En 21 día(s), 19 hora(s) y 14 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Efecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentes

dc.contributor.advisorDueñas Gómez, Zulma Janethspa
dc.contributor.authorCeballos Ordoñez, Leidy Johannaspa
dc.contributor.researchgroupNeurobiología y Comportamientospa
dc.date.accessioned2023-07-28T01:27:03Z
dc.date.available2023-07-28T01:27:03Z
dc.date.issued2023-06-29
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractIntroducción: En roedores como en humanos la separación materna durante la lactancia (SMDL) incide en el neurodesarrollo al ser un factor estresor, afectando el metabolismo, comportamiento y aprendizaje. Por otro lado, la exposición a un ambiente enriquecido (AE) activa el sistema nervioso central proporcionando estímulos físicos, sociales y sensoriales que conllevarían a una reducción del estrés y adaptación de respuestas neurobiológicas. Objetivo: Analizar el efecto de 15 días de ambiente enriquecido, posterior a la separación materna durante la lactancia, sobre la cantidad y morfología de la microglía y la concentración de corticosterona, en ratas Wistar machos y hembras durante la adolescencia temprana. Metodología: Se utilizaron 78 crías de ratas Wistar divididas en dos grupos, con y sin SMDL. El día 22 fueron separadas por sexo y tratamiento, y ubicadas en un AE o estándar por 15 días. Los animales se anestesiaron y perfundieron el día 37, se tomó muestra sérica para medir corticosterona y se extrajo el tejido cerebral. Resultados: el AE posterior a la SMDL no revirtió la disminución de los niveles de corticosterona de la SMDL y AE por sí solos, pero si disminuyó el número de microglías por debajo de los números de la SMDL sola, incidiendo en la adaptación de una morfología ramificada. Conclusión: La SMDL puede afectar el sistema neuroendocrino y neuroinflamatorio, mediados por la expresión de corticosterona y glucocorticoides. Aunque la exposición del AE posterior a la SMDL disminuyó el número de microglías y proporcionó una morfología ramificada, este paradigma funcionaría como un modelo de estrés que adapta el sistema garantizando un adecuado funcionamiento a estresores futuros. (Texto tomado de la fuente).spa
dc.description.abstractIntroduction: In rodents as in humans, maternal separation during breastfeeding (MSDB) as a stressor factor affects neurodevelopment, including alteration in metabolism, behavior and learning. On the other hand, exposure to an enriched environment (EA) activates the central nervous system by providing physical, social and sensory stimuli that would lead to a reduction in stress and adaptation of neurobiological responses. Objective: To analyze the effect of 15 days of enriched environment, after maternal separation during breastfeeding, on the quantity and morphology of microglia and the concentration of corticosterone, in male and female Wistar rats during early adolescence. Methodology: 78 offspring of Wistar rats were divided into two groups, with and without SMDL, were used. On day 22 they were separated by sex and treatment and placed in an EA or standard for 15 days. The animals were anesthetized and perfused on day 37, a serum sample was taken to measure corticosterone, and brain tissue was removed. Results: the EA after the MSDB did not the decrease in corticosterone levels of the baseline MSDB and EA, but it did decrease the number of microglia below the numbers of the MSDB, affecting the adaptation of a branched morphology. Conclusion: MSDB may affects the neuroendocrine and neuroinflammatory system, mediated by the expression of corticosterone and glucocorticoids. Although exposure of the EA after MSDB decreased the number of microglia and provided a branched morphology, this paradigm would work as a stress model that adapts the system, guaranteeing proper functioning to future stressors.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Neurocienciasspa
dc.description.researchareaEfectos neurales y comportamentales del estrésspa
dc.format.extent106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84343
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.indexedBiremespa
dc.relation.references1. Swain J., Lorberbaum J., Kose S. & Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. Child Psychol. Psychiatry. 2007; 48(3-4): 262-87.spa
dc.relation.references2. Vivineto A., Suárez M., Rivarola M. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behavioural Brain Research. 2013(240): 110-8.spa
dc.relation.references3. Koe A., Ashokan A., Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Translational Psychiatry. 2016(6), e729; doi:10.1038/tp.2015.217spa
dc.relation.references4. Ministerio de salud y protección social. Encuesta nacional de salud mental. 2015. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/presentacion-encuesta-nacional-salud-mental-2015.pdfspa
dc.relation.references5. Patiño J., Corredor L., & Dueñas Z. Impacto de la separación materna duranta la lactancia sobre el tamaño del cerebro y la inmunorreacción al receptor Gaba-A. Revista Investig.Salud Univ. Boyacá. 2013,1(1): 31-44.spa
dc.relation.references6. Noble KG., Houston SM., Brito NH., Bartsch H., Kan E., Kuperman JM., et al. Family income, parental education and brain structure in children and adolescents. Nature Neuroscience. 2015; 18(5): 773–78.doi:10.1038/nn.3983spa
dc.relation.references7. Departamento Administrativo Nacional de Estadística – DANE. Disponible en: https://www.dane.gov.co/spa
dc.relation.references8. Ministerio de salud y protección social. Boletín de salud mental en niños, niñas y adolescentes, 2017.Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletin-4-salud-mental-nna-2017.pdfspa
dc.relation.references9. Ball N., Mercado E., & Orduña I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Frontiers in Psychology. 2019; 10:466. doi: 10.3389/fpsyg.2019.00466spa
dc.relation.references10. Calcia M., Bonsall D., Bloomfield P., Selvaraj S., Barichello T., & Howes O. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychofarmacology.2016(233):1637-50.spa
dc.relation.references12. Novick A, Levandowski M, Laumann L., Philip N., Price L, & Tyrka, A. The effects of early life stress on reward processing. Journal of Psychiatric Research. 2018. 101, 80–103.doi:10.1016/j.jpsychires.2018.0spa
dc.relation.references13. Barrera I., Dueñas Z. La separación materna durante la lactancia altera los niveles basales del sistema neuroendocrino en ratas adolescentes y adultas. Biomédica, 2016; 36, 67-77.spa
dc.relation.references14. Liu C, Hao S, Zhu M, Wang Y, Zhang T, Yang Z. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience. 2018 374:287–94. doi: 10.1016/j.neuroscience.2018.01.043spa
dc.relation.references15. Liu S., & Zhao M. Neuroprotective effect of estrogen: Role of nonsynaptic NR2B-containing NMDA receptors. Brain Research Bulletin. 2013; 93: 27–31.doi:10.1016/j.brainresbull.2012.10.004spa
dc.relation.references16. Liu Y., Wong T., Aarts M., Rooyakkers A., Liu L., Lai T., et al. NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo. Journal of Neuroscience. 2007; 27(11): 2846–57. doi:10.1523/jneurosci.0116-07.2007spa
dc.relation.references17. Aparicio I., Muñoz P., Salido G., Peña F., & Tapia J. The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions. Animal. 2016; 10(07): 1182–91. doi:10.1017/s1751731116000240spa
dc.relation.references18. Chen W., Sun Y., Liu K., & Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration research. 2014; 9(12): 1210-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146291/spa
dc.relation.references19. Dueñas Z; Caicedo-Mera JC & Torner L. Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 2017, 23, 1-8. DOI: 10.2174/1381612823666170224111641spa
dc.relation.references20. Johnson F., & Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain, Behavior, and Immunity. 2018; 69: 18–27. doi:10.1016/j.bbi.2017.06.008spa
dc.relation.references21. Hanamsagar R. & Bilbo S. Environment matters: microglia function and dysfunction in a changing world. Current Opinion in Neurobiology. 2017; 47: 146–55.doi:10.1016/j.conb.2017.10.007spa
dc.relation.references22. Delpech J., Wei L., Hao J., Yu X., Madore C., Butovsky O., & Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Inmmun. 2016 (57): 79-93.spa
dc.relation.references23. Neal S., Kent M., Bardi M., Lambert K. Enriched Environment Exposure Enhances Social Interactions and Oxytocin Responsiveness in Male Long-Evans Rats. Frontiers in Behavioral Neuroscience. 2018 (12):1-10.spa
dc.relation.references24. Novaes L., Barreto dos Santos N., Batalhote R., Malta M., Camarini R., Scavone, C. et al. Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. 2017 (113): 457-66.spa
dc.relation.references25. Cao, W., Hu, Z., Xu, Y., Zhang, W., Huang, F., Qiao, X., Cui, Y., Wan, W., Wang, X., Liu, D., Dai, R., Li, D., Li, C. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology. 2017 (22), 234: 3321-34.spa
dc.relation.references26. Dandi E., Kalamari A., Touloumi O., Lagoudaki R., Nousiopoulou E., Simeonidou, et al. Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental. Neuroscience.2018(67):19-32.spa
dc.relation.references27. Hofer M. Psychobiological Roots of Early Attachment. 2006. Current Directions in Psychological Science. 15(2), 84–88. doi:10.1111/j.0963-7214.2006.00412.xspa
dc.relation.references28. Herzberg M., & Gunnar, M. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. 2019. NeuroImage, 116493.doi:10.1016/j.neuroimage.2019.1spa
dc.relation.references29. Swain J, Lorberbaum J, Kose S, Strathearn, L. Brain basis of early parent-infant interactions: psychology, physiology, and in vivo functional neuroimaging studies. 2007. J. Child Psychol. Psychiatry ;48(3-4):262-87spa
dc.relation.references30. Strathearn L, Li J, Fonagy P, Montague PR. What’s in a smile? Maternal brain responses to infant facial cues. 2008. Pediatrics;122(1):40-51.spa
dc.relation.references31. Bowlby J. Grief and mourning in infancy and early childhood. 1960. Psychoanal Study Child; 15:9-52spa
dc.relation.references32. Feldman R. Oxytocin and social affiliation in humans. 2012. Hormones and Behavior; 61:380-91.spa
dc.relation.references33. Winnicott D. Nuevas observaciones sobre la teoría de la relación parento-filial. 1961. Obras Completas.spa
dc.relation.references34. Kristal M. The Biopsychology of Maternal Behavior in Nonhuman Mammals. 2009. ILAR Journal. 50(1): 51–63. doi:10.1093/ilar.50.1.51spa
dc.relation.references35. Suomi S, van der Horst F, Van der Veer R. Rigorous experiments on monkey love: an account of Harry F. Harlow’s role in the history of attachment theory. 2008. Integr Psychol Behav Sci.;42:354–369. https://doi.org/10.1007/s12124-008-9072-9.spa
dc.relation.references36. Harlow H. Love in Infant Monkeys. 1959. . Scientific American. 200(6), 68–74.doi:10.1038/scientificamerican0659-68spa
dc.relation.references37. Levine S. Infantile Experience and Resistance to Physiological Stress. 1957. Science,. 126 (3270), 405–405.doi:10.1126/science.126.3270.spa
dc.relation.references38. Spitz R. Hospitalism; an inquiry into the genesis of psychiatric conditions in early childhood. 1945. Psychoanal Study Child; 1:53-74.spa
dc.relation.references40. Harlow H, Dodsworth R, Harlow M. Total social isolation in monkeys. 1965. Proc Natl Acad Sci USA 1965; 54:90-7spa
dc.relation.references41. Mitchell, G, Raymond E, Ruppenthal G, Harlow H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychological Reports 1966;18;567-80.spa
dc.relation.references42. Rodríguez D., & Dueñaz Z. efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta biol. Colomb. 2012 (17); 1:129.42.spa
dc.relation.references43. Hebb D. The mammal and his environment. Annual American Psychiatry Association. 1955; 111: 826-31.spa
dc.relation.references44. Hunt J. Psychological development: Early Experience. Annual reviews psychological. 1979; 30: 103-43.spa
dc.relation.references45. Diamond, M. Response of the Brain to Enrichmen. Anais da Academia Brasileira de Ciencias, 2001 (2); 73.spa
dc.relation.references46. Lopes D., Souza T., Andrade J., Silva M, Antunes H., LeSueur-Maluf L. et al. Environmental enrichment decreases avoidance responses in the elevated Tmaze and delta FosB immunoreactivity in anxiety-related brain regions. Behavioural Brain Research. 2018; 344: 65-72.spa
dc.relation.references47. Yeshurun S., Corto A., Bredy T., Pang T., & Hannan A. Paternal environmental enrichment transgenerationally altersaffective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225-35.spa
dc.relation.references48. Rosenzweig M., Bennett E. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 1966; 78: 57-65.spa
dc.relation.references49. Rosenzweig M., Bennett E., Hebert M., Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 1978;153: 563-76.spa
dc.relation.references50. Cutuli D., Berretta E., Caporali P., Sampedro-Piquero P., De Bartolo P., Laricchiuta, et al. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons. Neuropharmacology, 2018: 1-15. https://doi.org/10.1016/j.neuropharm.2018.02.015spa
dc.relation.references51. Petrosini, et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws, 2009;61(2): 221-39spa
dc.relation.references52. Simpson J. & Kelly J. The impact of environmental enrichment in laboratory rats Behavioural and neurochemical aspects. Behavioural Brain Research, 2011;222 (1), 246-64.spa
dc.relation.references53. Rosenzweig M, Krech D, Bennett E, Diamond M. Effects of environmental complexity and training on brain chemistry and anatomy: A replication and extension. J Comp Physiol Psychol 1962; 55:429-37.spa
dc.relation.references54. Walsh EG Sense of Visual Direction in Normal Subjects and Neurological Patients. Developmental Medicine & Child Neurology. 1969;11(3): 333-45. doi:10.1111/j.1469-8749.1969.tb01440.spa
dc.relation.references55. Greenough W., Volkmar F. & Juraska J. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology. 1973; 41(2): 371- 78. doi:10.1016/0014-4886(73)90278-1spa
dc.relation.references56. Floeter M. & Greenough W. Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys. Science. 1979; 206(4415): 227-29. doi:10.1126/science.113873spa
dc.relation.references57. Volkmar F. & Greenough W. Rearing Complexity Affects Branching of Dendrites in the Visual Cortex of the Rat. Science, 1972; 176(4042): 1445 -47.doi:10.1126/science.176.4042.1445spa
dc.relation.references58. Pascual R. & Figueroa H. Effects of Preweaning Sensorimotor Stimulation on Behavioral and Neuronal Development in Motor and Visual Cortex of the Rat. Neonatology. 1996; 69(6): 399–404.doi:10.1159/000244337spa
dc.relation.references59. Rampon C., Jiang C., Dong H., Tang Y., Lockhart D., Schultz P. et al. Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences. 2000; 97(23): 12880–84.doi:10.1073/pnas.97.23.12880spa
dc.relation.references60. Comery T., Shah R. & Greenough W. Differential Rearing Alters Spine Density on Medium-Sized Spiny Neurons in the Rat Corpus Striatum: Evidence for Association of Morphological Plasticity with Early Response Gene Expression. Neurobiology of Learning and Memory. 1995; 63(3): 217–19.doi:10.1006/nlme.1995.1025spa
dc.relation.references61. Ferchmin P., Eterovic V. & Caputto R. Studies of brain weight and RNA content after short periods of exposure to environmental complexity. Brain Research. 1970; 20(1): 49–57.doi:10.1016/0006-8993(70)90153-8spa
dc.relation.references62. Rampon C, Tang Y, Goodhouse J, Shimizu E, Kyin M, Tsien J. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice.Nat Neurosciences. 2000; 3(3): 238-44.spa
dc.relation.references63. Meaney M. Epigenetics and the Biological Definition of Gene × Environment Interactions. Child Development. 2010; 81(1): 41–79.doi:10.1111/j.1467-8624.2009.01381.spa
dc.relation.references64. Yeshurun S., Short A., Bredy T., Pang T. & Hannan, A. J.Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017; 77: 225–35.doi:10.1016/j.psyneuen.2016.11.013spa
dc.relation.references65. Kimura L., Mattaraia V. de M. & Picolo G. Distinct environmental enrichment protocols reduce anxiety but differentially modulate pain sensitivity in rats. Behavioural Brain Research. 2017. doi:10.1016/j.bbr.2017.11.012spa
dc.relation.references66. Lehmann M. & Herkenham M. Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience. 2011; 31(16): 6159–73.doi:10.1523/jneurosci.0577-11.2011spa
dc.relation.references67. Smith B., Lyons C., Correa F., Benoit S., Myers B., Solomon M., et al. Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology. 2017; 77: 37–46. doi:10.1016/j.psyneuen.2016.11.040spa
dc.relation.references68. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan, S, et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science. 2010; 330(6005): 841–45. doi:10.1126/science.119463spa
dc.relation.references69. Matcovitch-Natan O., Winter DR., Giladi A., Vargas Aguilar S., Spinrad A., Sarrazin S., et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016; 353(6301), aad8670–aad8670.doi:10.1126/science.aad8670spa
dc.relation.references70. Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science. 2005; 308(5726): 1314–18. doi:10.1126/science.1110647spa
dc.relation.references71. Prinz, M., Jung, S., & Priller, J. (2019). Microglia Biology: One Century of Evolving Concepts. Cell, 179(2), 292–311.doi:10.1016/j.cell.2019.08.053spa
dc.relation.references72. Grutzendler J., Yang G., Kim J., Zuo Y., Jung S. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience. 2005; 8(6): 752–58.doi:10.1038/nn1472spa
dc.relation.references73. Loane D., Kumar A., Stoica BA., Cabatbat R. & Faden A. Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology & Experimental Neurology. 2014; 73(1): 14–29.doi:10.1097/nen.0000000000000021spa
dc.relation.references74. Paolicelli R., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011; 333(6048): 1456–58.doi:10.1126/science.1202529spa
dc.relation.references75. Parkhurst C., Yang G., Ninan I., Savas J., Yates J., Lafaille J., et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell.2013; 155(7): 1596–609.doi:10.1016/j.cell.2013.11.030spa
dc.relation.references76. Lawson L., Perry V., Dri, P., & Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990; 39(1): 151–70. doi:10.1016/0306-4522(90)90229-wspa
dc.relation.references77. Brown, G., & Neher, J. Microglial phagocytosis of live neurons. Nature Reviews Neuroscience. 2014 15(4), 209–216.doi:10.1038/nrn3710spa
dc.relation.references79. Beumer W., Gibney S., Drexhage RC., Pont-Lezica L., Doorduin J., Klein H., et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology. 2012; 92(5): 959 75. doi:10.1189/jlb.0212100spa
dc.relation.references80. Nelson L., & Lenz K. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behavioural Brain Research. 2017; 316: 279-93.doi:10.1016/j.bbr.2016.09.006spa
dc.relation.references81. Baudin A., Blot K., Verney C., Estevez L., Santamaria J., Gressens P., et al. Maternal deprivation induces deficits intemporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiology of Learning and Memory. 2012; 98(3): 207-14.doi:10.1016/j.nlm.2012.08.004spa
dc.relation.references82. Francis D., Dioro J., Plotsky P., Meaney M. Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 2002; 22(18): 7840-43.spa
dc.relation.references83. Do Prado C., Narahari T., Lee H., Murthy S., & Brenhouse H. Effects of Early Adolescent Environmental Enrichment on Cognitive Dysfunction, Prefrontal Cortex Development, and Inflammatory Cytokines After Early Life Stress. Developmental Psychobiologia. 2015; (4): 482-91.spa
dc.relation.references84. Eklund M., & Arborelius L. Twice daily long maternal separations in Wistar rats decreases anxiety-like behaviour in females but does not affect males. Behavioural Brain Research. 2016; 172(2): 278–85.doi:10.1016/j.bbr.2006.05.015spa
dc.relation.references85. Moreno L., Lamprea M. & Dueñaz Z. Diferencias en los comportamientos asociados con la ansiedad de ratas macho y hembra expuestas a un protocolo de estrés crónico por separación maternal temprana. Suma Psicológica. 2009; (16): 31-43.spa
dc.relation.references86. Cerón J., & Troncoso J. Alteraciones de las células de la microglía del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica. 2016; 36: 619-spa
dc.relation.references87. Paxinos G., & Watson C. The Rat Brain in stereotaxic coordinates. Cuarta edición, Academic Press, 1998.spa
dc.relation.references88. George, E. D. (2010). Maternal Separation With Early Weaning: A Novel Mouse Model Of Early Life Neglect. BMC Neurosciences, 11:123.spa
dc.relation.references89. Hofer MA¿. The role of nutrition in the physiological and behav-ioral effects of early maternal separation on infant rats. Psychosom Med. 1973 Jul-Aug;35(4):350-9spa
dc.relation.references90. León Rodríguez D, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. 2013 PLoS ONE 8(6): e68010spa
dc.relation.references91. Milligan M. & Yates. Experimental Techniques and Anaesthesia in the Rat and Mouse. (1994) Anzccart Facts Sheet, pp 1-4.spa
dc.relation.references92. Noonan D. The Guinea Pig. (1994). Anzccart Facts Sheet, pp 1-8.spa
dc.relation.references93. Bates R., Militello L., Barker E., Gonzalez H., and Schmeer K. Early childhood stress responses to psychosocial stressors: The state of the science. Dev Psychobiol. 2022 Nov; 64(7). doi: 10.1002/dev.22320spa
dc.relation.references94. Condon E. Chronic Stress in Children and Adolescents: A Review of Biomarkers for Use in Pediatric Research. Biological Research For Nursing,. 2018. 109980041877921. doi:10.1177/1099800418779214spa
dc.relation.references95. Pollak, S. (2015). Multilevel developmental approaches to understanding the effects of child maltreatment: Recent advances and future challenges. Development and Psychopathology, 27(4pt2), 1387–1397.doi:10.1017/s0954579415000826,spa
dc.relation.references96. Rizvi, S., Pizzagalli, D., Sproule, B., & Kennedy, S. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience & Biobehavioral Reviews, 65, 21–35.doi:10.1016/j.neubiorev.2016.0spa
dc.relation.references97. Baik, J. Stress and the dopaminergic reward system. Experimental & Molecular Medicine. 2020. 52(12), 1879–1890. doi:10.1038/s12276-020-00532-4spa
dc.relation.references98. Bromberg-Martin, E., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68(5), 815–834.doi:10.1016/j.neuron.2010.11.0)spa
dc.relation.references99. Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H., Visser-Vandewalle, V., & Temel, Y. Nucleus accumbens and impulsivity. Progress in Neurobiology. 2010. 92(4), 533–557.doi:10.1016/j.pneurobio.2010)spa
dc.relation.references100. Kelley A. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience & Biobehavioral Reviews. 2004. 27(8), 765–776.doi:10.1016/j.neubiorev.2003.1spa
dc.relation.references101. Kupchik Y, Brown R., Heinsbroek J., Lobo M, Schwartz D & Kalivas P. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nature Neuroscience. 2015.18(9), 1230–1232. doi:10.1038/nn.4068spa
dc.relation.references102. Monk C, McClure E, Nelson E, Zarahn E, Bilder RM, Leibenluft E, et al. Inmadurezadolescente en el compromiso cerebral relacionado con la atención con las expresiones faciales emocionales. Neuroimage. 2003. 20:420–428spa
dc.relation.references103. LeDoux J. Redes emocionales y control motor: una visión temerosa. Prog Brain Res. 1996. 107:437-446.spa
dc.relation.references104. Fobbs W & Mizumori S. Cost–Benefit Decision Circuitry. Molecular Basis of Memory. 2014. 233–261.doi:10.1016/b978-0-12-420170-5.00009-xspa
dc.relation.references105. Paquola C., Bennett M, & Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neuroscience & Biobehavioral Reviews. 2016. 69, 299–312.doi:10.1016/j.neubiorev.2016.0spa
dc.relation.references106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2spa
dc.relation.references106. Rolls E. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function 2019. doi:10.1007/s00429-019-01945-2spa
dc.relation.references108. Evans G, Swain J., King A., Wang X. Javanbakht A., Ho S. et al. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. Journal of Neuroscience Research. 2015. 94(6), 535–543.doi:10.1002/jnr.23681.spa
dc.relation.references109. McEwen B., Bowles N., Gray J., Hill M. Hunter R. Karatsoreos I & Nasca C. . Mechanisms of stress in the brain. Nature Neuroscience. 2015. 18(10), 1353–1363.doi:10.1038/nn.4086spa
dc.relation.references110. Gee D, Gabard-Durnam L, Flannery J, Goff G, Humphreys K, Telzer E, Hare T, Bookheimer S, Tottenham N. A aparición temprana en el desarrollo de la conectividad amígdala humana-prefrontal después de la privación materna. Proc Nat Acad Sci. 2013;110:15638–15643.spa
dc.relation.references111. Dutcher J., & Creswell J. The role of brain reward pathways in stress resilience and health. Neuroscience & Biobehavioral Reviews. 2018. 95, 559–567.doi:10.1016/j.neubiorev.2018.1;spa
dc.relation.references112. Hanson J., Nacewicz B, Sutterer M., Cayo A., Schaefer, S., Rudolph K., et al. Behavioral Problems After Early Life Stress: Contributions of the Hippocampus and Amygdala. Biological Psychiatry. 2015. 77(4), 314–323.doi:10.1016/j.biopsych.2014.spa
dc.relation.references113. Stratoulias V., Venero J, Tremblay M., Joseph B. Subtipos microgliales: Diversidad dentro de la comunidad microglial. EMBO J.2019;38:e101997. doi: 10.15252/embj.2019101997spa
dc.relation.references114. McCormick C., & Hodges T. Stress, Glucocorticoids, and Brain Development in Rodent Models. Stress: Neuroendocrinology and Neurobiology. 2017. 197–206.doi:10.1016/b978-0-12-802175-0.00019-xspa
dc.relation.references115. Chocyk A., Dudys D., Przyborowska A., Majcher I., Maćkowiak M., & Wędzony K. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011. 173, 1–18.doi:10.1016/j.neuroscience.20spa
dc.relation.references116. Saavedra L., Fenton Navarro B., Torner L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation. 2017;24:242–255. doi: 10.1159/000485383.spa
dc.relation.references117. Roque A., Ochoa-Zarzosa A., & Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity. 2017. 55, 39–48. doi:10.1016/j.bbi.2015.09.017spa
dc.relation.references118. Bellavance M, Rivest S. The HPA - immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 2014;5:136.spa
dc.relation.references119. Chao W., A., & Bilbo, S. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain, Behavior, and Immunity. 2012. 26(3), 500–510.doi:10.1016/j.bbi.2012.01.003spa
dc.relation.references120. Van Steenbergen H., de Bruijn E., van Duijvenvoorde A , & van Harmelen A L. How positive affect buffers stress responses. 2021. Current Opinion in Behavioral Sciences, 39, 153–160.doi:10.1016/j.cobeha.2021.03.0spa
dc.relation.references121. Douma E, & de Kloet E. Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons. 2019. Neuroscience & Biobehavioral Reviews.doi:10.1016/j.neubiorev.2019.1spa
dc.relation.references122. Cabib S., Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci. Biobehav. Rev. 2012;36:79–89. doi: 10.1016/j.neubiorev.2011.04.012spa
dc.relation.references123. Ironside M., Kumar P., Kang M.-S., & Pizzagalli D. A. Brain mechanisms mediating effects of stress on reward sensitivity. 2018. Current Opinion in Behavioral Sciences, 22, 106–113.doi:10.1016/j.cobeha.2018.01.0spa
dc.relation.references124. Nephew C., Huang W., Poirier L., Payne L., & King A. Altered neural connectivity in adult female rats exposed to early life social stress. 2017. Behavioural Brain Research, 316, 225–233.doi:10.1016/j.bbr.2016.08.051spa
dc.relation.references125. Javanbakht A., Kim P., Swain J., Evans G., Phan K., & Liberzon, I.. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. 2016. Behavioral Sciences, 6(4), 28.doi:10.3390/bs6040028spa
dc.relation.references126. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz, N., Wilf A. Pick, C. G. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. 2004. European Journal of Neuroscience, 20(5), 1341–1347.doi:10.1111/j.1460-9568.2004.03587.xspa
dc.relation.references127. Boletín de prensa No 473 de 2021. 2021, Tomado de https:// www.minsalud.gov.co/Paginas/ Mas-de-18-mil-atenciones-en- salud-mental-en-opcion-4-de- Linea-192.aspxspa
dc.relation.references128. Eslava J, Mejía de Eslava L, Ramos-Rodríguez M, Uscategui A, Eslava Mejía J, Natalia MF, et al. Emergencia Sanitaria y su Impacto Sobre Nuestros Niños [Internet]. Vol. Especiales. Bogotá D.C.; 2020. Available from: https://www.neurociencias.org. co/especiales/2020/emergencia- sanitaria-y-su-impacto-sobre- nuestros-ninos/spa
dc.relation.references129. Paxinos G. & Watson C. The Rat Brain in Stereotaxic Coordinates. Hard Cover Edition, 2006, 6th Edition.spa
dc.relation.references130. Montoya, R., Bos, A., Terburg, D., Rosenberger, A., & van Honk, J. Cortisol administration induces global down-regulation of the brain’s reward circuitry. 2014 Psychoneuroendocrinology, 47, 31–42.doi:10.1016/j.psyneuen.2014.spa
dc.relation.references131. Levine S. Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. 2001. Physiology & Behavior. Volume 73, Issue 3, June 2001, Pages 255-260spa
dc.relation.references132. Levine S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. 2002. Neurotoxicity Research, 4(5-6), 557–564.doi:10.1080/10298420290030569spa
dc.relation.references133. Paolicelli R, et al. Microglia states and nomenclature: A field at its crossroads. 2022. Neuron. Nov 2; 110(21): 3458–3483. doi: 10.1016/j.neuron.2022.10.020spa
dc.relation.references134. Kierdorf K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. 2013. Nature Neuroscience, 16(3), 273–280. doi:10.1038/nn.3318spa
dc.relation.references135. Grabert K, et al. A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. 2020. J. Immunol 205, 3154–3166. 10.4049/jimmunol.2000835.spa
dc.relation.references136. Oyola M., & Handa R. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. 2017. Stress, 20(5), 476–494.doi:10.1080/10253890.2017.136spa
dc.relation.references137. Gildawie K, Orso R., Peterzell S., Thompson V., & Brenhouse H. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. 2020. Neuroscience Letters, 135381.doi:10.1016/j.neulet.2020.135381spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.decsSistemas Neurosecretoresspa
dc.subject.decsNeurosecretory Systemseng
dc.subject.decsGlucocorticoidesspa
dc.subject.decsGlucocorticoidseng
dc.subject.decsCorticosteronaspa
dc.subject.decsCorticosteroneeng
dc.subject.proposalSeparación maternaspa
dc.subject.proposalAmbiente enriquecidospa
dc.subject.proposalCorticosteronaspa
dc.subject.proposalRatas Wistarspa
dc.subject.proposalSistema de recompensaspa
dc.subject.proposalMaternal separationeng
dc.subject.proposalEnriched environmenteng
dc.subject.proposalCorticosteroneeng
dc.subject.proposalWistar ratseng
dc.subject.proposalReward systemeng
dc.titleEfecto del ambiente enriquecido, posterior a la separación materna, sobre la morfología microglial y concentración de corticosterona, en ratas Wistar adolescentesspa
dc.title.translatedEffect of the enriched environment, after maternal separation, on microglial morphology and corticosterone concentration, in adolescent Wistar ratseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1130619363.2023.pdf
Tamaño:
5.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: