Relación entre la expresión de ID1 e ID3 y el microambiente tumoral inmune de la médula ósea en adultos con leucemia linfoblástica aguda de células precursoras B

dc.contributor.advisorCombita Rojas, Alba Lucía
dc.contributor.advisorOrozco Castaño, Carlos Alberto
dc.contributor.authorPoveda Garavito, Jenny Nathaly
dc.contributor.cvlacPoveda Garavito, Jenny Nathaly [0000074526]spa
dc.contributor.orcid0009-0000-6605-873Xspa
dc.contributor.orcidPoveda Garavito, Jenny Nathaly [0009-0000-6605-873X]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jenny-Poveda-Garavitospa
dc.contributor.researchgroupGrupo de Investigación en Biología del Cáncerspa
dc.contributor.researchgroupGrupo de Investigación Traslacional en Oncologíaspa
dc.date.accessioned2024-07-18T15:11:19Z
dc.date.available2024-07-18T15:11:19Z
dc.date.issued2024-05-08
dc.descriptionIlustraciones a color, diagramasspa
dc.description.abstractEl diagnóstico de leucemia linfoblástica aguda de precursores de células B (BCP-ALL) es una condición que generalmente presenta un pronóstico desfavorable. Investigaciones previas identificaron los genes ID1 e ID3 como predictores de mala respuesta en pacientes adultos colombianos con BCP-ALL, genes que desempeñan un papel crucial en diversos procesos relacionados con el desarrollo del cáncer. En particular, en otros modelos de cáncer, ID1 e ID3 se asociaron con la presencia de poblaciones inmunitarias reguladoras en el microambiente inmunitario tumoral (TIME). Considerando que estudios anteriores han demostrado que el desarrollo de BCP-ALL altera la composición de las células inmunitarias y el microambiente tumoral de la médula ósea (BM), influyendo en la progresión de la enfermedad y la respuesta a la terapia, este estudio tuvo como objetivo analizar la expresión diferencial de ID1 e ID3 y su posible relación con el TIME en pacientes con BCP-ALL. Para llevar a cabo el estudio, se tomaron muestras de BM de seis pacientes con BCP-ALL diagnosticados en el Instituto Nacional de Cancerología de Colombia. Inicialmente, se evaluó la expresión de ID1 e ID3 en células tumorales de BM mediante la técnica de RT-qPCR, dividiendo a los pacientes en dos categorías según la expresión de estos genes (basal y sobreexpresión). Posteriormente, se realizó una caracterización detallada de las poblaciones inmunes presentes en la BM mediante citometría de flujo, abarcando linfocitos T CD4+ (T totales y reguladores), T CD8+, células mieloides supresoras (MDSC), macrófagos (M1 y M2) y natural killer (NK). Además, se llevó a cabo un análisis de RNA-seq para evaluar los genes inmunes asociados con la respuesta contra BCP-ALL, y se analizaron los perfiles TIME utilizando paquetes como DESeq2, CIBERSORT y xCell en RStudio. Además, se consultó la base de datos pública TARGET para corroborar los datos obtenidos. Los resultados revelaron la expresión diferencial de 15,951 genes entre los dos grupos estudiados, con una sobreexpresión destacada de genes asociados con las vías de neutrófilos. El análisis de enriquecimiento de genes mostró una mayor expresión de genes implicados en la degranulación de neutrófilos, la activación de neutrófilos y la inmunidad mediada por neutrófilos. En particular, se observaron diferencias significativas en las poblaciones de neutrófilos, monocitos y linfocitos T CD4+ en pacientes con niveles elevados de ID1 e ID3 en comparación con el grupo con expresión basal. Estos hallazgos fueron consistentes con los datos obtenidos mediante citometría de flujo. En conclusión, los resultados de este estudio sugieren que los niveles de expresión de ID1 e ID3 en células leucémicas (LC) de BCP-ALL están asociados con alteraciones significativas en las poblaciones de TIME, destacando un posible papel inmunomodulador de estos genes, especialmente en las vías de los neutrófilos. Estos hallazgos podrían tener implicaciones importantes para comprender la progresión de la enfermedad y mejorar las estrategias terapéuticas en pacientes con BCP-ALL. (Texto tomado de la fuente)spa
dc.description.abstractThe diagnosis of acute lymphoblastic leukemia of B-cell precursors (BCP-ALL) is a condition that typically carries an unfavorable prognosis. Previous research has identified the genes ID1 and ID3 as predictors of poor response in adult Colombian patients with BCP-ALL. These genes play a crucial role in various processes related to cancer development. Specifically, in other cancer models, ID1 and ID3 have been associated with the presence of regulatory immune populations in the tumor immune microenvironment (TIME). Given that previous studies have demonstrated that the development of BCP-ALL alters the composition of immune cells and the tumor microenvironment in the bone marrow (BM), influencing disease progression and therapy response, this study aimed to analyze the differential expression of ID1 and ID3 and their potential relationship with TIME in BCPALL patients. To conduct the study, BM samples were taken from six patients diagnosed with BCP-ALL at the National Cancer Institute of Colombia. Initially, the expression of ID1 and ID3 in BM tumor cells was evaluated using the RT-qPCR technique, categorizing patients into two groups based on the expression of these genes (basal and overexpression). Subsequently, a detailed characterization of immune cell populations present in BM was performed using flow cytometry, including CD4+ T lymphocytes (total and regulatory), CD8+ T cells, myeloid-derived suppressor cells (MDSC), macrophages (M1 and M2), and natural killer (NK) cells. Additionally, an RNA-seq analysis was conducted to assess immune genes associated with the response against BCP-ALL, and TIME profiles were analyzed using packages such as DESeq2, CIBERSORT, and xCell in RStudio. Furthermore, the public TARGET database was consulted to corroborate the obtained data. The results revealed differential expression of 15,951 genes between the two studied groups, with prominent overexpression of genes associated with neutrophil pathways. Gene enrichment analysis showed increased expression of genes involved in neutrophil degranulation, neutrophil activation, and neutrophil-mediated immunity. Specifically, significant differences were observed in the populations of neutrophils, monocytes, and CD4+ T lymphocytes in patients with elevated levels of ID1 and ID3 compared to the group with basal expression. These findings were consistent with data obtained through flow cytometry. In conclusion, the results of this study suggest that the expression levels of ID1 and ID3 in leukemia cells (LC) of BCP-ALL are associated with significant alterations in TIME populations, highlighting a potential immunomodulatory role of these genes, especially in neutrophil pathways. These findings could have important implications for understanding disease progression and improving therapeutic strategies in BCP-ALL patients.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Inmunologíaspa
dc.description.researchareaÁspectos Inmunológicos del Cáncerspa
dc.format.extentxvi, 83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86560
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.references1. Richard-Carpentier G, Kantarjian H, Jabbour E. Recent Advances in Adult Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep. 2019spa
dc.relation.references2. Roberts KG, Mullighan CG. The Biology of B-Progenitor Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med [Internet]. 2020 Jul 1 [cited 2023 Jan 1];10(7):1–22. Available from: https://pubmed.ncbi.nlm.nih.gov/31653664/spa
dc.relation.references3. Felipe Combariza J, Casas CP, Rodriguez M. Rev Colomb CanCeRol 2007;11(2):92-100 93.spa
dc.relation.references4. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, et al. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta Mol Cell Res [Internet]. 2016;1863(3):449–63. Available from: http://dx.doi.org/10.1016/j.bbamcr.2015.08.015spa
dc.relation.references5. Cruz-Rodriguez N, Combita AL, Enciso LJ, Raney LF, Pinzon PL, Lozano OC, et al. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL. Journal of Experimental and Clinical Cancer Research. 2017;36(1):1–12.spa
dc.relation.references6. Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways Fritz Aberger. Cell Communication and Signaling. 2017;15(1):1–26.spa
dc.relation.references7. Wang LH, Baker NE. E-proteins and ID-proteins: Helix-loop-helix partners in development and disease. Dev Cell [Internet]. 2015 Nov 11 [cited 2023 Dec 12];35(3):269. Available from: /pmc/articles/PMC4684411/spa
dc.relation.references8. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer. 2005;5(8):603–14.spa
dc.relation.references9. Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD. Id Helix-Loop-Helix Proteins Antagonize Pax Transcription Factor Activity by Inhibiting DNA Binding. Mol Cell Biol. 2001 Jan 15;21(2):524–33.spa
dc.relation.references10. Ruzinova MB, Benezra R. Id proteins in development , cell cycle and cancer. 2003;13(8):410–8.spa
dc.relation.references11. Ling MT, Wang X, Zhang X, Wong YC. The multiple roles of Id-1 in cancer progression. Differentiation. 2006;74(9–10):481–7.spa
dc.relation.references12. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4 + T cells. Nat Immunol. 2015;16(10):1077–84.spa
dc.relation.references13. Melief J, Pico de Coaña Y, Maas R, Fennemann FL, Wolodarski M, Hansson J, et al. High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunology, Immunotherapy. 2020;69(4):513–22.spa
dc.relation.references14. Ma C, Witkowski MT, Harris J, Dolgalev I, Sreeram S, Qian W, et al. Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Sci Adv. 2020 Oct 28;6(44).spa
dc.relation.references15. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.spa
dc.relation.references16. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019 Apr 15;144(8):1941–53.spa
dc.relation.references17. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2016;27:v69–82.spa
dc.relation.references18. Schwab C, Harrison CJ. Advances in B-cell Precursor Acute Lymphoblastic Leukemia Genomics. Hemasphere. 2018;1.spa
dc.relation.references19. Paul S, Kantarjian H, Jabbour EJ. Adult Acute Lymphoblastic Leukemia. Vol. 91, Mayo Clinic Proceedings. Elsevier Ltd; 2016. p. 1645–66.spa
dc.relation.references20. Papaspyridonos M, Matei I, Huang Y, Andre R, Brazier-mitouart H, Waite JC, et al. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. 2015;spa
dc.relation.references21. Gloury R, Zotos D, Zuidscherwoude M, Masson F, Liao Y, Hasbold J, et al. Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine. 2016;213(6):1095–111.spa
dc.relation.references22. Lasorella A, Benezra R, Iavarone A. The ID proteins: Master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77–91.spa
dc.relation.references23. Stankovic T, Marston E. MOLECULAR MECHANISMS INVOLVED IN CHEMORESISTANCE IN PAEDIATRIC ACUTE LYMPHOBLASTIC LEUKAEMIA. 2008;136:187–92.spa
dc.relation.references24. Passaro D, Quang CT, Ghysdael J. Microenvironmental cues for T-cell acute lymphoblastic leukemia development. Immunol Rev. 2016;271(1):156–72.spa
dc.relation.references25. Höpken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends Cancer. 2019;5(6):351–64.spa
dc.relation.references26. Houshmand M, Blanco TM, Circosta P, Yazdi N, Kazemi A, Saglio G, et al. Bone marrow microenvironment: The guardian of leukemia stem cells. Vol. 11, World Journal of Stem Cells. Baishideng Publishing Group Co; 2019. p. 476–90.spa
dc.relation.references27. Rabe JL, Gardner L, Hunter R, Fonseca JA, Dougan J, Gearheart CM, et al. IL12 abrogates calcineurin-dependent immune evasion during leukemia progression. Cancer Res. 2019;79(14):3702–13.spa
dc.relation.references28. Hunter R, Imbach KJ, Zhou C, Dougan J, Hamilton JAG, Chen KZ, et al. B-cell acute lymphoblastic leukemia promotes an immune suppressive microenvironment that can be overcome by IL-12. Scientific Reports 2022 12:1. 2022 Jul 13;12(1):1–13.spa
dc.relation.references29. Malard F, Mohty M. Seminar Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146–62.spa
dc.relation.references30. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. The Lancet. 2013;381(9881):1943–55.spa
dc.relation.references31. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.spa
dc.relation.references32. Hagman J. Transcriptional Regulation of Early B Cell Development. Second Edi. Molecular Biology of B Cells: Second Edition. Elsevier Ltd; 2015. 35–53 p.spa
dc.relation.references33. Engel I, Murre C. The function of E- and ID proteins in lymphocyte development. Nat Rev Immunol. 2001;1(3):193–9.spa
dc.relation.references34. Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol. 2015;144(3):393–410.spa
dc.relation.references35. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.spa
dc.relation.references36. Cobaleda C, Sánchez-García I. B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. BioEssays. 2009;31(6):600–9.spa
dc.relation.references37. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology. 2017;35(9):975–83.spa
dc.relation.references38. Faderl S, O’Brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, et al. Adult acute lymphoblastic leukemia: Concepts and strategies. Cancer. 2010;116(5):1165–76.spa
dc.relation.references39. Sas V, Moisoiu V, Teodorescu P, Tranca S, Pop L, Iluta S, et al. Approach to the Adult Acute Lymphoblastic Leukemia Patient. J Clin Med. 2019;8(8):1175.spa
dc.relation.references40. Bassan R, Bourquin JP, DeAngelo DJ, Chiaretti S. New approaches to the management of adult acute lymphoblastic leukemia. Journal of Clinical Oncology. 2018;36(35):3504–19.spa
dc.relation.references41. Muffly LS, Reizine N, Stock W. Management of acute lymphoblastic leukemia in young adults. Clinical Advances in Hematology and Oncology. 2018;16(2):138–46.spa
dc.relation.references42. Narayanan S, Shami PJ. Treatment of acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol. 2012;81(1):94–102.spa
dc.relation.references43. Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cellular and Molecular Life Sciences. 2018;75(3):417–46.spa
dc.relation.references44. Rafei H, Kantarjian HM, Jabbour EJ. Recent advances in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma. 2019;60(11):2606–21.spa
dc.relation.references45. Hoelzer D, Bassan R, Boissel N, Roddie C, Ribera JM, Jerkeman M. ESMO Clinical Practice Guideline interim update on the use of targeted therapy in acute lymphoblastic leukaemia. Annals of Oncology [Internet]. 2023 Oct [cited 2023 Dec 4];0(0). Available from: http://www.annalsofoncology.org/article/S0923753423040097/fulltextspa
dc.relation.references46. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. New England Journal of Medicine. 2017 Mar 2;376(9):836–47.spa
dc.relation.references47. Cruz-Rodriguez N, Combita AL, Enciso LJ, Quijano SM, Pinzon PL, Lozano OC, et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research. 2016;35(1):1–14.spa
dc.relation.references48. Mami N Ben, Mohty M, Chambost H, Gaugler B, Olive D. Blood dendritic cells in patients with acute lymphoblastic leukaemia. Br J Haematol. 2004 Jul;126(1):77–80.spa
dc.relation.references49. Liu C, Wang HC, Yu S, Jin R, Tang H, Liu YF, et al. Id1 Expression Promotes T Regulatory Cell Differentiation by Facilitating TCR Costimulation. The Journal of Immunology. 2014;193(2):663–72.spa
dc.relation.references50. Yuen HF, Chan YP, Chan KK, Chu YY, Wong MLY, Law SYK, et al. Id-1 and Id-2 are markers for metastasis and prognosis in oesophageal squamous cell carcinoma. Br J Cancer. 2007;97(10):1409–15.spa
dc.relation.references51. Nair R, Teo WS, Mittal V, Swarbrick A. ID Proteins Regulate Diverse Aspects of Cancer Progression and Provide Novel Therapeutic Opportunities. 2014;22(8):1407–15.spa
dc.relation.references52. Weiler S, Ademokun JA, Norton JD. ID helix-loop-helix proteins as determinants of cell survival in B-cell chronic lymphocytic leukemia cells in vitro. 2015;1–20.spa
dc.relation.references53. Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence. Oncogene. 2001;20(58 REV. ISS. 8):8317–25.spa
dc.relation.references54. Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity. 2023 Oct 10;56(10):2188–205.spa
dc.relation.references55. Roy S, Zhuang Y. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Vol. 12, Frontiers of Medicine. Higher Education Press; 2018. p. 374–86.spa
dc.relation.references56. Witkowski MT, Dolgalev I, Evensen NA, Tsirigos A, Carroll WL. Article Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2020;37(6):867-882.e12.spa
dc.relation.references57. Anderson D, Skut P, Hughes AM, Ferrari E, Tickner J, Xu J, et al. The bone marrow microenvironment of pre B acute lymphoblastic leukemia at single cell resolution. Sci Rep. 2020;1–14.spa
dc.relation.references58. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;spa
dc.relation.references59. Forte D, Krause DS, Andreeff M, Bonnet D, Méndez-Ferrer S. Updates on the hematologic tumor microenvironment and its therapeutic targeting. Haematologica. 2019;104(10):1928–34.spa
dc.relation.references60. Man Y, Yao X, Yang T, Wang Y. Hematopoietic Stem Cell Niche During Homeostasis, Malignancy, and Bone Marrow Transplantation. Front Cell Dev Biol. 2021;9(January):1–11.spa
dc.relation.references61. Meyer LK, Hermiston ML. The bone marrow microenvironment as a mediator of chemoresistance in acute lymphoblastic leukemia. 2019;1–14.spa
dc.relation.references62. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.spa
dc.relation.references63. Reagan MR, Rosen CJ. Navigating the bone marrow niche: Translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2016;12(3):154–68.spa
dc.relation.references64. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, et al. Bone marrow and the control of immunity. 2012;(July 2011):11–9.spa
dc.relation.references65. Mercier FE, Ragu C, Scadden DT. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol. 2012;12(1):49–60.spa
dc.relation.references66. Riether C, Schürch CM, Ochsenbein AF. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22(2):187–98.spa
dc.relation.references67. Autio M, Leivonen S katri, Brück O, Mustjoki S. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. 2021;106(3).spa
dc.relation.references68. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of T reg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474(7350):216–20.spa
dc.relation.references69. Shang S, Yang C, Chen F, Xiang R shen, Zhang H, Dai S yuan, et al. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer. Nat Commun. 2023;14(1).spa
dc.relation.references70. Prabhu S, Ignatova A, Park ST, Sun XH. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol. 1997 Oct 1;17(10):5888.spa
dc.relation.references71. Pan L, Sato S, Frederick JP, Sun XH, Zhuang Y. Impaired Immune Responses and B-Cell Proliferation in Mice Lacking the Id3 Gene. Mol Cell Biol. 1999;19(9):5969–80.spa
dc.relation.references72. Zhao Q, Wang Y, Yu D, Leng JY, Zhao Y, Chu M, et al. Comprehensive analysis of ID genes reveals the clinical and prognostic value of ID3 expression in acute myeloid leukemia using bioinformatics identification and experimental validation. BMC Cancer. 2022;22(1):1–12.spa
dc.relation.references74. Castañon E, Bosch-Barrera J, López I, Collado V, Moreno M, López-Picazo JM, et al. Id1 and Id3 co-expression correlates with clinical outcome in stage III-N2 non-small cell lung cancer patients treated with definitive chemoradiotherapy. J Transl Med. 2013 Jan 11;11(1):1–8.spa
dc.relation.references75. O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, et al. ID1 and ID3 Regulate the Self-Renewal Capacity of Human Colon Cancer-Initiating Cells through p21. Cancer Cell. 2012 Jun 12;21(6):777–92.spa
dc.relation.references76. Liu Y feng, Chen Y ying, He Y yi, Wang J yi, Yang J ping, Zhong S ling, et al. Expansion and activation of granulocytic, myeloid-derived suppressor cells in childhood precursor B cell acute lymphoblastic leukemia. J Leukoc Biol. 2017;102(2):449–58.spa
dc.relation.references77. Song JX, Wen Y, Li RW, Dong T, Tang YF, Zhang JJ, et al. Phenotypic characterization of macrophages in the BMB sample of human acute leukemia. Ann Hematol. 2020;99(3):539–47.spa
dc.relation.references78. Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell Dysfunction and Exhaustion in Cancer. 2020;8(February).spa
dc.relation.references79. Jin Y, Hu P, Sun H, Yang C, Zhai J, Wang Y, et al. Expression of Id3 represses exhaustion of anti-tumor CD8 T cells in liver cancer. Mol Immunol. 2022 Apr 1;144:117–26.spa
dc.relation.references80. Lipp JJ, Wang L, Yang H, Yao F, Harrer N, Müller S, et al. Functional and molecular characterization of PD1+ tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology. 2022 Dec 31;11(1).spa
dc.relation.references81. Rauch KS, Hils M, Lupar E, Minguet S, Sigvardsson M, Rottenberg ME, et al. Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3. Cell Rep. 2016;17(11):2827–36.spa
dc.relation.references82. Xue G, Zheng N, Fang J, Jin G, Li X, Dotti G, et al. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell. 2021 Dec 13;39(12):1610-1622.e9.spa
dc.relation.references83. Lustfeld I, Ahlmann M. High Proportions of CD4 + T Cells among Residual Bone Marrow T Cells in Childhood Acute Lymphoblastic Leukemia Are Associated with Favorable Early Responses. 2014;28–36.spa
dc.relation.references84. Salem ML, El-Shanshory MR, Abdou SH, Attia MS, Sobhy SM, Zidan MF, et al. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia. Immunopharmacol Immunotoxicol. 2018;40(2):158–67.spa
dc.relation.references85. El-maadawy EA, Elshal MF, Bakry RM, Moussa MM, El-Naby SH, Talaat RM. Regulation of CD4+CD25+FOXP3+ cells in Pediatric Acute Lymphoblastic Leukemia (ALL): Implication of cytokines and miRNAs. Mol Immunol. 2020;124(March):1–8.spa
dc.relation.references86. Niedźwiecki M, Budziło O, Zieliński M, Adamkiewicz-Drożyńska E, Maciejka-Kembłowska L, Szczepański T, et al. CD4+CD25highCD127low/−FoxP3+ Regulatory T Cell Subpopulations in the Bone Marrow and Peripheral Blood of Children with ALL: Brief Report. J Immunol Res. 2018;2018.spa
dc.relation.references87. Wu CP, Qing X, Wu CY, Zhu H, Zhou HY. Immunophenotype and increased presence of CD4 +CD25 + regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3(2):421–4.spa
dc.relation.references88. Liu SX, Xiao HR, Wang GB, Chen XW, Li CG, Mai HR, et al. Preliminary investigation on the abnormal mechanism of cd4+foxp3+cd25high regulatory t cells in pediatric b-cell acute lymphoblastic leukemia. Exp Ther Med. 2018;16(2):1433–41.spa
dc.relation.references89. Idris SZ, Hassan N, Lee LJ, Md Noor S, Osman R, Abdul-Jalil M, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20(9):523–9.spa
dc.relation.references90. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5;303(5663):1532–5.spa
dc.relation.references91. Oliveira E, Bacelar TS, Ciudad J, Ribeiro MCM, Garcia DRN, Sedek L, et al. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia. Oncotarget. 2016 Apr 4;7(17):24664.spa
dc.relation.references92. Buitenhuis M, Van Deutekom HWM, Verhagen LP, Castor A, Jacobsen SEW, Lammers JWJ, et al. Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2. Blood. 2005 Jun 1;105(11):4272–81.spa
dc.relation.references93. Ostafin M, Ciepiela O, Pruchniak M, Wachowska M, Ulińska E, Mrówka P, et al. Dynamic Changes in the Ability to Release Neutrophil ExtraCellular Traps in the Course of Childhood Acute Leukemias. Int J Mol Sci. 2021 Jan 2;22(2):1–11.spa
dc.relation.references94. Liu G jie, Wang Y jie, Yue M, Zhao L mei, Guo YD, Liu Y ping, et al. High expression of TCN1 is a negative prognostic biomarker and can predict neoadjuvant chemosensitivity of colon cancer. Scientific Reports 2020 10:1. 2020 Jul 20;10(1):1–11.spa
dc.relation.references95. Chen J, Cheuk IWY, Siu MT, Yang W, Cheng AS, Shin VY, et al. Human haptoglobin contributes to breast cancer oncogenesis through glycolytic activity modulation. Am J Cancer Res. 2020;10(9):2865.spa
dc.relation.references96. Yang G, Xiong G, Feng M, Zhao F, Qiu J, Liu Y, et al. OLR1 promotes pancreatic cancer metastasis via increased c-Myc expression and transcription of HMGA2. Molecular Cancer Research. 2020 May 1;18(5):685–97.spa
dc.relation.references97. Lussana F, Cavallaro G, De Simone P, Rambaldi A. Optimal Use of Novel Immunotherapeutics in B-Cell Precursor ALL. Cancers (Basel). 2023;15(4):1–23.spa
dc.relation.references98. Zhang H, Rosdahl I. Expression profiles of Id1 and p16 proteins in all-trans-retinoic acid-induced apoptosis and cell cycle re-distribution in melanoma. Cancer Lett. 2005 Jan 10;217(1):33–41.spa
dc.relation.references99. Álvarez-Zúñiga CD, Garza-Veloz I, Martínez-Rendón J, Ureño-Segura M, Delgado-Enciso I, Martinez-Fierro ML. Circulating Biomarkers Associated with the Diagnosis and Prognosis of B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel). 2023 Aug 1;15(16):4186.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembLeucemia linfoblásticaspa
dc.subject.lembLymphoblastic leukemiaeng
dc.subject.otherSistema Inmunológicospa
dc.subject.otherImmune Systemeng
dc.subject.otherMédula óseaspa
dc.subject.otherBone Marroweng
dc.subject.otherMonitorización Inmunológicaspa
dc.subject.otherMonitoring, Immunologiceng
dc.subject.proposalLeucemia linfoblástica aguda de células B precursorasspa
dc.subject.proposalID1
dc.subject.proposalID3
dc.subject.proposalSistema inmunitariospa
dc.subject.proposalMédula óseaspa
dc.subject.proposalMicroambientespa
dc.subject.proposalInmunovigilanciaspa
dc.titleRelación entre la expresión de ID1 e ID3 y el microambiente tumoral inmune de la médula ósea en adultos con leucemia linfoblástica aguda de células precursoras Bspa
dc.title.translatedRelationship between ID1 and ID3 expression and the bone marrow immune tumor microenvironment in adults with B precursor cell acute lymphoblastic leukemia
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Nacional de Cancerologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012387881.2024.pdf
Tamaño:
3.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Magister en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: