Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae)

dc.contributor.advisorMoreno Herrera, Claudia Ximena
dc.contributor.advisorCadavid Restrepo, Gloria Esther
dc.contributor.authorMarulanda Moreno, Sandra María
dc.contributor.educationalvalidatorSaldamando Benjumea, Clara Inés
dc.contributor.orcidMarulanda Moreno, Sandra María [0000-0002-1619-7173]spa
dc.contributor.orcidMoreno Herrera, Claudia Ximena [0000-0002-8132-5223]spa
dc.contributor.orcidCadavid Restrepo, Gloria Esther [0000-0003-1026-6358]spa
dc.contributor.researchgroupMicrobiodiversidad y Bioprospecciónspa
dc.date.accessioned2023-10-04T14:32:24Z
dc.date.available2023-10-04T14:32:24Z
dc.date.issued2022-08
dc.descriptionilustraciones, diagramasspa
dc.description.abstractSpodoptera frugiperda (J.E. Smith), también conocida como gusano cogollero (FAW), es una plaga polífaga que causa importantes pérdidas económicas en una amplia variedad de cultivos. Presenta dos biotipos (maíz y arroz) que están genéticamente diferenciados, tienen aislamiento reproductivo y difieren en su resistencia a las toxinas de Bt e insecticidas. El microbioma asociado a FAW podría desempeñar un papel relevante en su éxito evolutivo y adaptativo. La información relacionada con el microbioma de FAW es limitada y se desconocen las diferencias en la estructura de las comunidades bacterianas según el biotipo y a lo largo de su ciclo de vida. En este trabajo, se llevó a cabo la caracterización de la microbiota asociada a los biotipos arroz (RS) y maíz (CS) de FAW durante las diferentes fases de su desarrollo. Para ello se colectaron larvas de FAW de cultivos de arroz y maíz. Se realizó la genotipificación de los insectos mediante los marcadores moleculares COI y FR. Se obtuvieron muestras de tejidos intestinales de adultos (machos y hembras) y de larvas (jóvenes y tardías). También se estudió la microbiota presente en huevos y pupas del insecto. A través de secuenciación de alto rendimiento del gen bacteriano 16S ARNr por la tecnología Illumina MySeq, se logró determinar que Firmicutes y Proteobacteria fueron los phyla dominantes durante la metamorfosis del insecto en CS y RS. La mayor riqueza observada de ASV (Amplicon Sequence Variants) se encontró en muestras de huevos. Los géneros Illeobacterium, Ralstonia y Burkholderia mostraron abundancias relativas similares en machos adultos y huevos. El género Carnobacterium tuvo una abundancia significativa en el estado de pupa en RS y CS. Enterococcus fue el género predominante en todas las muestras. El análisis de PCoA basado en el análisis de disimilitud de Bray-Curtis indicó que no había diferencias significativas entre las comunidades bacterianas de CS y RS. Sin embargo, se observó que la composición de los ASV difería significativamente entre muestras de diferentes etapas del ciclo de desarrollo del insecto. El análisis discriminante lineal (LDA) reveló una abundancia diferencial significativa para ocho géneros de bacterias entre muestras de cepas de arroz y maíz. Los géneros Klebsiella, Dermacoccus, A2 (familia Lachnospiraceae), Lachnoclostridium, Faecalibaculum y Leuconostoc fueron identificados como los taxones más predominantes en RS, mientras que Arsenophonus y Weissella tuvieron una abundancia significativa CS. Los endosimbiontes Arsenophonus y Spiroplasma presentaron una correlación positiva entre CS y RS respectivamente. Se logró establecer un nucleo microbiano a nivel de género conformado por Enterococcus e Ileobacterium. Se aislaron y caracterizaron 37 aislamientos bacterianos mediante secuenciación del ADNr 16S, encontrándose que la bacteria predominante en todos los tejidos correspondía a la especie Enterococcus mundtii. Se identificaron otras bacterias de los géneros Enterobacter, Leclercia, Carnobacterium, Pediococus, Bacillus, Cellulomonas, Curtobacterium, Paenibacillus y Staphylococcus. Los resultados de este trabajo son relevantes para entender el papel que desempeñan los simbiontes microbianos en FAW. Los endosimbiontes Spiroplasma y Arsenophonus asociados con los biotipos arroz y maíz, podrían tener una potencial aplicación en el biocontrol de este insecto plaga. (Texto tomado de la fuente)spa
dc.description.abstractSpodoptera frugiperda (J.E. Smith), also known as Fall Army Worm (FAW), is a polyphagous pest that causes significant economic losses in a wide variety of crops. It has two strains (corn and rice) that are genetically differentiated, have reproductive isolation, and differ in their resistance to Bt toxins and insecticides. The microbiome associated with FAW could play a relevant role in its evolutionary and adaptive success. Information related to the microbiome of FAW is limited and differences in bacterial community structure according to strains and throughout their life cycle are unknown. In this work, we characterize the corn strain (CS) and rice strain (RS) associated microbiota of FAW during the different stages of their life cycle. For this purpose, FAW larvae were collected from rice and corn crops The insects were genotyped using the molecular markers COI and FR. Intestinal tissue samples were obtained from adults (males and females) and larvae (young and late). The microbiota present in eggs and pupae of the insect was also studied. Through high-throughput sequencing of the bacterial 16S rRNA gene by Illumina MySeq technology, it was determined that Firmicutes and Proteobacteria were the dominant phyla during the metamorphosis of the insect in CS and RS. The highest observed richness of ASV (Amplicon Sequence Variants) was found in egg samples. Illeobacterium, Ralstonia and Burkholderia genera showed similar relative abundances in adult males and eggs. Carnobacterium genus had significant abundance in the pupal stage in RS and CS. Enterococcus was the predominant genus in all samples. PCoA analysis based on BrayCurtis dissimilarity analysis indicated that there were no significant differences between the bacterial communities of CS and RS. However, the composition of ASVs was observed to differ significantly between samples from different stages of the insect development cycle. Linear discriminant analysis (LDA) combined with effect size measures (LEfSe) revealed significant differential abundance for 8 bacterial genera between rice and maize strain samples. Klebsiella, Dermacoccus, A2 (Lachnospiraceae family), Lachnoclostridium, Faecalibaculum and Leuconostoc genera were identified as the most predominant taxa in RS, while Arsenophonus and Weissella had significant abundance in CS. A positive correlation was found between Arsenophonus and CS and a positive correlation between Spiroplasma and RS. A microbial core was established at the genus level consisting of Enterococcus and Ileobacterium. Additionally, 87 bacterial isolates were obtained in pure cultures, 37 of which were characterized by 16S rDNA sequencing. It was found that the predominant bacterium in all tissues corresponded to the species Enterococcus mundtii, the genetic affiliation at the species level was confirmed through sequencing of the gyrB gene. Enterobacter, Leclercia, Carnobacterium, Pediococus, Bacillus, Cellulomonas, Curtobacterium, Paenibacillus and Staphylococcus genera were also identified. These results are relevant for the understanding of the role of microbial symbionts in FAW and for the development of new strategies for the control of insect pests. Spiroplasma and Arsenophonus endosymbionts associated with rice and corn strains could have a potential application in the biocontrol of this insect pest.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.funderCódigo QUIPU: 2020100134spa
dc.description.researchareaEcología Microbianaspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación de Colombiaspa
dc.format.extentxvi, 100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84755
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedBiremespa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Godwin, J. (2017). Fall armyworm: impacts and implications for Africa. Evidence note (2). Center for Agriculture and Bioscience International-CABI.spa
dc.relation.referencesAdamczyk, J., Holloway, J., Leonard, B., & Graves, J. (1997). Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. Journal of Cotton Science.spa
dc.relation.referencesAhmed, I., Kudo, T., Abbas, S., Ehsan, M., Iino, T., Fujiwara, T., & Ohkuma, M. (2014). Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_7), 2305–2311.spa
dc.relation.referencesAlmeida, L. G. de, Moraes, L. A. B. de, Trigo, J. R., Omoto, C., & Consoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PloS One, 12(3), e0174754.spa
dc.relation.referencesAtnafu, W., Beyene, P., Zemede, A., & Yitbarek, W. (2021). Prevalence and impacts of fall army worms (Spodoptera frugiperda) on maize (Zea mays) production and productivity in Ethiopia. ISABB Journal of Food and Agricultural Sciences, 10(2), 21–27.spa
dc.relation.referencesAyala, O., Navarro, F., & Virla, E. G. (2013). Evaluation of the attack rates and level of damages by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), affecting corn-crops in the northeast of Argentina. Revista de La Facultad de Ciencias Agrarias, 45(2).spa
dc.relation.referencesBelda, E., Pedrola, L., Peretó, J., Martínez-Blanch, J. F., Montagud, A., Navarro, E., … Porcar, M. (2011). Microbial diversity in the midguts of field and lab-reared populations of the European corn borer Ostrinia nubilalis. PLoS One, 6(6), e21751.spa
dc.relation.referencesBenjamino, J., & Graf, J. (2016). Characterization of the core and caste-specific microbiota in the termite, Reticulitermes flavipes. Frontiers in Microbiology, 7, 171.spa
dc.relation.referencesBoregas, K., Mendes, S., Waquil, J., & Fernandes, G. (2013). Estádio de adaptação de Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) em hospedeiros alternativos. Bragantia, 72(1), 61–70.spa
dc.relation.referencesBotha, A. S., Erasmus, A., du Plessis, H., & Van den Berg, J. (2019). Efficacy of Bt maize for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Africa. Journal of Economic Entomology, 112(3), 1260–1266.spa
dc.relation.referencesBrenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (2005). Bergey’s Manual® of Systematic Bacteriology: Volume Two the Proteobacteria Part C the Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer.spa
dc.relation.referencesBrinkmann, N., Martens, R., & Tebbe, C. (2008). Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Applied and Environmental Microbiology, 74(23), 7189–7196.spa
dc.relation.referencesBroderick, N. A., Raffa, K. F., Goodman, R. M., & Handelsman, J. (2004). Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol., 70(1), 293–300.spa
dc.relation.referencesBuntin, G. D. (1986). A review of plant response to fall armyworm, Spodoptera frugiperda (JE Smith), injury in selected field and forage crops. Florida Entomologist, 549–559.spa
dc.relation.referencesBurtet, L. M., Bernardi, O., Melo, A. A., Pes, M. P., Strahl, T. T., & Guedes, J. V. C. (2017). Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Management Science, 73(12), 2569–2577.spa
dc.relation.referencesCañas-Hoyos, N., Lobo-Echeverri, T., & Saldamando-Benjumea, C. I. (2017). Chemical Composition of Female Sexual Glands of Spodoptera frugiperda 1 Corn and Rice Strains from Tolima, Colombia. Southwestern Entomologist, 42(2), 375–395.spa
dc.relation.referencesCañas-Hoyos, N., Márquez, E. J., & Saldamando-Benjumea, C. I. (2014). Differentiation of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains from central Colombia: a wing morphometric approach. Annals of the Entomological Society of America, 107(3), 575–581.spa
dc.relation.referencesCano-Calle, D, Arango-Isaza, R. E., & Saldamando-Benjumea, C. I. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (for rice). Annals of the Entomological Society of America, 108(2), 172–180.spa
dc.relation.referencesCano-Calle, Daniela. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.spa
dc.relation.referencesCapinera, J. L. (2002). Fall Armyworm, Spodoptera frugiperda (JE Smith)(Insecta: Lepidoptera: Noctuidae): EENY098/IN255, rev. 7/2000. EDIS, 2002(7).spa
dc.relation.referencesCasmuz, A., Juárez, M. L., Socías, M. G., Murúa, M. G., Prieto, S., Medina, S., … Gastaminza, G. (2010). Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina, 69(3–4), 209–231. Retrieved from http://www.redalyc.org/articulo.oa?id=322028487010spa
dc.relation.referencesCastañeda, Y., Cadavid, G., Saldamando-Benjumea, C., & Moreno, C. (2022). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis. Universidad Nacional de Colombia sede Medellínspa
dc.relation.referencesCarrière, Y., Ellers-Kirk, C., Biggs, R., Higginson, D., Dennehy, T., & Tabashnik, B. (2004). Effects of gossypol on fitness costs associated with resistance to Bt cotton in pink bollworm. Journal of Economic Entomology, 97(5), 1710–1718.spa
dc.relation.referencesChapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., & Goulson, D. (1999). Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behavioral Ecology, 10(3), 298–303.spa
dc.relation.referencesChapman, R. F., & Chapman, R. F. (1998). The insects: structure and function. Cambridge university press.spa
dc.relation.referencesChen, B., Teh, B.-S., Sun, C., Hu, S., Lu, X., Boland, W., & Shao, Y. (2016a). Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Scientific Reports, 6, 29505.spa
dc.relation.referencesChen, B., Teh, B.-S., Sun, C., Hu, S., Lu, X., Boland, W., & Shao, Y. (2016b). Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Scientific Reports, 6(1), 1–14.spa
dc.relation.referencesChhetri, L. B., & Acharya, B. (2019). Fall armyworm (Spodoptera frugiperda): A threat to food security for south Asian country: Control and management options: A review. Farm. Manag, 4, 38–44.spa
dc.relation.referencesDay, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., … Witt, A. (2017). Fall armyworm: impacts and implications for Africa. Evidence Note (2).spa
dc.relation.referencesdel Valle, F., Carrizo, A., Romero, C., Baigorí, M., & Pera, L. (2019). Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from northern Argentina: esterases, profiles, and susceptibility to Bacillus thuringiensis (Bacillales: Bacillaceae). Florida Entomologist, 102(2), 347–352.spa
dc.relation.referencesDouglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43(1), 17–37.spa
dc.relation.referencesDowell, R. V, Basham, H. G., & McCoy, R. E. (1981). Influence of five Spiroplasma strains on growth rate and survival of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Journal of Invertebrate Pathology, 37(3), 231–235.spa
dc.relation.referencesDrès, M., & Mallet, J. (2002). Host races in plant–feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1420), 471–492.spa
dc.relation.referencesDrummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214.spa
dc.relation.referencesDumas, P., Barbut, J., Le Ru, B., Silvain, J.-F., Clamens, A.-L., d’Alençon, E., & Kergoat, G. J. (2015). Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS One, 10(4), e0122407.spa
dc.relation.referencesDumas, P., Legeai, F., Lemaitre, C., Scaon, E., Orsucci, M., Labadie, K., … Vavre, F. (2015). Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica, 143(3), 305–316.spa
dc.relation.referencesEngel, P., & Moran, N. A. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025spa
dc.relation.referencesEngelstädter, J., & Hurst, G. D. D. (2009). The ecology and evolution of microbes that manipulate host reproduction. Annual Review of Ecology, Evolution, and Systematics, 40, 127–149.spa
dc.relation.referencesEski, A., Demir, İ., Güllü, M., & Demirbağ, Z. (2018). Biodiversity and pathogenicity of bacteria associated with the gut microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Microbial Pathogenesis, 121, 350–358.spa
dc.relation.referencesEspejo, R., Feijóo, C. G., Romerol, J., & Vásquez, M. (1998). PACE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: Estimation of sequence similarity and rDNA complexity.spa
dc.relation.referencesFAO. (2018). Integrated management of the Fall Armyworm on maize. A guide for Farmer Field Schools in Africa. Retrieved from http://www.fao.org/3/i8665en/i8665en.pdfspa
dc.relation.referencesFAO. (2020). FAO Fall Armyworm: Map of the Worldwide Spread of Fall Armyworm Since 2016 (as of March 2020), Compiled Using Information from a Range of Sources, Including FAO, International Plant Protection Convention, CABI, the European and Mediterranean Plant Protect. Retrieved February 10, 2020, from http://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/spa
dc.relation.referencesFAO, & CABI. (2019). Community-based fall armyworm (Spodoptera frugiperda) monitoring, early warning and management. In Community-based fall armyworm (Spodoptera frugiperda) monitoring, early warning and management. (First edit). Retrieved from http://www.fao.org/3/CA2924EN/ca2924en.pdfspa
dc.relation.referencesFarias, J. R., Andow, D. A., Horikoshi, R. J., Sorgatto, R. J., Fresia, P., dos Santos, A. C., & Omoto, C. (2014). Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protection, 64, 150–158.spa
dc.relation.referencesFerreira Filho, J. B. S., Alves, L. R. A., Gottardo, L. C. B., & Georgino, M. (2010). Dimensionamento do custo econômico representado por Spodoptera frugiperda na cultura do milho no Brasil. 48 Congresso Sociedade Brasileira de Economia, Administracao e Sociologia Rural.spa
dc.relation.referencesFrago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect–plant interactions. Trends in Ecology & Evolution, 27(12), 705–711.spa
dc.relation.referencesGao, X., Li, W., Luo, J., Zhang, L., Ji, J., Zhu, X., … Cui, J. (2019). Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Applied Microbiology, 126(4), 1199–1208.spa
dc.relation.referencesGarcía-Hernández, Y., Pérez-Sánchez, T., García-Curbelo, Y., Sosa-Cossio, D., & Nicoli, J. R. (2017). Capacidad de crecimiento, actividad antimicrobiana y susceptibilidad a antimicrobianos de dos cepas de Pediococcus pentosaceus, candidatas a probiótico. Cuban Journal of Agricultural Science, 51(4), 433–442.spa
dc.relation.referencesGarcía, F., Mosquera, M. T., Vargas, C. A., & Rojas, L. (2002). Control biologico, microbiologico y fisico de Spodoptera frugiperda (Lepidoptera: Noctuidae), plaga del maiz y otros cultivos en Colombia. Sociedad Colombiana de Entomologia, Bogota (Colombia).spa
dc.relation.referencesGarlet, C., Moreira, R., Gubiani, P., Palharini, R., Farias, J., & Bernardi, O. (2021). Fitness cost of chlorpyrifos resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on different host plants. Environmental Entomology, 50(4), 898–908.spa
dc.relation.referencesGayatri Priya, N., Ojha, A., Kajla, M. K., Raj, A., & Rajagopal, R. (2012). Host plant induced variation in gut bacteria of Helicoverpa armigera. PloS One, 7(1), e30768.spa
dc.relation.referencesGichuhi, J., Subramanian, S., Khamis, F. M., van den Berg, J., du Plessis, H., Ekesi, S., & Herren, J. K. (2019). Diversity of fall armyworm, <em>Spodoptera fugiperda</em> and their gut bacterial community in Kenya. BioRxiv, 664987. https://doi.org/10.1101/664987spa
dc.relation.referencesGoergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS One, 11(10), e0165632.spa
dc.relation.referencesGómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829–846.spa
dc.relation.referencesGonzález-Maldonado, M. B., Gurrola-reyes, J. N., & Chaírez-Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Colombiana de Entomología, 41(119), 200–204. Retrieved from http://www.scielo.org.co/pdf/rcen/v41n2/v41n2a09.pdfspa
dc.relation.referencesGonzález-Serrano, F., Pérez-Cobas, A., Rosas, T., Baixeras, J., Latorre, A., & Moya, A. (2020). The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microbial Ecology, 79(4), 960–970.spa
dc.relation.referencesGonzález, M. I., Yien, W., Castrillón, J. A., & Ortega, Á. (2013). Adición de Carnobacterium maltaromaticum CB1 en chorizo y morcilla empacados al vacio, para inhibir el crecimiento de Listeria monocytogenes. Vitae, 20(1), 23–29.spa
dc.relation.referencesGouin, A., Bretaudeau, A., Nam, K., Gimenez, S., Aury, J.-M., Duvic, B., … Darboux, I. (2017). Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 7(1), 11816.spa
dc.relation.referencesGroot, A., Marr, M., Schöfl, G., Lorenz, S., Svatos, A., & Heckel, D. (2008). Host strain specific sex pheromone variation in Spodoptera frugiperda. Frontiers in Zoology, 5(1), 20. https://doi.org/10.1186/1742-9994-5-20spa
dc.relation.referencesGunther IV, N. W., Almond, J., Yan, X., & Needleman, D. S. (2011). GyrB versus 16S rRNA sequencing for the identification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. Journal of Nucleic Acids Investigation, 2(1), e7–e7.spa
dc.relation.referencesGuo, J., Wu, S., Zhang, F., Huang, C., He, K., Babendreier, D., & Wang, Z. (2020). Prospects for microbial control of the fall armyworm Spodoptera frugiperda: a review. BioControl, 65(6), 647–662.spa
dc.relation.referencesGuzmán-Prada, D., Rodríguez-Chalarca, J., & Valencia-Cataño, S. (2016). Identificación de Estadios Larvales de Lepidópteros Plaga de Maíz. Retrieved from http://ciat-library.ciat.cgiar.org/Articulos_Ciat/biblioteca/CIAT_IDENTIFICACION_DE_ESTADIOS_LARVALES_DE_LEPIDOPTEROS_PLAGA_MAIZ-v2.pdfspa
dc.relation.referencesHaase, S., Sciocco-Cap, A., & Romanowski, V. (2015). Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses, 7(5), 2230–2267.spa
dc.relation.referencesHajek, A. E., Morris, E. E., & Hendry, T. A. (2019). Context dependent interactions of insects and defensive symbionts: insights from a novel system in siricid woodwasps. Current Opinion in Insect Science.spa
dc.relation.referencesHammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P., & Fierer, N. (2017). Caterpillars lack a resident gut microbiome. Proceedings of the National Academy of Sciences, 114(36), 9641–9646.spa
dc.relation.referencesHammer, T., McMillan, W., & Fierer, N. (2014). Metamorphosis of a butterfly-associated bacterial community. PloS One, 9(1), e86995.spa
dc.relation.referencesHarrison, J. F. (2001). Insect acid-base physiology. Annual Review of Entomology, 46(1), 221–250.spa
dc.relation.referencesHarrison, R., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., & van den Berg, J. (2019). Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management, 243, 318–330.spa
dc.relation.referencesHendry, T. A., Hunter, M. S., & Baltrus, D. A. (2014). The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl. Environ. Microbiol., 80(23), 7161–7168.spa
dc.relation.referencesHiguita Palacio, M. F., Montoya, O. I., Saldamando, C. I., García-Bonilla, E., Junca, H., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2021). Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp. (Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain from Northwestern Colombia. Journal of Insect Science, 21(6), 10.spa
dc.relation.referencesHruska, A. J. (2019). Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev, 14(043), 1–11.spa
dc.relation.referencesHuang, F., Qureshi, J., Meagher Jr, R., Reisig, D., Head, G., Andow, D., Niu, Y. (2014). Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PloS One, 9(11), e112958.spa
dc.relation.referencesIBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM corp.spa
dc.relation.referencesIPPC. (2018). First detection of Fall Army Worm on the border of Thailand. Retrieved from https://www.ippc.int/en/countries/thailand/pestreports/2018/12/first-detection-of-fall-army-worm-on-the-border-of-thailand/spa
dc.relation.referencesIPPC. (2019). First Detection of Fall Armyworm in China. Retrieved June 22, 2019, from https://www.ippc.int/en/news/first-detection-of-fall-armyworm-in-china/spa
dc.relation.referencesJanson, E., Stireman, J., Singer, M., & Abbot, P. (2008). Phytophagous Insect Microbe Mutualisms and Adaptive Evolutionary Diversification. Evolution; International Journal of Organic Evolution.spa
dc.relation.referencesJaramillo-Barrios, C. I., Quijano, E. B., & Andrade, B. M. (2019). Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) cause significant damage to genetically modified corn crops. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8953–8962.spa
dc.relation.referencesJensen, M., Webster, J. A., & Straus, N. (1993). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology, 59(4), 945–952.spa
dc.relation.referencesJohnson, S. (1987). Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. International Journal of Tropical Insect Science, 8(4-5–6), 543–549.spa
dc.relation.referencesJohnston, P., & Rolff, J. (2015). Host and symbiont jointly control gut microbiota during complete metamorphosis. PLoS Pathogens, 11(11), e1005246.spa
dc.relation.referencesJones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019a). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1), 2792. https://doi.org/10.1038/s41598-019-39163-9spa
dc.relation.referencesJuárez, M., Schöfl, G., Vera, M., Vilardi, J., Murúa, M., Willink, E., Groot, A. (2014). Population structure of Spodoptera frugiperda maize and rice host forms in S outh A merica: are they host strains? Entomologia Experimentalis et Applicata, 152(3), 182–199.spa
dc.relation.referencesKalleshwaraswamy, C., Asokan, R., SWAMY, H., Maruthi, M., Pavithra, H., Hegde, K., Goergen, G. (2018). First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems, 24(1), 23–29.spa
dc.relation.referencesKikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences, 109(22), 8618–8622.spa
dc.relation.referencesKrenn, H. W. (2010). Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annual Review of Entomology, 55, 307.spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547.spa
dc.relation.referencesLecocq, A., Natsopoulou, M., Berggreen, I., Eilenberg, J., Heckmann, L., Nielsen, H., Jensen, A. (2021). Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. Journal of Insects as Food and Feed, 7(6), 975–986.spa
dc.relation.referencesLevy, H. C., Garcia-Maruniak, A., & Maruniak, J. E. (2002). Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insect and cell line: PCR-RFLP of cytochrome oxidase C subunit I Gene. Florida Entomologist, 85(1), 186–190. Retrieved from https://doi.org/10.1653/0015-4040(2002)085[0186:SIOSFL]2.0.COspa
dc.relation.referencesLi-zhong, X. I., Guo-hua, L., Yong-hong, W., Li, M., & Yun-dong, L. I. (2015). Protection Methods to Reduce Nitrogen and Phosphorus Losses from Sloping Citrus Land in the Three Gorges Area of China. 25(3), 478–488. https://doi.org/10.1016/S1002-0160(15)30015-1spa
dc.relation.referencesMacWilliams, M., & Liao, M. (2006). Luria broth (LB) and Luria agar (LA) media and their uses protocol. ASM MicrobeLibrary. American Society for Microbiology.spa
dc.relation.referencesMason, C., Couture, J., & Raffa, K. F. (2014). Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia, 175(3), 901–910.spa
dc.relation.referencesMcCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announc., 3(4), e00777-15.spa
dc.relation.referencesMeagher, R., Nagoshi, R., Stuhl, C., & Mitchell, E. (2004). Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Florida Entomologist, 87(4), 454–460.spa
dc.relation.referencesMello, D., de Freitas, A., Andrade, K., dos Santos, C., Oliveira, P., & Neves, M. C. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74, 18–31.spa
dc.relation.referencesMereghetti, V., Chouaia, B., Limonta, L., Locatelli, D. P., & Montagna, M. (2019). Evidence for a conserved microbiota across the different developmental stages of Plodia interpunctella. Insect Science, 26(3), 466–478.spa
dc.relation.referencesMolina-Ochoa, J., Carpenter, J., Heinrichs, E., & Foster, J., (2003). Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: an inventory. Florida Entomologist, 86(3), 254–290.spa
dc.relation.referencesMontezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V. de, … Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286–301.spa
dc.relation.referencesMoran, N. A., McCutcheon, J. P., & Nakabachi, A. (2008). Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics, 42, 165–190.spa
dc.relation.referencesMorillo, F. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. Entomotropica, 16, 79–87.spa
dc.relation.referencesMuratoglu, H., Kati, H., Demirbag, Z., & Sezen, K. (2009). High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). African Journal of Biotechnology, 8(24).spa
dc.relation.referencesMurúa, M., Vera, M., Abraham, S., Juárez, M., Prieto, S., Head, G., & Willink, E. (2008). Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Annals of the Entomological Society of America, 101(3), 639–649.spa
dc.relation.referencesNagoshi, R. (2012). Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Annals of the Entomological Society of America, 105(2), 351–358.spa
dc.relation.referencesNagoshi, R, Meagher, R., Adamczyk Jr, J., Braman, S., Brandenburg, R., & Nuessly, G. (2006). New restriction fragment length polymorphisms in the cytochrome oxidase I gene facilitate host strain identification of fall armyworm (Lepidoptera: Noctuidae) populations in the southeastern United States. Journal of Economic Entomology, 99(3), 671–677.spa
dc.relation.referencesNagoshi, R. & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Molecular Biology, 12(5), 453–458.spa
dc.relation.referencesNagoshi, R. & Meagher, R. (2004b). Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environmental Entomology, 33(4), 881–889.spa
dc.relation.referencesNagoshi, R. Koffi, D., Agboka, K., Tounou, K., Banerjee, R., Jurat-Fuentes, J., & Meagher, R. (2017). Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS One, 12(7), e0181982.spa
dc.relation.referencesNavasero, M., & Navasero, M., (2020). Life cycle, morphometry and natural enemies of fall armyworm, Spodoptera frugiperda (JE Smith) (lepidoptera: Noctuidae) on zea mays l. in the Philippines. Journal of the International Society for Southeast Asian Agricultural Sciences, 26(2), 17–29.spa
dc.relation.referencesNegrete-Barón, F., & Morales-Angulo, J. (2003). El gusano cogollero del maíz Spodoptera frugiperda. Smith (p. 25). p. 25. Corporación Técnica Corpóica, Universidad del Sinú.spa
dc.relation.referencesOliveira, N. C., Rodrigues, P. A. P., & Cônsoli, F., (2021). Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. BioRxiv.spa
dc.relation.referencesOverton, K., Maino, J., Day, R., Umina, P., Bett, B., Carnovale, D., … Reynolds, O. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection, 145, 105641.spa
dc.relation.referencesPaniagua, L., Frago, E., Kaltenpoth, M., Hilker, M., & Fatouros, N. (2018). Bacterial symbionts in lepidoptera: Their diversity, transmission, and impact on the host. Frontiers in Microbiology, 9, 556.spa
dc.relation.referencesPashley, D., McMichael, M., & Silvain, J. (2004). Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 97(5), 1034–1044.spa
dc.relation.referencesPashley, D. P. (1986). Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Annals of the Entomological Society of America, 79(6), 898–904.spa
dc.relation.referencesPashley, Dorothy. (1998). Sex linkage and speciation in Lepidoptera. In Endless forms: species and speciation (Vol. 309, p. 319). Oxford University Press New York, NY, USA.spa
dc.relation.referencesPashley, D., & Martin, J. (1987). Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 80(6), 731–733.spa
dc.relation.referencesPashley, D., McMichael, M., & Silvain, J.-F. (2004). Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 97(5), 1034–1044.spa
dc.relation.referencesPatel, M., Patel, K., Al-Keridis, L. A., Alshammari, N., Badraoui, R., Elasbali, A. M., … Adnan, M. (2022). Cadmium-Tolerant Plant Growth-Promoting Bacteria Curtobacterium oceanosedimentum Improves Growth Attributes and Strengthens Antioxidant System in Chili (Capsicum frutescens). Sustainability, 14(7), 4335.spa
dc.relation.referencesPorter, C. H., & Collins, F. H. (1991). Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene, 45(2), 271–279.spa
dc.relation.referencesPrasanna, B. M., Huesing, J. E., Eddy, R., & Peschke, V. M. (2018). Fall armyworm in Africa: a guide for integrated pest management.spa
dc.relation.referencesProwell, D. P., McMichael, M., & Silvain, J.-F. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 97(5), 1034–1044. https://doi.org/10.1603/0013-8746(2004)097 [1034: MGAOHU]2.0.CO;2spa
dc.relation.referencesRagland, S., & Criss, A. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens, 13(9), e1006512.spa
dc.relation.referencesReay-Jones, F. P. F., Bessin, R. T., Brewer, M. J., Buntin, D. G., Catchot, A. L., Cook, D. R., … Reisig, D. D. (2016). Impact of lepidoptera (crambidae, noctuidae, and pyralidae) pests on corn containing pyramided bt traits and a blended refuge in the Southern United States. Journal of Economic Entomology, 109(4), 1859–1871.spa
dc.relation.referencesRíos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) Strains From Central Colombia to Two Insecticides, Methomyl and Lambda-Cyhalothrin: A Study of the Genetic Basis of Resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079spa
dc.relation.referencesRíos-Díez, J., Siegfried, B., & Saldamando-Benjumea, C. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) Strains from Central Colombia to Cry1Ab and Cry1Ac Entotoxins of Bacillus thuringiensis. Southwestern Entomologist, 37(3), 281–293. Retrieved from https://doi.org/10.3958/059.037.0304spa
dc.relation.referencesRizzo, H. F. E., & La Rossa, F. R. (1992). Aspectos morfológicos y biológicos de la" oruga militar tardia"[Spodoptera frugiperda [JE Smith]] [Lep.: Noctuidae]. Revista de La Facultad de Agronomía. Universidad de Buenos Aires, 13(2–3).spa
dc.relation.referencesRussell, V., & Dunn, P. (1996). Antibacterial proteins in the midgut of Manduca sexta during metamorphosis. Journal of Insect Physiology, 42(1), 65–71.spa
dc.relation.referencesRwomushana, I. (2019). Spodoptera frugiperda (fall armyworm). Invasive Species Compendium, (29810). https://doi.org/10.1079/ISC.29810.20203373913spa
dc.relation.referencesSaldamando-Benjumea, C., Estrada-Piedrahíta, K., Velásquez-Vélez, M., & Bailey, R. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from Central Colombia. Journal of Insect Behavior, 27(5), 555–566.spa
dc.relation.referencesSalinas-Hernandez, H., & Saldamando-Benjumea, C. (2011). Haplotype identification within Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) corn and rice strains from Colombia. Neotropical Entomology, 40(4), 421–430.spa
dc.relation.referencesSegata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), 1–18.spa
dc.relation.referencesSenyo, K., Wanjiru, J., Ekesi, S., Mbarak, F., Levi, O., & Subramanian, S. (2019). Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Applied Entomology.spa
dc.relation.referencesShao, Y., Arias-Cordero, E. M., & Boland, W. (2013). Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose. JoVE (Journal of Visualized Experiments), (81), e50734.spa
dc.relation.referencesShao, Y., Chen, B., Sun, C., Ishida, K., Hertweck, C., & Boland, W. (2017). Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chemical Biology, 24(1), 66–75.spa
dc.relation.referencesSharanabasappa, Kalleshwaraswamy, C., Maruthi, M., & Pavithra, H. (2018). Biology of invasive fall army worm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on maize. Indian Journal of Entomology, 80(3), 540–543.spa
dc.relation.referencesShorey, H., & Hale, R. (1965). Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58(3), 522–524.spa
dc.relation.referencesStehr, F. W. (1987). Immature insects. Dubuque, US: Kendall/Hunt Publishing.spa
dc.relation.referencesStorer, N., Babcock, J., Schlenz, M., Meade, T., Thompson, G., Bing, J., & Huckaba, R. (2010). Discovery and Characterization of Field Resistance to Bt Maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103(4), 1031–1038. https://doi.org/10.1603/EC10040spa
dc.relation.referencesStorer, N., Kubiszak, M., King, J., Thompson, G., & Santos, A. (2012). Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. Journal of Invertebrate Pathology, 110(3), 294–300.spa
dc.relation.referencesStouthamer, R., Breeuwer, J., & Hurst, G. (1999). Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Reviews in Microbiology, 53(1), 71–102.spa
dc.relation.referencesSu, Q., Zhou, X., & Zhang, Y. (2013). Symbiont-mediated functions in insect hosts. Communicative & Integrative Biology, 6(3), e23804.spa
dc.relation.referencesSudakaran, S., Salem, H., Kost, C., & Kaltenpoth, M. (2012). Geographical and ecological stability of the symbiotic mid‐gut microbiota in E uropean firebugs, P yrrhocoris apterus (H emiptera, P yrrhocoridae). Molecular Ecology, 21(24), 6134–6151.spa
dc.relation.referencesTabata, J., Hattori, Y., Sakamoto, H., Yukuhiro, F., Fujii, T., Kugimiya, S., Kageyama, D. (2011). Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microbial Ecology, 61(2), 254–263.spa
dc.relation.referencesTang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., … Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PloS One, 7(7), e36978.spa
dc.relation.referencesTepa-Yotto, G. T., Tonnang, H. E. Z., Goergen, G., Subramanian, S., Kimathi, E., Abdel-Rahman, E. M., Niassy, S. (2021). Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control. Insects 12: 273. Insects, 12(4), 273.spa
dc.relation.referencesThakur, A., Dhammi, P., Saini, H. S., & Kaur, S. (2015). Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. Journal of Invertebrate Pathology, 127, 38–46.spa
dc.relation.referencesTogola, A., Meseka, S., Menkir, A., Badu-Apraku, B., Boukar, O., Tamò, M., & Djouaka, R. (2018). Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria. International Journal of Environmental Research and Public Health, 15(5), 849.spa
dc.relation.referencesUgwu, J., Liu, M., Sun, H., & Asiegbu, F. (2020). Microbiome of the larvae of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776.spa
dc.relation.referencesvan den Bosch, T. J. M., & Welte, C. U. (2017). Detoxifying symbionts in agriculturally important pest insects. Microbial Biotechnology, 10(3), 531–540.spa
dc.relation.referencesVargas-Méndez, L. Y., Sanabria-Flórez, P. L., Saavedra-Reyes, L. M., Merchan-Arenas, D. R., & Kouznetsov, V. V. (2018). Bioactivity of semisynthetic eugenol derivatives against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infesting maize in Colombia. Saudi Journal of Biological Sciences. https://doi.org/https://doi.org/10.1016/j.sjbs.2018.09.010spa
dc.relation.referencesVeenstra, K., Pashley, D., & Ottea, J. (1995). Host-plant adaptation in fall armyworm host strains: comparison of food consumption, utilization, and detoxication enzyme activities. Annals of the Entomological Society of America, 88(1), 80–91.spa
dc.relation.referencesVelásquez-Vélez, M. I., Saldamando-Benjumea, C. I., & Ríos-Diez, J. D. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in corn and rice fields from Central Colombia. Annals of the Entomological Society of America, 104(4), 826–833.spa
dc.relation.referencesVélez-Arango, A., Arango, R., Villanueva, D., Aguilera, E., & Saldamando, C. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología, 34(2), 145–150.spa
dc.relation.referencesVisôtto, L., Oliveira, M., Ribon, A., Mares-Guia, T., & Guedes, R. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085.spa
dc.relation.referencesVivero-Gómez, R. (2016). Characterization of the intestinal microbiota of natural populations of Lutzomyia evansi: vector of visceral Leishmaniasis. Universidad Nacional de Colombia Sede Medellin.spa
dc.relation.referencesWang, M., Peng, Y., Huang, X., Jin, Y., Yun, Y., & Peng, Y. (2020). Incidence of Wohlbachia, cardinium, spiroplasma and Phage Wo in Different Geographical Populations of Chilo suppressalis (Lepidoptera: Pyralidae) from China. Entomological News, 129(3), 230–243.spa
dc.relation.referencesWang, W., He, P., Zhang, Y., Liu, T., Jing, X., & Zhang, S. (2020). The population growth of Spodoptera frugiperda on six cash crop species and implications for its occurrence and damage potential in China. Insects, 11(9), 639.spa
dc.relation.referencesWang, X., Sun, S., Yang, X., Cheng, J., Wei, H., Li, Z., … Liu, X. (2020). Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Frontiers in Microbiology, 1366.spa
dc.relation.referencesWatanabe, K., Nelson, J., Harayama, S., & Kasai, H. (2001). ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids Research, 29(1), 344–345.spa
dc.relation.referencesWeinert, L. A., Araujo-Jnr, E. V, Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 20150249.spa
dc.relation.referencesXia, X., Gurr, G., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Li, Y. (2017). Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Frontiers in Microbiology, 8, 663.spa
dc.relation.referencesXiang, H., Wei, G.-F., Jia, S., Huang, J., Miao, X.-X., Zhou, Z., … Huang, Y.-P. (2006). Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Canadian Journal of Microbiology, 52(11), 1085–1092.spa
dc.relation.referencesYamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61(3), 1104–1109.spa
dc.relation.referencesYu, S. J. (1991). Insecticide resistance in the fall armyworm, Spodoptera frugiperda (JE Smith). Pesticide Biochemistry and Physiology, 39(1), 84–91.spa
dc.relation.referencesZenner de Polanía, I., Arévalo-Maldonado, H., Mejía-Cruz, R., & Díaz_Sánchez, J. (2009). Spodoptera frugiperda: respuesta de distintas poblaciones a la toxina Cry1Ab. Revista Colombiana de Entomología, 35(1), 34–41.spa
dc.relation.referencesZhang, L., Liu, B., Zheng, W., Liu, C., Zhang, D., Zhao, S., … Jones, C. M. (2019). High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. BioRxiv, 813154.spa
dc.relation.referencesZhang, Y., Huang, J., Zhou, B., Zhang, C., Liu, W., Miao, X., & Huang, Y. (2009). Up‐regulation of lysozyme gene expression during metamorphosis and immune challenge of the cotton bollworm, Helicoverpa armigera. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 70(1), 18–29.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc579 - Historia natural microorganismos, hongos, algasspa
dc.subject.lembArroz - Enfermedades y plagasspa
dc.subject.lembMaiz - Enfermedades y plagasspa
dc.subject.lembCorn - Diseases and pestseng
dc.subject.lembRice - Diseases and pestseng
dc.subject.proposalSpodoptera frugiperdaeng
dc.subject.proposalBiotipo maízspa
dc.subject.proposalbiotipo arrozspa
dc.subject.proposalNGSeng
dc.subject.proposalCiclo de vidaspa
dc.subject.proposalCorn straineng
dc.subject.proposalRice straineng
dc.subject.proposalMicrobiotaeng
dc.subject.proposalLife cycleeng
dc.titleCaracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae)spa
dc.title.translatedCharacterization of Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae) strains associated microbiotaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43158521.2022.pdf
Tamaño:
4.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: