecular Biosciences. Frontiers Media S.A.; 2021.
dc.relation.referencesZhang QY, Yan Z Bin, Meng YM, Hong XY, Shao G, Ma JJ, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Vol. 8, Military Medical Research. BioMed Central Ltd; 2021.
dc.relation.referencesNtwasa M. Cationic Peptide Interactions with Biological Macromolecules. In: Binding Protein. InTech; 2012.
dc.relation.referencesSmart M, Rajagopal A, Liu WK, Ha BY. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E. 2017 Oct 9;96(4).
dc.relation.referencesCercenado E, Cantón R, Sánchez C, Autores C, Guerrero C, Carlos G, et al. Procedimientos en Microbiología Clínica Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. 2003.
dc.relation.referencesBirnboim+ HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Vol. 7, Nucleic Acids Research. 1979.
dc.relation.referencesOlaya Acosta A, Husserl Orjuela J. Estandarización de la técnica Q-PCR para la identificación de la enzima SoxA en bacterias asociadas a la degradación del concreto [Internet]. 2014 [cited 2024 May 22]. Available from: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/12e7694e-286d-4a02-81de-42c22424f831/content
dc.relation.referencesGODING JW. 10 - Analysis of Antigens Recognized by Monoclonal Antibodies. In: GODING JW, editor. Monoclonal Antibodies (Third Edition) [Internet]. London: Academic Press; 1996. p. 234–326. Available from: https://www.sciencedirect.com/science/article/pii/B9780122870231500584
dc.relation.referencesSarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007 Aug;42(4):321–4.
dc.relation.referencesMalm A V., Corbett JCW. Improved Dynamic Light Scattering using an adaptive and statistically driven time resolved treatment of correlation data. Sci Rep. 2019 Dec 1;9(1):13519.
dc.relation.referencesTrounson A, Elefanty A. Stem cells in biology, tissue engineering and medicine: the leading edge keeps moving. Vol. 18, Current Opinion in Biotechnology. 2007. p. 432–3.
dc.relation.referencesChen KK, Salim W, Han Y, Wu D, Ho WSW. Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas. J Memb Sci. 2020 Feb 1;595.
dc.relation.referencesMalik E, Dennison SR, Harris F, Phoenix DA. PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Vol. 9, Pharmaceuticals. MDPI AG; 2016. p. 67–102.
dc.relation.referencesMERCK. Protocols for the Fmoc SPPS of Cysteine-Containing Peptides [Internet]. [cited 2025 Jan 9]. Available from: https://www.sigmaaldrich.com/CO/en/technical-documents/protocol/chemistry-and-synthesis/peptidesynthesis/Fmoc-spps-cysteinepeptides?srsltid=AfmBOopYWZj33eTk0uSa9tDa1VuAvdOdGBRyR_lBieMPYU8v3I1nP0X3
dc.relation.referencesHermanson GT. Chapter 2 - Functional Targets for Bioconjugation. In: Hermanson GT, editor. Bioconjugate Techniques (Third Edition) [Internet]. Third Edition. Boston: Academic Press; 2013. p. 127–228. Available from: https://www.sciencedirect.com/science/article/pii/B9780123822390000029
dc.relation.referencesGad SE. Dimethyl Sulfoxide. In: Wexler P, editor. Encyclopedia of Toxicology (Second Edition) [Internet]. New York: Elsevier; 2005. p. 51–2. Available from: https://www.sciencedirect.com/science/article/pii/B0123694000003318
dc.relation.referencesMerck. Iodoacetamide [Internet]. [cited 2025 Jan 10]. Available from: https://www.sigmaaldrich.com/CO/en/product/sigma/i1149?srsltid=AfmBOoro1iF7O7rmv9pvv2IbQA_TzgPHR-ZiinlNLXnQxOuFN8xaoxj
dc.relation.referencesLópez-Jiménez AT, Mostowy S. Emerging technologies and infection models in cellular microbiology. Vol. 12, Nature Communications. Nature Research; 2021. p. 6764.
dc.relation.referencesKing A, Chakrabarty S, Zhang W, Zeng X, Ohman DE, Wood LF, et al. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules. 2014 Feb 10;15(2):456–67.
dc.relation.referencesKumar P NAUPD. Analysis of Cell Viability by the MTT Assay. Int J Mol Sci. 2023 Feb 1;24(3):2914.
dc.relation.referencesZelezetsky I, Tossi A. Alpha-helical antimicrobial peptides—Using a sequence template to guide structure– activity relationship studies. Biochimica et Biophysica Acta (BBA) - Biomembranes [Internet]. 2006;1758(9):1436–49. Available from: https://www.sciencedirect.com/science/article/pii/S0005273606001088
dc.relation.referencesAtes G, Vanhaecke T, Rogiers V, Rodrigues RM. Assaying cellular viability using the neutral red uptake assay. In: Methods in Molecular Biology. Humana Press Inc.; 2017. p. 19–26.
dc.relation.referencesMelton-Celsa AR. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol Spectr. 2014 Aug 15;2(4)
dc.relation.referencesCatalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes? Vol. 8, Virulence. Taylor and Francis Inc.; 2017. p. 1111–23.
dc.relation.referencesGalle M, Carpentier I, Beyaert R. Send Orders of Reprints at bspsaif@emirates.net.ae Structure and Function of the Type III Secretion System of Pseudomonas aeruginosa. 2012.
dc.relation.referencesDamian C Melles * ✉, Willem B van Leeuwen *, Hélène AM Boelens *, Justine K Peeters *, Henri A Verbrugh *, Alex van Belkum *. Panton-Valentine Leukocidin Genes in Staphylococcus aureus [Internet]. 2006 Jul. Available from: www.cdc.gov/eid
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.subject.blaaCromatografía líquida de alta resolución
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.lembBacteriasspa
dc.subject.lembDicroísmo circularspa
dc.subject.lembCircular dichroismeng
dc.subject.lembEspectrometría de masasspa
dc.subject.lembMass spectrometryeng
dc.subject.proposalPéptidos catiónicos antimicrobianosspa
dc.subject.proposalCationic antimicrobial peptideseng
dc.subject.proposalConcentración inhibitoria mediamáximaspa
dc.subject.proposalMedian–maximum inhibitory concentrationeng
dc.subject.proposalBacteriasspa
dc.subject.proposalBacteriaeng
dc.subject.proposalEspecificidadspa
dc.subject.proposalSpecifyeng
dc.subject.proposalSensibilidadspa
dc.subject.proposalSensitivityeng
dc.subject.proposalContenido helicalspa
dc.subject.proposalHelical contenteng
dc.titleEvaluación de la capacidad antibacterial de péptidos anfipáticos catiónicos antimicrobianos en diferentes bacterias patógenas y su correlación con el contenido helicalspa
dc.title.translatedEvaluation of the Antibacterial Capacity of Cationic Amphipathic Antimicrobial Peptides in Different Pathogenic Bacteria and Their Correlation with Helical Contenteng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS YABN.pdf
Tamaño:
4.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis para optar a Máster en Ciencias-Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: